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Abstract

This paper presents a theoretical analysis of the problem of domain adaptation
with multiple sources. For each source domain, the distribution over the input
points as well as a hypothesis with error at moate given. The problem con-
sists of combining these hypotheses to derive a hypothesis with small error with
respect to the target domain. We present several theoretical results relating to
this problem. In particular, we prove that standard convex combinations of the
source hypotheses may in fact perform very poorly and that, instead, combinations
weighted by the source distributions benefit from favorable theoretical guarantees.
Our main result shows that, remarkably, for any fixed target function, there exists
a distribution weighted combining rule that has a loss of at mesth respect to
anytarget mixture of the source distributions. We further generalize the setting
from a single target function to multiple consistent target functions and show the
existence of a combining rule with error at mast Finally, we report empirical
results for a multiple source adaptation problem with a real-world dataset.

1 Introduction

A common assumption in theoretical models of learning such as the standard PAC model [16], as
well as in the design of learning algorithms, is that training instances are drawn according to the
same distribution as the unseen test examples. In practice, however, there are many cases where this
assumption does not hold. There can be no hope for generalization, of course, when the training and
test distributions vastly differ, but when they are less dissimilar, learning can be more successful.

A typical situation is that oflomain adaptationvhere little or no labeled data is at one’s disposal

for thetarget domainbut large amounts of labeled data frore@urce domaisomewhat similar to

the target, or hypotheses derived from that source, are available instead. This problem arises in a
variety of applications in natural language processing [4, 7, 10], speech processing [8,9,11,13-15],
computer vision [12], and many other areas.

This paper studies the problem of domain adaptation with multiple sources, which has also received
considerable attention in many areas such as natural language processing and speech processing.
An example is the problem a&fentiment analysighich consists of classifying a text sample such

as a movie review, restaurant rating, or discussion boards, or other web pages. Information about a
relatively small number of domains suchrasviesor booksmay be available, but little or none can

be found for more difficult domains such @avel.

We will consider the following problem of multiple source adaptation. For each sowdg, k],

the learner receives the distributidp; of the input points corresponding to that source as well

as a hypothesis; with loss at moskt on that source. The learner’s task consists of combining
the & hypotheses;, i € [1, k], to derive a hypothesis with small loss with respect to the target
distribution. The target distribution is assumed to be a mixture of the distribufignsVe will

discuss both the case where the mixture is known to the learner and the case where it is unknown.



Note that the distributiorD; is defined over the input points and bears no information about the
labels. In practice]D; is estimated from large amounts of unlabeled points typically available from
sourcei.

An alternative set-up for domain adaptation with multiple sources is one where the learner is not
supplied with a good hypothesis for each source but where instead he has access to the labeled
training data for each source domain. A natural solution consists then of combining the raw labeled
data from each source domain to form a new sample more representative of the target distribution
and use that to train a learning algorithm. This set-up and the type of solutions just described
have been in fact explored extensively in applications [8,9, 11, 13-15]. However, several empirical
observations motivated our study of hypothesis combination, in addition to the theoretical simplicity
and clarity of this framework.

First, in some applications such as very large-vocabulary speech recognition, often the original raw
data used to derive each domain-dependent model is no more available [2,9]. This is because such
models are typically obtained as a result of training based on many hours of speech with files oc-
cupying hundreds of gigabytes of disk space, while the models derived require orders of magnitude
less space. Thus, combining raw labeled data sets is not possible in such cases. Secondly, a com-
bined data set can be substantially larger than each domain-specific data set, which can significantly
increase the computational cost of training and make it prohibitive for some algorithms. Thirdly,
combining labeled data sets requires the mixture parameters of the target distribution to be known,
but it is not clear how to produce a hypothesis with a low error rate with respeatytmixture
distribution.

Few theoretical studies have been devoted to the problem of adaptation with multiple sources. Ben-
David et al. [1] gave bounds for single source adaptation, then Blitzer et al. [3] extended the work
to give a bound on the error rate of a hypothesis derived from a weighted combination of the source
data sets for the specific case of empirical risk minimization. Crammer et al. [5, 6] also addressed
a problem where multiple sources are present but the nature of the problem differs from adaptation
since the distribution of the input points is the same for all these sources, only the labels change
due to varying amounts of noise. We are not aware of a prior theoretical study of the problem of
adaptation with multiple sources analyzed here.

We present several theoretical results relating to this problem. We examine two types of hypothesis
combination. The first type is simply based on convex combinations of thgpotheses,;. We

show that this natural and widely used hypothesis combination may in fact perform very poorly in
our setting. Namely, we give a simple example of two distributions and two matching hypotheses,
each with zero error for their respective distribution, but such that any convex combination has
expected absolute loss bf2 for the equal mixture of the distributions. This points out a potentially
significant weakness of a convex combination.

The second type of hypothesis combination, which is the main one we will study in this work,
takes into account the probabilities derived from the distributions. Namely, the weight of hypothesis
h; on an inputz is proportional to\; D;(x), were X is the set of mixture weights. We will refer

to this method as thdistribution weighted hypothesis combinatioBur main result shows that,
remarkably, for any fixed target function, there exists a distribution weighted combining rule that
has a loss of at mostwith respect taany mixture of thek distributions. We also show that there
exists a distribution weighted combining rule that has loss at Brosith respect to any consistent
target function (one for which eac¢h has loss on D;) and any mixture of thé distributions. In

some sense, our results establish that the distribution weighted hypothesis combination is the “right”
combination rule, and that it also benefits from a well-founded theoretical guarantee.

The remainder of this paper is organized as follows. Section 2 introduces our theoretical model for
multiple source adaptation. In Section 3, we analyze the abstract case where the mixture parameters
of the target distribution are known and show that the distribution weighted hypothesis combination
that uses as weights these mixture coefficients achieves a loss of at.ntos$ection 4, we give

a simple method to produce an error ®@fke) that does not require the prior knowledge of the
mixture parameters of the target distribution. Our main results showing the existence of a combined
hypothesis performing well regardless of the target mixture are given in Section 5 for the case of a
fixed target function, and in Section 6 for the case of multiple target functions. Section 7 reports
empirical results for a multiple source adaptation problem with a real-world dataset.



2 Problem Set-Up

LetX be the input spaced,: X — R the target functionto learn, arld: R x R — R aloss function
penalizing errors with respect b The loss of a hypothesiswith respect to a distributio® and
loss functionL is denoted byZ(D, h, f) and defined a& (D, h, f) = E,~p[L(h(x), f(x))

] =
> zex L(h(z), f(z))D(z). We will denote byA the simplexA = {A: A; > 0 A Zle A; =1} of
R¥.

We consider an adaptation problem wilsource domains and a single target domain. The input
to the problem is the set df source distributiond), ..., Dy and k corresponding hypotheses
hi,...,hg such that for ali € [1,k], L(D;,h;, f) < ¢, for a fixede > 0. The distribution

of the target domainD, is assumed to be a mixture of tihesource distributiond;s, that is
Drp(x) = Zle AiD;(x), for some unknown mixture weight vectdre A. The adaptation problem
consists of combing the hypotheggs to derive a hypothesis with small loss on the target domain.
Since the target distributio®r is assumed to be a mixture, we will refer to this problem as the
mixture adaptation problem

A combining rulefor the hypotheses takes as an input the and outputs a single hypothe-
sish: X — R. We define two combining rules of particular interest for our purpose:lithe
ear combining rulewhich is based on a parameter ¢ A and which sets the hypothesis to
h(z) = Zle z;h;(x); and thedistribution weighted combining rulalso based on a parameter
2 € A which sets the hypothesis tgz) = S5, %hi(x) whenY ", z;D;(x) > 0.

j=1~i T
This last condition always holds ,(x) > 0 for all x € X and some € [1, k]. We defineH to
be the set of all distribution weighted combining rules. Given the input to the adaptation problem
we have implicit information about the target functign We define the set ofonsistent target
functions F, as follows,

F = {g Vi € [11k]1 E(Dlahzag) S 6} .
By definition, the target functioyfi is an element of-.

We will assume that the following properties hold for the loss funcfion(i) L is non-negative:
L(z,y) > 0forall z,y € R; (ii) L is convex with respect to the first argumel'](:z:f:1 Az y) <

Zle ANiL(x;,y) forall zq,...,z,,y € Rand\ € A; (iii) L is bounded: there exist¥/ > 0
such thatL(z,y) < M for all z,y € R; (iv) L(z,y) is continuous in both: andy; and (v) L is
symmetricL(z,y) = L(y,x). The absolute loss defined By(x,y) = |« — y| will serve as our
primary motivating example.

3 Known Target Mixture Distribution

In this section we assume that the parameters of the target mixture distribution are known. Thus, the
learning algorithm is given € A such thatD(z) = Zle X:D;(z). A good starting point would be
to study the performance of a linear combining rule. Namely the clasaifigr = Zle Aihi(2).

While this seems like a very natural classifier, the following example highlights the problematic
aspects of this approach.

Consider a discrete domaiti = {a, b} and two distributionsD,, and D,, such thatD,(a) = 1
andD,(b) = 1. Namely, each distribution puts all the weight on a single eleme#t.itConsider
the target functionf, wheref(a) = 1 and f(b) = 0, and let the loss be the absolute loss. Let
ho = 0 be the function that outputs for all z € & and similarlyh; = 1. The hypotheses;
andhy havezeroexpected absolute loss on the distributidins and Dy, respectively, i.e.¢ = 0.
Now consider the target distributiabBy with A\, = A, = 1/2, thusDr(a) = Dr(b) = 1/2. The
hypothesisi(z) = (1/2)hi(z) + (1/2)ho(z) always outputd /2, and has an absolute lossiof2.
Furthermore, for any other parameteof the linear combining rule, the expected absolute loss of
h(z) = zhi(x)+ (1 —z)ho(x) with respect taD is exactlyl /2. We have established the following
theorem.

Theorem 1. There is a mixture adaptation problem with= 0 for which any linear combination
rule has expected absolute losslgP.



Next we show that the distribution weighted combining ruleduces a hypothesis with a low ex-
pected loss. Given a mixtu@r (z) = Zle AiD;(x), we consider the distribution weighted com-
bining rule with parametek, which we denote by:,. Recall that,

SR S
Using the convexity of. with respect to the first argument, the lossiq@fwith respect taD, and a
targetf € F can be bounded as follows,

k k

LDy ha, )= Y Llha(x), f(2))Dr() < 3 S ANiDi(@) L(hi(2), f(@)) = > Aier < e,
rzeX rxeX i=1 i=1

wheree, := L(D;, h;, f) < e. Thus, we have derived the following theorem.

Theorem 2. For any mixture adaptation problem with target distributién, (z) = Zle AiDi(x),
the expected loss of the hypothekjsis at moste with respect to any target functiofi € F:
L(Dx,hx, f) <e.

4 Simple Adaptation Algorithms

In this section we show how to construct a simple distribution weighted hypothesis that has an
expected loss guarantee with respect to any mixture. Our hypothgsssimply based on equal
weights, i.e.u; = 1/k, foralli € [1,k]. Thus,
k k
1/k)Di(x Di(x)
ha(z) = Z k( /k)Di(x) hi(z) = Zki(hi(x)'
i=1 Zj:l(l/k)Dj(x) i=1 Zj:l Dj()

We show forh,, an expected loss bound kd, with respect to any mixture distributidn, and target
function f € F. (Proof omitted.)

Theorem 3. For any mixture adaptation problem the expected losé. pfs at mostke, for any
mixture distributionD and target functiory € F,i.e.,L(Dr, h,, f) < ke.

Unfortunately, the hypothesis, can have an expected absolute loss as large(&s). (Proof
omitted.)

Theorem 4. There is a mixture adaptation problem for which the expected absolute Idssisf
Q(ke). Also, fork = 2 there is an input to the mixture adaptation problem for which the expected
absolute loss of,, is 2¢ — €2.

5 Existence of a Good Hypothesis

In this section, we will show that for any target functigne F there is a distribution weighted
combining ruleh, that has a loss of at mostwith respect to any mixtur®,. We will construct

the proof in two parts. In the first part, we will show, using a simple reduction to a zero-sum game,
that one can obtain a mixture afs that guarantees a loss bounded bin the second part, which

is the more interesting scenario, we will show that for any target fungtienF there is a single
distribution weighted combining rulke, that has loss of at mostwith respect tany mixture D.

This later part will require the use of Brouwer fixed point theorem to show the existence of such an
hs.

51 Zero-sumgame

The adaptation problem can be viewed as a zero-sum game between two gNAELREand
LEARNERLet the input to the mixture adaptation problemme, ..., Dg, hi, ..., h; ande, and
fix a target functionf € F. The playeNATURBicks a distributionD; while the playet EARNER
selects a distribution weighted combining rdle € H. The loss wherNATUREplays D; and
LEARNERplaysh, is L(D;, h., f). Let us emphasize that the target functipne F is fixed
beforehand. The objective BfATURES to maximize the loss and the objectiveldfARNERS to
minimize the loss. We start with the following lemma,



Lemma 1. Given any mixed strategy fATUREI.e., a distributionu over D;’s, then the following
action of LEARNER,,, € H has expected loss at masi.e.,L(D,, h,, ) <.

The proof is identical to that of Theorem 2. This almost establishes that the value of the game is at
moste. The technical part that we need to take care of is the fact that the action spdeARNER
is infinite. However, by an appropriate discretizatiortbive can derive the following theorem.

Theorem 5. For any target functionf € F and anyd > 0, there exists a function(z) =
doisy ajhs(x), whereh,, € M, such thatl(Dr,h, f) < e+ 4 for any mixture distribution

Dr(z) = S0, \iDi(w).

Since we can fi¥ > 0 to be arbitrarily small, this implies that a linear mixture of distribution
weighted combining rules can guarantee a loss of almeith respect to any product distribution.

5.2 Singledistribution weighted combining rule

In the previous subsection, we showed that a mixture of hypothegésiould guarantee a loss of
at moste. Here, we will considerably strengthen the result and show that thes@nglehypothesis
in H for which this guarantee holds. Unfortunately our loss is not convex with respkct t, so
we need to resort to a more powerful technique, namely the Brouwer fixed point theorem.

For the proof we will need that the distribution weighted combining rulebe continuous in
the parameter. In general, this does hold due to the existence of paints X for which

Z;?:l z;Dj(z) = 0. To avoid this discontinuity, we will modify the definition df, to hZ, as

follows.

Claim 1. Let U denote the uniform distribution oveY, then for anyn > 0 andz € A, let
h7: X — R be the function defined by

z;Di(x) +nU(x)/k
hn xr) = )
) ; iy 2 Dj(x) + U (x)

Then, for any distributioD, £(D, h7, f) is continuous ire.

s Tz

Let us first state Brouwer’s fixed point theorem.

Theorem 6 (Brouwer Fixed Point Theorem)ror any compact and convex non-empty det. R"
and any continuous functioh: A — A, there is a point: € A such thatf(z) = .

We first show that there exists a distribution weighted combining kdldor which the losses
L(D;, k7, f) are all nearly the same.

Lemma 2. For any target functiory € F and anyn, ' >0, there existe € A, with z; # 0 for all
i € [1, k], such that the following holds for the distribution weighted combining kfjle H:

/
U <'7+77/

L(D;,h", f) = .
(Di, K1, f) =~+n s

foranyl <i <k, wherey = Zle z; L(D;,h1, f).

Proof. Fix ' > 0 and let£; = L(D;,hl,f) forall z € A andi € [1,m]. Consider the
mapping¢: A — A defined for allz € A by [¢(2)]; = (z:£7 +1'/k)/ (Zle zi L% 4+ 1),

where[¢(z)];, is theith coordinate ofp(x), i € [1,m]. By Claim 1, ¢ is continuous. Thus,
by Brouwer’s Fixed Point Theorem, there existsc A such thaty(z) = z. This implies that

2z = (zi£f+77’/k)/(2521 z;L%+n'). Sincen’ > 0, we must have; # 0 foranyi € [1,m]. Thus,
we can divide by; and writeL? +7'/(z;k) = (Zle 2 L3)+n'. ThereforeL? = v+n'—n'/(2ik)
with v = Z?:l 2z L% O

1In addition to continuity, the perturbation tg, k7, also helps us ensure that none of the mixture weights
z; Is zero in the proof of the Lemma 2 .



Note that the lemma just presented does not use the strudtilvedistribution weighted combining

rule, but only the fact that the loss is continuous in the parameteAA. The lemma applies as well

to the linear combination rule and provides the same guarantee. The real crux of the argument s, as
shown in the next lemma, thatis small for a distribution weighted combining rule (while it can be

very large for a linear combination rule).

Lemma 3. For any target functionf € F and anyn,n’ > 0, there existsz € A such that
L(Dy,h1, f) <e+nM+n forany\ € A.

Proof. Let z be the parameter guaranteed in Lemma 2. TBeD,;, 7, f) = v+ 1 —1n'/(z:k) <

~v+1',for1 < i < k. Consider the mixtur®,, i.e., set the mixture parameter to heConsider the
quantityL(D,, k7, f). On the one hand, by definitiod(D., 7, f) = Zle 2 L(D;, R, ) and
thusL(D,, k7, f) = ~. On the other hand,

‘C(Dzyhgyf)

k
= 3 D@L S ) £ 3 (Z(m@:) ¥ ”U,jx)w(hz-(w),f(w)))

rEX reX

k
< Z <Z1 ZiDi(IE)L(hi(IE),f(:E))) + Z nMU (z)

TEX TEX

k k
=Y zL(Di hi, f)+nM = ziei +nM < e+ nM .
1=1 1=1
Thereforey < ¢ + nM. To complete the proof, note that the following inequality holds for any

mixture D y:
k

£(D>\7h21f):ZAl£( (2] zaf)<7+n1
i=1
which is at most + nM + 7'. O

By settingn = §/(2M) andr’ = §/2, we can derive the following theorem.

Theorem 7. For any target functiorf € F and anyd > 0, there existg) > 0 andz € A, such that
L(Dy, b1, f) < e+ forany mixture parametex.

6 Arbitrary target function

The results of the previous section show that for fixgdtarget function there is a good distribution
weighted combining rule. In this section, we wish to extend these results to the case where the target
function is not fixed in advanced. Thus, we seek a single distribution weighted combining rule that
can perform well forany f € F andany mixture D,. Unfortunately, we are not able to prove a
bound ofe + o(¢) but only a bound o8¢. To show this bound we will show that for arfy, fo € F
andanyhypothesig: the difference of loss is bounded by at m@st

Lemma 4. Assume that the loss functidnobeys the triangle inequality, i.el,(f, h) < ( g)+
L(g,h). Then for anyf, ' € F and any mixturedDr, the inequalityC(Dr, h, f') < L(Dr, h, f)+
2¢ holds for any hypothesis.

Proof. Since our loss function obeys the triangle inequality, for any functfogsh, the following
holds,£(D, f,h) < L(D, f,g) + L(D, g,h). In our case, we observe that replacipngvith any
f € Fgives,L(Dy, f,h) < L(Dx, f',h) + L(Dy, f, f"). We can bound the teri8(D,, f, f’)
with a similar inequality,L(Da, f, ') < L(Dx, f,hx) + L(Dx, f',hya) < 2¢, wherehy is the
distribution weighted combining rule produced by choosing A and using Theorem 2. Therefore,
foranyf, ' € F we haveL(D,, f,h) < L(Dy, f', h) 4+ 2¢, which completes the proof. O

We derived the following corollary to Theorem 7.

Corollary 1. Assume that the loss functidnobeys the triangle inequality. Then, for agy> 0,
there existsy > 0 and z € A, such that for any mixture parameter and any f € F,
L(Dy, k1, f) < 3e+4.
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Figure 1: (a) MSE performance for a target mixture of four domains (1: books, 2: dvd, 3: electronics,
4: kitchen 5: linear, 6: weighted). (b) MSE performance under various mixtures of two source
domains, plot leftbook andkitchen , plot right: dvd andelectronics

7 Empirical results

This section reports the results of our experiments with a distribution weighted combining rule using
real-world data. In our experiments, we fixed a mixture target distributigrand considered the
distribution weighted combining rule,, with = = A. Since we used real-world data, we did not have
access to the domain distributions. Instead, we modeled each distribution and used large amounts
of unlabeled data available for each source to estimate the model's parameters. One could have thus
expected potentially significantly worse empirical results than the theoretical ones, but this turned
out not to be an issue in our experiments.

We used the sentiment analysis dataset found irf [4]he data consists of review text and rat-
ing labels, taken fronamazon.com product reviews within four different categories (domains).
These four domains consist bbok , dvd, electronics andkitchen  reviews, where each do-
main contains 2000 data poinfsin our experiments, we fixed a mixture target distributiog and
considered the distribution weighted combining rlule with z = A.

In our first experiment, we considered mixtures of all four domains, where the test set was a uniform
mixture of 600 points, that is the union of 150 points taken uniformly at random from each domain.
The remaining 1,850 points from each domain were used to train the base hyp6théseom-

pared our proposed weighted combining rule to the linear combining rule. The results are shown
in Figure 1(a). They show that the base hypotheses perform poorly on the mixture test set, which
justifies the need for adaptation. Furthermore, the distribution weighted combining rule is shown to
perform at least as well as the worst in-domain performance of a base hypothesis, as expected from
our bounds. Finally, we observe that this real-world data experiment gives an example in which a
linear combining rule performs poorly compared to the distribution weighted combining rule.

In other experiments, we considered the mixture of two domains, where the mixture is varied ac-
cording to the parameter € {0.1,0.2,...,1.0}. For each plot in Figure 1 (b), the test set consists

of 600« points from the first domain anéD0(1 — «) points from the second domain, where the

first and second domains are made clear in the figure. The remaining points that were not used for
testing were used to train the base hypotheses. The results show the linear shift from one domain to
the other, as is evident from the performance of the two base hypotheses. The distribution weighted
combining rule outperforms the base hypotheses as well as the linear combining rule.

http /lwww.seas.upenn.edu/"mdredze/datasets/sentiment/

3The rating label, an integer between 1 and 5, was used as a regressmn label, and the loss measured by the
mean squared error (MSE). All base hypotheses were generated using Support Vector Regression (SVR) [17]
with the trade-off paramete@ = 8,¢ = 0.1, and a Gaussian kernel with paramejer 0.00078. The SVR
solutions were obtained using the libSVM software librangtd://iwww.csie.ntu.edu.tw/ cjlin/libsvm/
Our features were defined as the set of unigrams appearing five times or more in all domains. Thls defined
about 4000 unigrams. We used a binary feature vector encoding the presence or absence of these frequent
unigrams to define our instances. To model the domain distributions, we used a unigram statistical language
model trained on the same corpus as the one used to define the features. The language model was created using
the GRM library Gttp://www.research.att.com/fsmtools/grm/

“Each experiment was repeated 20 times with random folds The standard deviation found was far below
what could be legibly displayed in the figures.



Thus, our preliminary experiments suggest that the digtahweighted combining rule performs

well in practice and clearly outperforms a simple linear combining rule. Furthermore, using statis-
tical language models as approximations to the distribution oracles seem to be sufficient in practice
and can help produce a good distribution weighted combining rule.

8 Conclusion

We presented a theoretical analysis of the problem of adaptation with multiple sources. Domain
adaptation is an important problem that arises in a variety of modern applications where limited or
no labeled data is available for a target application and our analysis can be relevant in a variety of
situations. The theoretical guarantees proven for the distribution weight combining rule provide it
with a strong foundation. Its empirical performance with a real-world data set further motivates
its use in applications. Much of the results presented were based on the assumption that the target
distribution is some mixture of the source distributions. A further analysis suggests however that
our main results can be extended to arbitrary target distributions.
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