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Abstract

We provide statistical performance guarantees for a recently introduced kernel
classifier that optimizes the L2 or integrated squared error (ISE) of a difference
of densities. The classifier is similar to a support vector machine (SVM) in that
it is the solution of a quadratic program and yields a sparse classifier. Unlike
SVMs, however, the L2 kernel classifier does not involve a regularization param-
eter. We prove a distribution free concentration inequality for a cross-validation
based estimate of the ISE, and apply this result to deduce an oracle inequality and
consistency of the classifier on the sense of both ISE and probability of error. Our
results also specialize to give performance guarantees for an existing method of
L2 kernel density estimation.

1 Introduction

In the binary classification problem we are given realizations (x1, y1), . . . , (xn, yn) of a jointly
distributed pair (X, Y ), where X ∈ Rd is a pattern and Y ∈ {−1, +1} is a class label. The goal
of classification is to build a classifier, i.e., a function taking X as input and outputting a label, such
that some measure of performance is optimized. Kernel classifiers [1] are an important family of
classifiers that have drawn much recent attention for their ability to represent nonlinear decision
boundaries and to scale well with increasing dimension d. A kernel classifier (without offset) has
the form

g(x) = sign

{
n∑

i=1

αiyik(x,xi)

}
,

where αi are parameters and k is a kernel function. For example, support vector machines (SVMs)
without offset have this form [2], as does the standard kernel density estimate (KDE) plug-in rule.

Recently Kim and Scott [3] introduced an L2 or integrated squared error (ISE) criterion to design the
coefficients αi of a kernel classifier with Gaussian kernel. Their L2 classifier performs comparably
to existing kernel methods while possesing a number of desirable properties. Like the SVM, L2

kernel classifiers are the solutions of convex quadratic programs that can be solved efficiently using
standard decomposition algorithms. In addition, the classifiers are sparse, meaning most of the
coefficients αi = 0, which has advantages for representation and evaluation efficiency. Unlike
the SVM, however, there are no free parameters to be set by the user except the kernel bandwidth
parameter.

In this paper we develop statistical performance guarantees for the L2 kernel classifier introduced
in [3]. The linchpin of our analysis is a new concentration inequality bounding the deviation of a
cross-validation based ISE estimate from the true ISE. This bound is then applied to prove an oracle
inequality and consistency in both ISE and probability of error. In addition, as a special case of
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our analysis, we are able to deduce performance guarantees for the method of L2 kernel density
estimation described in [4, 5].

The ISE criterion has a long history in the literature on bandwidth selection for kernel density esti-
mation [6] and more recently in parametric estimation [7]. The use of ISE for optimizing the weights
of a KDE via quadratic programming was first described in [4] and later rediscovered in [5]. In [8],
an `1 penalized ISE criterion was used to aggregate a finite number of pre-determined densities.
Linear and convex aggregation of densities, based on an L2 criterion, are studied in [9], where the
densities are based on a finite dictionary or an independent sample. In contrast, our proposed method
allows data-adaptive kernels, and does not require and independent (holdout) sample.

In classification, some connections relating SVMs and ISE are made in [10], although no new algo-
rithms are proposed. Finally, the “difference of densities” perspective has been applied to classifica-
tion in other settings by [11], [12], and [13]. In [11] and [13], a difference of densities are used to
find smoothing parameters or kernel bandwidths. In [12], conditional densities are chosen among a
parameterized set of densities to maximize the average (bounded) density differences.

Section 2 reviews the L2 kernel classifier, and presents a slight modification needed for our analysis.
Our results are presented in Section 3. Conclusions are offered in the final section, and proofs are
gathered in an appendix.

2 L2 Kernel Classification

We review the previous work of Kim & Scott [3] and introduce an important modification. For
convenience, we relabel Y so that it belongs to {1,−γ} and denote I+ = {i | Yi = +1} and I− =
{i | Yi = −γ}. Let f−(x) and f+(x) denote the class-conditional densities of the pattern given the
label. From decision theory, the optimal classifier has the form

g∗(x) = sign {f+(x)− γf−(x)} , (1)

where γ incorporates prior class probabilities and class-conditional error costs (in the Bayesian
setting) or a desired tradeoff between false positives and false negatives [14]. Denote the “difference
of densities” dγ(x) := f+(x)− γf−(x).

The class-conditional densities are modelled using the Gaussian kernel as

f̂+ (x; α) =
∑

i∈I+

αikσ (x,Xi) , f̂− (x; α) =
∑

i∈I−

αikσ (x,Xi)

with constraints α = (α1, . . . , αn) ∈ A where

A =



α |

∑

i∈I+

αi =
∑

i∈I−

αi = 1, αi ≥ 0 ∀i


 .

The Gaussian kernel is defined as

kσ (x,Xi) =
(
2πσ2

)−d/2
exp

{
−‖x−Xi‖2

2σ2

}
.

The ISE associated with α is

ISE (α) = ‖d̂γ (x; α)− dγ (x) ‖2L2
=

∫ (
d̂γ (x; α)− dγ (x)

)2

dx

=
∫

d̂2
γ (x;α) dx− 2

∫
d̂γ (x; α) dγ (x) dx +

∫
d2

γ (x) dx.

Since we do not know the true dγ (x), we need to estimate the second term in the above equation

H (α) ,
∫

d̂γ (x; α) dγ (x) dx (2)

by Hn (α) which will be explained in detail in Section 2.1. Then, the empirical ISE is

ÎSE (α) =
∫

d̂2
γ (x; α) dx− 2Hn (α) +

∫
d2

γ (x) dx. (3)
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Now, α̂ is defined as
α̂ = arg min

α∈A
ÎSE (α) (4)

and the final classifier will be

g (x) =

{
+1, d̂γ (x; α̂) ≥ 0
−γ, d̂γ (x; α̂) < 0.

2.1 Estimation of H (α)

In this section, we propose a method of estimating H (α) in (2). The basic idea is to view H (α) as
an expectation and estimate it using a sample average. In [3], the resubstitution estimator for H (α)
was used. However, since this estimator is biased, we use a leave-one-out cross-validation (LOOCV)
estimator, which is unbiased and facilitates our theoretical analysis. Note that the difference of
densities can be expressed as

d̂γ (x;α) = f̂+ (x)− γf̂− (x) =
n∑

i=1

αiYikσ (x,Xi) .

Then,

H (α) =
∫

d̂γ (x;α) dγ (x) dx =
∫

d̂γ (x; α) f+ (x) dx− γ

∫
d̂γ (x; α) f− (x) dx

=
∫ n∑

i=1

αiYikσ (x,Xi) f+ (x) dx− γ

∫ n∑

i=1

αiYikσ (x,Xi) f− (x) dx

=
n∑

i=1

αiYih (Xi)

where
h (Xi) ,

∫
kσ (x,Xi) f+ (x) dx− γ

∫
kσ (x,Xi) f− (x) dx. (5)

We estimate each h (Xi) in (5) for i = 1, . . . , n using leave-one-out cross-validation

ĥi ,





1
N+ − 1

∑

j∈I+,j 6=i

kσ (Xj ,Xi)− γ

N−

∑

j∈I−

kσ (Xj ,Xi) , i ∈ I+

1
N+

∑

j∈I+

kσ (Xj ,Xi)− γ

N− − 1

∑

j∈I−,j 6=i

kσ (Xj ,Xi) , i ∈ I−

where N+ = |I+| , N− = |I−|. Then, the estimate of H (α) is Hn (α) =
∑n

i=1 αiYiĥi.

2.2 Optimization

The optimization problem (4) can be formulated as a quadratic program. The first term in (3) is
∫

d̂2
γ (x; α) dx =

∫ (
n∑

i=1

αiYikσ (x,Xi)

)2

dx

=
n∑

i=1

n∑

j=1

αiαjYiYj

∫
kσ (x,Xi) kσ (x,Xj) dx =

n∑

i=1

n∑

j=1

αiαjYiYjk√2σ (Xi,Xj)

by the convolution theorem for Gaussian kernels [15]. As we have seen in Section 2.1, the second
term Hn (α) in (3) is linear in α and can be expressed as

∑n
i=1 αici where ci = Yiĥi. Finally, since

the third term does not depend on α, the optimization problem (4) becomes the following quadratic
program (QP)

α̂ = arg min
α∈A

1
2

n∑

i=1

n∑

j=1

αiαjYiYjk√2σ (Xi,Xj)−
n∑

i=1

ciαi. (6)

The QP (6) is similar to the dual QP of the 2-norm SVM with hinge loss [2] and can be solved by a
variant of the Sequential Minimal Optimization (SMO) algorithm [3].
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3 Statistical performance analysis

In this section, we give theoretical performance analysis on our proposed method. We assume that
{Xi}i∈I+

and {Xi}i∈I− are i.i.d samples from f+ (x) and f− (x), respectively, and treat N+ and
N− as deterministic variables n+ and n− such that n+ →∞ and n− →∞ as n →∞.

3.1 Concentration inequality for Hn (α)

Lemma 1. Conditioned on Xi, ĥi is an unbiased estimator of h (Xi), i.e,

E
[
ĥi | Xi

]
= h (Xi) .

Furthermore, for any ε > 0,

P
{

sup
α∈A

|Hn (α)−H (α)| > ε

}
≤ 2n

(
e−c(n+−1)ε2 + e−c(n−−1)ε2

)

where c = 2
(√

2πσ
)2d

/ (1 + γ)4.

Lemma 1 implies that Hn (α) → H (α) almost surely for all α ∈ A simultaneously, provided that
σ, n+, and n− evolve as functions of n such that n+σ2d/ ln n →∞ and n−σ2d/ lnn →∞.

3.2 Oracle Inequality

Next, we establish on oracle inequality, which relates the performance of our estimator to that of the
best possible kernel classifier.

Theorem 1. Let ε > 0 and set δ = δ (ε) = 2n
(
e−c(n+−1)ε2 + e−c(n−−1)ε2

)
where c =

2
(√

2πσ
)2d

/ (1 + γ)4. Then, with probability at least 1− δ

ISE (α̂) ≤ inf
α∈A

ISE (α) + 4ε.

Proof. From Lemma 1, with probability at least 1− δ

∣∣∣ISE (α)− ÎSE (α)
∣∣∣ ≤ 2ε, ∀α ∈ A

by using the fact ISE (α)− ÎSE (α) = 2 (Hn (α)−H (α)). Then, with probability at least 1−δ,
for all α ∈ A, we have

ISE (α̂) ≤ ÎSE (α̂) + 2ε ≤ ÎSE (α) + 2ε ≤ ISE (α) + 4ε

where the second inequality holds from the definition of α̂. This proves the theorem.

3.3 ISE consistency

Next, we have a theorem stating that ISE (α̂) converges to zero in probability.

Theorem 2. Suppose that for f = f+ and f−, the Hessian Hf (x) exists and each entry of Hf (x)
is piecewise continuous and square integrable. If σ, n+, and n− evolve as functions of n such that
σ → 0, n+σ2d/ ln n →∞, and n−σ2d/ ln n →∞, then ISE (α̂) → 0 in probability as n →∞

This result intuitively follows from the oracle inequality since the standard Parzen window density
estimate is consistent and uniform weights are among the simplex A. The rigorous proof is omitted
due to space limitations.
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3.4 Bayes Error Consistency

In classification, we are ultimately interested in minimizing the probability of error. Let us now
assume {Xi}n

i=1 is an i.i.d sample from f (x) = pf+ (x) + (1 − p)f− (x), where 0 < p < 1 is
the prior probability of the positive class. The consistency with respect to the probability of error
could be easily shown if we set γ to γ∗ = 1−p

p and apply Theorem 3 in [17]. However, since p is
unknown, we must estimate γ∗. Note that N+ and N− are binomial random variables, and we may
estimate γ∗ as γ = N−

N+
. The next theorem says the L2 kernel classifier is consistent with respect to

the probability of error.

Theorem 3. Suppose that the assumptions in Theorem 2 are satisfied. In addition, suppose that
f− ∈ L2 (R), i.e. ‖f−‖L2 < ∞. Let γ = N−/N+ be an estimate of γ∗ = 1−p

p . If σ evolves as
a function of n such that σ → 0 and nσ2d/ ln n → ∞ as n → ∞, then the L2 kernel classifier is
consistent. In other words, given training data Dn = ((X1, Y1) , . . . , (Xn, Yn)), the classification
error

Ln = P
{

sgn
{

d̂γ (X; α̂)
}
6= Y | Dn

}

converges to the Bayes error L∗ in probability as n →∞.

The proof is given in Appendix A.2.

3.5 Application to density estimation

By setting γ = 0, our goal becomes estimating f+ and we recover the L2 kernel density estimate
of [4, 5] using leave-one-out cross-validation. Given an i.i.d sample X1, . . . ,Xn from f (x), the L2

kernel density estimate of f (x) is defined as

f̂ (x; α̂) =
n∑

i=1

α̂ikσ (x,Xi)

with α̂i’s optimized such that

α̂ = arg min∑
αi=1

αi≥0

1
2

n∑

i=1

n∑

j=1

αiαjk√2σ (Xi,Xj)−
n∑

i=1

αi


 1

n− 1

∑

j 6=i

kσ (Xi,Xj)


 .

Our concentration inequality, oracle inequality, and L2 consistency result immediately extend to
provide the same performance guarantees for this method. For example, we state the following
corollary.

Corollary 1. Suppose that the Hessian Hf (x) of a density function f (x) exists and each entry of
Hf (x) is piecewise continuous and square integrable. If σ → 0 and nσ2d/ ln n → ∞ as n → ∞,
then ∫ (

f̂ (x; α̂)− f (x)
)2

dx → 0

in probability.

4 Conclusion

Through the development of a novel concentration inequality, we have established statistical per-
formance guarantees on a recently introduced L2 kernel classifier. We view the relatively clean
analysis of this classifier as an attractive feature relative to other kernel methods. In future work, we
hope to invoke the full power of the oracle inequality to obtain adaptive rates of convergence, and
consistency for σ not necessarily tending to zero.
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A Appendix

A.1 Proof of Lemma 1

Note that for any given i, (kσ (Xj ,Xi))j 6=i are independent and bounded by M = 1/
(√

2πσ
)d

.
For random vectors Z ∼ f+ (x) and W ∼ f− (x), h (Xi) in (5) can be expressed as

h (Xi) = E [kσ (Z,Xi) | Xi]− γE [kσ (W,Xi) | Xi] .

Since Xi ∼ f+ (x) for i ∈ I+ and Xi ∼ f− (x) for i ∈ I−, it can be easily shown that

E
[
ĥi | Xi

]
= h (Xi) .

For i ∈ I+,

P
{∣∣ĥi − h (Xi)

∣∣ > ε

∣∣∣∣Xi = x
}

≤ P
{∣∣∣∣

1
n+ − 1

∑

j∈I+,j 6=i

kσ (Xj ,Xi)−E [kσ (Z,Xi) | Xi]
∣∣∣∣ >

ε

1 + γ

∣∣∣∣Xi = x
}

+ P
{∣∣∣∣

γ

n−

∑

j∈I−

kσ (Xj ,Xi)− γE [kσ (W,Xi) | Xi]
∣∣∣∣ >

γε

1 + γ

∣∣∣∣Xi = x
}

(7)

By Hoeffding’s inequality [16], the first term in (7) is

P
{∣∣∣∣

∑

j∈I+,j 6=i

kσ (Xj ,Xi)− (n+ − 1)E [kσ (Z,Xi) | Xi]
∣∣∣∣ >

(n+ − 1) ε

1 + γ

∣∣∣∣Xi = x
}

= P
{∣∣∣∣

∑

j∈I+,j 6=i

kσ (Xj ,Xi)−E
[ ∑

j∈I+,j 6=i

kσ (Xj ,Xi) | Xi

]∣∣∣∣ >
(n+ − 1) ε

1 + γ

∣∣∣∣Xi = x
}

= P
{∣∣∣∣

∑

j∈I+,j 6=i

kσ (Xj ,Xi)−E
[ ∑

j∈I+,j 6=i

kσ (Xj ,Xi) | Xi

]∣∣∣∣ >
(n+ − 1) ε

1 + γ

∣∣∣∣Xi = x
}

≤ 2e−2(n+−1)ε2/(1+γ)2M2
.

The second term in (7) is

P
{∣∣∣∣

∑

j∈I−

kσ (Xj ,Xi)− n−E [kσ (W,Xi) | Xi]
∣∣∣∣ >

n−ε

1 + γ

∣∣∣∣Xi = x
}

= P
{∣∣∣∣

∑

j∈I−

kσ (Xj ,Xi)−E
[ ∑

j∈I−

kσ (Xj ,Xi) | Xi

]∣∣∣∣ >
n−ε

1 + γ

∣∣∣∣Xi = x
}

≤ 2e−2n−ε2/(1+γ)2M2 ≤ 2e−2(n−−1)ε2/(1+γ)2M2
.

Therefore,

P
{∣∣∣ĥi − h (Xi)

∣∣∣ ≥ ε
}

= E
[
P

{∣∣∣ĥi − h (Xi)
∣∣∣ ≥ ε

∣∣∣∣Xi = X
}]

≤ 2e−2(n+−1)ε2/(1+γ)2M2
+ 2e−2(n−−1)ε2/(1+γ)2M2

.

In a similar way, it can be shown that for i ∈ I−,

P
{∣∣∣ĥi − h (Xi)

∣∣∣ > ε
}
≤ 2e−2(n+−1)ε2/(1+γ)2M2

+ 2e−2(n−−1)ε2/(1+γ)2M2
.
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Then,

P
{

sup
α∈A

|Hn (α)−H (α)| > ε

}
= P

{
sup
α∈A

∣∣∣∣∣
n∑

i=1

αiYi

(
ĥi − h (Xi)

)∣∣∣∣∣ > ε

}

≤ P

{
sup
α∈A

n∑

i=1

αi |Yi|
∣∣∣ĥi − h (Xi)

∣∣∣ > ε

}

= P
{

sup
α∈A

n∑

i∈I+

αi

∣∣∣ĥi − h (Xi)
∣∣∣ +

n∑

i∈I−

αiγ
∣∣∣ĥi − h (Xi)

∣∣∣ > ε

}

≤ P
{

sup
α∈A

n∑

i∈I+

αi

∣∣∣ĥi − h (Xi)
∣∣∣ >

ε

1 + γ

∣∣∣∣ B

}
+ P

{
sup
α∈A

n∑

i∈I−

αiγ
∣∣∣ĥi − h (Xi)

∣∣∣ >
γε

1 + γ

∣∣∣∣ B

}

= P
{

max
i∈I+

∣∣∣ĥi − h (Xi)
∣∣∣ >

ε

1 + γ

∣∣∣∣ B

}
+ P

{
max
i∈I−

∣∣∣ĥi − h (Xi)
∣∣∣ >

ε

1 + γ

∣∣∣∣ B

}

= P
{ ⋃

i∈I+

{∣∣∣ĥi − h (Xi)
∣∣∣ >

ε

1 + γ

} ∣∣∣∣ B

}
+ P

{ ⋃

i∈I−

{∣∣∣ĥi − h (Xi)
∣∣∣ >

ε

1 + γ

} ∣∣∣∣ B

}

≤
∑

i∈I+

P
{∣∣∣ĥi − h (Xi)

∣∣∣ >
ε

1 + γ

∣∣∣∣ B

}
+

∑

i∈I−

P
{∣∣∣ĥi − h (Xi)

∣∣∣ >
ε

1 + γ

∣∣∣∣ B

}

≤ n+

(
2e−2(n+−1)ε2/(1+γ)4M2

+ 2e−2(n−−1)ε2/(1+γ)4M2
)

+ n−
(
2e−2(n+−1)ε2/(1+γ)4M2

+ 2e−2(n−−1)ε2/(1+γ)4M2
)

= n
(
2e−2(n+−1)ε2/(1+γ)4M2

+ 2e−2(n−−1)ε2/(1+γ)4M2
)

.

A.2 Proof of Theorem 3

From Theorem 3 in [17], it suffices to show that∫ (
d̂γ (x; α̂)− dγ∗ (x)

)2

dx → 0

in probability. Since from the triangle inequality

‖d̂γ (x; α̂)− dγ∗ (x) ‖L2 = ‖d̂γ (x; α̂)− dγ (x) + (γ − γ∗) f− (x) ‖L2

≤ ‖d̂γ (x; α̂)− dγ (x) ‖L2 + ‖ (γ − γ∗) f− (x) ‖L2

=
√

ISE (α̂) + |γ − γ∗| · ‖f− (x) ‖L2 ,

we need to show that ISE (α̂) and γ converges in probability to 0 and γ∗, respectively. The con-
vergence of γ to γ∗ can be easily shown from the strong law of large numbers.

In the previous analyses, we have shown the convergence of ISE (α̂) by treating N+, N− and γ
as deterministic variables but now we turn to the case where these variables are random. Define an
event D =

{
N+ ≥ np

2 , N− ≥ n(1−p)
2 , γ ≤ 2γ∗

}
. For any ε > 0,

P {ISE (α̂) > ε} ≤ P
{
Dc

}
+ P

{
ISE (α̂) > ε, D

}
.

The first term converges to 0 from the strong law of large numbers. Let define a set S ={
(n+, n−)

∣∣ n+ ≥ np
2 , n− ≥ n(1−p)

2 , n−
n+

≤ 2γ∗
}

. Then,

P
{
ISE (α̂) > ε, D

}

=
∑

P
{
ISE (α̂) > ε, D

∣∣ N+ = n+, N− = n−
} ·P {N+ = n+, N− = n−}

=
∑

(n+,n−)∈S

P
{
ISE (α̂) > ε

∣∣ N+ = n+, N− = n−
} ·P {N+ = n+, N− = n−}

≤ max
(n+,n−)∈S

P
{
ISE (α̂) > ε

∣∣ N+ = n+, N− = n−
}

. (8)

7



Provided that σ → 0 and nσ2d/ ln n →∞, any pair (n+, n−) ∈ S satisfies σ → 0, n+σ2d/ ln n →
∞, and n−σ2d/ ln n →∞ as n →∞ and thus the term in (8) converges to 0 from Theorem 2. This
proves the theorem.
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