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Abstract

The synchronous brain activity measured via MEG (or EEG) can be interpreted
as arising from a collection (possibly large) of current dipoles or sources located
throughout the cortex. Estimating the number, location, and orientation of these
sources remains a challenging task, one that is significantly compounded by the
effects of source correlations and the presence of interference from spontaneous
brain activity, sensor noise, and other artifacts. This paper derives an empirical
Bayesian method for addressing each of these issues in a principled fashion. The
resulting algorithm guarantees descent of a cost function uniquely designed to
handle unknown orientations and arbitrary correlations. Robust interference sup-
pression is also easily incorporated. In a restricted setting, the proposed method
is shown to have theoretically zero bias estimating both the location and orien-
tation of multi-component dipoles even in the presence of correlations, unlike a
variety of existing Bayesian localization methods or common signal processing
techniques such as beamforming and sLORETA. Empirical results on both simu-
lated and real data sets verify the efficacy of this approach.

1 Introduction

Magnetoencephalography (MEG) and related electroencephalography (EEG) use an array of sen-
sors to take electromagnetic field (or voltage potential) measurements from on or near the scalp
surface with excellent temporal resolution. In both cases, the observed field is generated by the
same synchronous, compact current sources located within the brain. Although useful for research
and clinical purposes, accurately determining the spatial distribution of these unknown sources is
an open problem. The relevant estimation problem can be posed as follows: The measured electro-
magnetic signal is B ∈ R

db×dt , where db equals the number of sensors and dt is the number of time
points at which measurements are made. Each unknown source Si ∈ R

dc×dt is a dc-dimensional
neural current dipole , at dt timepoints, projecting from the i-th (discretized) voxel or candidate lo-
cation distributed throughout the cortex. These candidate locations can be obtained by segmenting a
structural MR scan of a human subject and tesselating the gray matter surface with a set of vertices.
B and each Si are related by the likelihood model

B =

ds∑

i=1

LiSi + E , (1)

where ds is the number of voxels under consideration, Li ∈ R
db×dc is the so-called lead-field

matrix for the i-th voxel. The k-th column of Li represents the signal vector that would be observed
at the scalp given a unit current source/dipole at the i-th vertex with a fixed orientation in the k-th
direction. It is common to assume dc = 2 (for MEG) or dc = 3 (for EEG), which allows flexible
source orientations to be estimated in 2D or 3D space. Multiple methods based on the physical
properties of the brain and Maxwell’s equations are available for the computation of each Li [7].
Finally, E is a noise-plus-interference term where we assume, for simplicity, that columns are drawn
independently from N (0,Σε). However, temporal correlations can easily be incorporated if desired
using a simple transformation outlined in [3].



To obtain reasonable spatial resolution, the number of candidate source locations will necessarily
be much larger than the number of sensors (ds � db). The salient inverse problem then becomes
the ill-posed estimation of regions with significant brain activity, which are reflected by voxels i
such that ‖Si‖ > 0; we refer to these as active dipoles or sources. Because the inverse model is
severely underdetermined (the mapping from source activity configuration S , [S1, . . . , Sds

]T to
sensor measurement B is many to one), all efforts at source reconstruction are heavily dependent
on prior assumptions, which in a Bayesian framework are embedded in the distribution p(S). Such
a prior is often considered to be fixed and known, as in the case of minimum current estimation
(MCE) [10], minimum variance adaptive beamforming (MVAB) [9], and sLORETA [5]. Alterna-
tively, a number of empirical Bayesian approaches have been proposed that attempt a form of model
selection by using the data, whether implicitly or explicitly, to guide the search for an appropriate
prior. Examples include variational Bayesian methods and hierarchical covariance component mod-
els [3, 6, 8, 12, 13]. While advantageous in many respects, all of these methods retain substantial
weaknesses estimating complex, correlated source configurations with unknown orientation in the
presence of background interference (e.g., spontaneous brain activity, sensor noise, etc.).
There are two types of correlations that can potentially disrupt the source localization process. First,
there are correlations within dipole components (meaning the individual rows of Si are correlated),
which always exists to a high degree in real data with unknown orientation (i.e., dc > 1). Secondly,
there are correlations between different dipoles that are simultaneously active (meaning rows of Si

are correlated with rows of Sj for some voxels i 6= j). These correlations are more application spe-
cific and may or may not exist. The larger the number of active sources, the greater the chance that
both types or correlation can disrupt the estimation process. This issue can be problematic for two
reasons. First, failure to accurately account for unknown orientations or correlations can severely
disrupt the localization process, leading to a very misleading impression of which brain areas are
active. Secondly, the orientations and correlations themselves may have clinical significance.
In this paper, we present an alternative empirical Bayesian scheme that attempts to improve upon
existing methods in terms of source reconstruction accuracy and/or computational robustness and
efficiency. Section 2 presents the basic generative model which underlies the proposed method and
describes the associated inference problem. Section 3 derives a robust algorithm for estimating the
sources using this model and proves that each iteration is guaranteed to reduce the associated cost
function. It also describes how interference suppression can be naturally incorporated. Section 4
then provides a theoretical analysis of the bias involved in estimating both the location and orien-
tation of active sources, demonstrating that the proposed method has substantial advantages over
existing approaches. Finally, Section 5 contains experimental results using our algorithm on both
simulated and real data, followed by a brief discussion in Section 6.

2 Modeling Assumptions

To begin we invoke the noise model from (1), which fully defines the assumed likelihood

p(B|S) ∝ exp


−

1

2

∥∥∥∥∥B −
ds∑

i=1

LiSi

∥∥∥∥∥

2

Σ−1
ε


 , (2)

where ‖X‖W denotes the weighted matrix norm
√

trace[XT WX]. The unknown noise covariance
Σε will be estimated from the data using a variational Bayesian factor analysis (VBFA) model as
discussed in Section 3.2 below; for now we will consider that it is fixed and known. Next we adopt
the following source prior for S:

p (S|Γ) ∝ exp

(
−

1

2
trace

[
ds∑

i=1

ST
i Γ−1

i Si

])
. (3)

This is equivalent to applying independently, at each time point, a zero-mean Gaussian distribution
with covariance Γi to each source Si. We define Γ to be the dsdc × dsdc block-diagonal matrix
formed by ordering each Γi along the diagonal of an otherwise zero-valued matrix. This implies,
equivalently, that p (S|Γ) ∝ exp

(
− 1

2 trace
[
ST Γ−1S

])
.



If Γ were somehow known, then the conditional distribution p(S|B,Γ) ∝ p(B|S)p(S|Γ) is a fully
specified Gaussian distribution with mean and covariance given by

Ep(S|B,Γ) [S] = ΓLT
(
Σε + LΓLT

)−1
B (4)

Covp(sj |B,Γ) [sj ] = Γ − ΓLT
(
Σε + LΓLT

)−1
LΓ, ∀j, (5)

where sj denotes the j-th column of S and individual columns are uncorrelated. However, since Γ

is actually not known, a suitable approximation Γ̂ ≈ Γ must first be found. One principled way to
accomplish this is to integrate out the sources S and then maximize

p(B|Γ) =

∫
p(B|S)p(S|Γ)dS ∝ exp

(
−

1

2
BT Σ−1

b B

)
, Σb , Σε + LΓLT . (6)

This is equivalent to minimizing the cost function

L(Γ) , −2 log p(B|Γ)p(Γ) ≡ trace
[
CbΣ

−1
b

]
+ log |Σb, | , (7)

where Cb , n−1BBT is the empirical covariance, and is sometimes referred to as type-II maximum
likelihood, evidence maximization, or empirical Bayes [1].
The first term of (7) is a measure of the dissimilarity between the empirical data covariance Cb and
the model data covariance Σb; in general, this factor encourages Γ to be large. The second term pro-
vides a regularizing or sparsifying effect, penalizing a measure of the volume formed by the model
covariance Σb.1 Since the volume of any high dimensional space is more effectively reduced by
collapsing individual dimensions as close to zero as possible (as opposed to incrementally reducing
all dimensions isometrically), this penalty term promotes a model covariance that is maximally de-
generate (or non-spherical), which pushes elements of Γ to exactly zero. This intuition is supported
theoretically by the results in Section 4.

Given some type-II ML estimate Γ̂, we obtain the attendant empirical prior p(S|Γ̂). To the extent
that this ‘learned’ prior is realistic, the resulting posterior p(S|B, Γ̂) quantifies regions of significant
current density and point estimates for the unknown source dipoles Si can be obtained by evaluating
the posterior mean computed using (4). If a given Γ̂i → 0 as described above, then the associated
Ŝi computed using (4) also becomes zero. It is this pruning mechanism that naturally chooses the
number of active dipoles.

3 Algorithm Derivation

Given Σε and Γ, computing the posterior on S is trivial. Consequently, determining these unknown
quantities is the primary estimation task. We will first derive an algorithm for computing Γ assuming
Σε is known. Later in Section 3.2, we will describe a powerful procedure for learning Σε.

3.1 Learning the Hyperparameters Γ

The primary objective of this section is to minimize (7) with respect to Γ. Of course one option is
to treat the problem as a general nonlinear optimization task and perform gradient descent or some
other generic procedure. Related methods in the MEG literature rely, either directly or indirectly, on
a form of the EM algorithm [3, 8]. However, these algorithms are exceedingly slow when ds is large
and they have not been extended to handle flexible orientations. Consequently, here we derive an
alternative optimization procedures that expands upon ideas from [8, 12], handles arbitrary/unknown
dipole orientations, and converges quickly.
To begin, we note that L(Γ) only depends on the data B through the db×db sample correlation matrix
Cb. Therefore, to reduce the computational burden, we replace B with a matrix B̃ ∈ R

db×rank(B)

such that B̃B̃T = Cb. This removes any per-iteration dependency on dt, which can potentially be
large, without altering that actual cost function. It also implies that, for purposes of computing Γ,
the number of columns of S is reduced to match rank(B). We now re-express the cost function
L(Γ) in an alternative form leading to convenient update rules and, by construction, a proof that
L
(
Γ(k+1)

)
≤ L

(
Γ(k)

)
at each iteration.

1The determinant of a matrix is equal to the product of its eigenvalues, a well-known volumetric measure.



First, the data fit term can be expressed as

trace
[
CbΣ

−1
b

]
= min
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where X ,
[
XT

1 , . . . , XT
ds

]T is a matrix of auxiliary variables. Likewise, because the log-
determinant term of L(Γ) is concave in Γ, it can be expressed as a minimum over upper-bounding
hyperplanes via

log |Σb| = min
Z

[
ds∑

i=1

trace
(
ZT

i Γi

)
− h∗(Z)

]
, (9)

where Z ,
[
ZT

1 , . . . , ZT
ds

]T and h∗(Z) is the concave conjugate of log |Σb|. For our purposes
below, we will never actually have to compute h∗(Z). Dropping the minimizations and combining
terms from (8) and (9) leads to the modified cost function

L(Γ, X, Z) =

∥∥∥∥∥B̃ −
ds∑

i=1

L̃iXi
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2

Σ−1
ε

+

ds∑

i=1

[
‖Xi‖

2
Γ−1

i

+ trace
(
ZT

i Γi

)]
− h∗(Z), (10)

where by construction L(Γ) = minX minZ L(Γ, X, Z). It is straightforward to show that if
{Γ̂, X̂, Ẑ} is a local (global) minimum to L(Γ, X, Z), then Γ̂ is a local (global) minimum to L(Γ).
Since direct optimization of L(Γ) may be difficult, we can instead iteratively optimize L(Γ, X, Z)
via coordinate descent over Γ, X , and Z. In each case, when two are held fixed, the third can be
globally minimized in closed form. This ensures that each cycle will reduce L(Γ, X, Z), but more
importantly, will reduce L(Γ) (or leave it unchanged if a fixed-point or limit cycle is reached). The
associated update rules from this process are as follows.
The optimal X (with Γ and Z fixed) is just the standard weighted minimum-norm solution given by

Xnew
i → ΓiL

T
i Σ−1

b B̃ (11)
for each i. The minimizing Z equals the slope at the current Γ of log |Σb|. As such, we have

Znew
i → OΓi

log |Σb| = LT
i Σ−1

b Li. (12)

With Z and X fixed, computing the minimizing Γ is a bit more difficult because of the constraint
Γi ∈ H+ for all i, where H+ is the set of positive-semidefinite, symmetric dc × dc covariance
matrices. To obtain each Γi, we must solve

Γnew
i → arg min

Γi∈H+

[
‖Xi‖

2
Γ−1

i

+ trace
(
ZT

i Γi

)]
(13)

An unconstrained solution will satisfy
OΓi

L(Γi, Xi, Zi) = 0, (14)
which, after computing the necessary derivatives and re-arranging terms gives the equivalent condi-
tion

XiX
T
i = ΓiZiΓi. (15)

There are multiple (unconstrained) solutions to this equation; we will choose the unique one that
satisfies the constraint Γi ∈ H+. This can be found using

XiX
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This indicates the solution (or update equation)
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Z

1/2
i XiX

T
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1/2
i
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Z
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i , (17)



which is satisfies the constraint. And since we are minimizing a convex function of Γi (over the
constraint set), we know that this is indeed a minimizing solution.
In summary then, to estimate Γ, we need simply iterate (11), (12), and (17), and with each pass we
are guaranteed to reduce (or leave unchanged) L(Γ). The per-iteration cost is linear in the number
of voxels ds so the computational cost is relatively modest (it is quadratic in db, and cubic in dc,
but these quantities are relatively small). The convergence rate is orders of magnitude faster than
EM-based algorithms such as those in [3, 8] (see Figure 1 (right) ).

3.2 Learning the Interference Σε

The learning procedure described in the previous section boils down to fitting a structured maximum
likelihood covariance estimate Σb = Σε + FΓFT to the data covariance Cb. The idea here is that
FΓFT will reflect the brain signals of interest while Σε will capture all interfering factors, e.g.,
spontaneous brain activity, sensor noise, muscle artifacts, etc. Since Σε is unknown, it must some-
how be estimated or otherwise accounted for. Given access to pre-stimulus data (i.e., data assumed
to have no signal/sources of interest), stimulus evoked factor analysis (SEFA) provides a powerful
means of decomposing a data covariance matrix Cb into signal and interference components. While
details can be found in [4], SEFA computes the approximation

Cb ≈ Λ + EET + AAT , (18)
where E represents a matrix of learned interference factors, Λ is a diagonal noise matrix, and A is a
matrix of signal factors. There are two ways to utilize this decomposition (more details can be found
in [11]). First, we can simply set Σε → Λ + EET and proceed as in Section 3.1. Alternatively,
we can set Σε → 0 and then substitute AAT for Cb, i.e., run the same algorithm on a de-noised
signal covariance. For technical reasons beyond the scope of this paper, it appears that algorithm
performance may be superior when the latter paradigm is adopted.

4 Analysis of Theoretical Localization/Orientation Bias

Theoretical support for the proposed algorithm is possible in the context of estimation bias assuming
simplified source configurations. For example, substantial import has been devoted to quantifying
localization bias when estimating a single dipolar source. Recently it has been shown, both empiri-
cally and theoretically [5, 9], that the MVAB and sLORETA algorithms have zero location bias under
this condition at high SNR. This has been extended to include certain empirical Bayesian methods
[8, 12]. However, these results assume a single dipole with fixed, known orientation (or alternatively,
that dc = 1), and therefore do not formally handle source correlations or multi-component dipoles.
The methods from [6, 13] also purport to address these issues, but no formal analyses are presented.
In contrast, despite being a complex, non-convex function, we now demonstrate that L(Γ) has very
attractive bias properties regarding both localization and orientation. We will assume that the full
lead-field L ,

[
LT

1 , . . . , LT
ds

]T represents a sufficiently high sampling of the source space such that
any active dipole component aligns with some lead-field columns. Unbiasedness can also be shown
in the continuous case, but the discrete scenario is more straightforward and of course more relevant
to any practical task.
Some preliminary definitions are required to proceed. We define the empirical intra-dipole corre-
lation matrix at the i-th voxel as Cii , 1

dt
ST

i Si; non-zero off-diagonal elements imply that corre-
lations are present. Except in highly contrived situations, this type of correlation will always exist.
The empirical inter-dipole correlation matrix between voxels i and j is Cij , 1

dt
ST

i Sj ; any non-
zero element implies the existence of a correlation. In practice, this form of correlation may or may
not be present. With regard to the lead-field L, spark is defined as the smallest number of linearly
dependent columns [2]. By definition then, 2 ≤ spark(L) ≤ db + 1. Finally, da denotes the number
of active sources, i.e., the number of voxels whereby ‖Si‖ > 0.

Theorem 1. In the limit as Σε → 0 (high SNR) and assuming dadc < spark(L) − 1, the cost
function L(Γ) maintains the following two properties:

1. For arbitrary Cii and Cij , the unique global minimum Γ∗ produces a source estimate S∗ =
Ep(S|B,Γ∗) [S] computed using (4) that equals the generating source matrix S, i.e., it is



unbiased in both location and orientation for all active dipoles and correctly zeros out the
inactive ones.

2. If Cij = 0 for all active dipoles (although Cii is still arbitrary), then there are no local
minima, i.e., the cost function is unimodal.

The proof has been deferred to [11]. In words, this theorem says that intra-dipole correlations do
not disrupt the estimation process by creating local minima, and that the global minimum is always
unbiased. In contrast, inter-dipole correlations can potentially create local minima, but they do not
affect the global minimum. Empirically, we will demonstrate that the algorithm derived in Section
3 is effective at avoiding these local minima (see Section 5). With added assumptions these results
can be extended somewhat to handle the inclusion of noise.
The cost functions from [8, 12] bear the closest resemblance to L(Γ); however, neither possesses
the second attribute from Theorem 1. This is a very significant failing because, as mentioned previ-
ously, intra-dipole correlations are always present in each active dipole. Consequently, localization
and orientation bias can occur because of convergence to a local minimum. The iterative Bayesian
scheme from [13], while very different in structure, also directly attempts to estimate flexible ori-
entations and handle, to some extent, source correlations. While details are omitted for brevity, we
can prove that the full model upon which this algorithm is based fails to satisfy the first property
of the theorem, so the corresponding global minimum can be biased. In contrast, beamformers
and sLORETA are basically linear methods with no issue of global or local minima. However, the
popular sLORETA and MVAB solutions will in general display a bias for multi-component dipoles
(dc > 1) or when multiple dipoles (da > 1) are present, regardless of correlations.

5 Empirical Evaluation

In this section we test the performance of our algorithm on both simulated and real data sets. We
focus here on localization accuracy assuming strong source correlations and unknown orientations.
While orientation estimates themselves are not shown for space considerations, accurate localization
implicitly indicates that this confound has been adequately handled. More comprehensive experi-
ments, including comparisons with additional algorithms, are forthcoming [11].
Simulated Data: We first conducted tests using simulated data with realistic source configurations.
The brain volume was segmented into 5mm voxels and a two orientation (dc = 2) forward leadfield
was calculated using a spherical-shell model [7]. The data time course was partitioned into pre- and
post-stimulus periods. In the pre-stimulus period (263 samples) there is only noise and interfering
brain activity, while in the post-stimulus period (437 samples) there is the same (statistically) noise
and interference factors plus source activity of interest. We used two noise conditions - Gaussian-
noise and real-brain noise. In the former case, we seeded voxels with Gaussian noise in each orien-
tation and then projected the activity to the sensors using the leadfield, producing colored Gaussian
noise at the sensors. To this activity, we added additional Gaussian sensor noise. For the real-brain
noise case, we used resting-state data collected from a human subject that is presumed to have on-
going and spontaneous activity and sensor noise. In both the Gaussian and real-brain noise cases,
the pre-stimulus activity was on-going and continued into the post-stimulus period, where the simu-
lated source signals were added. Sources were seeded at locations in the brain as damped-sinusoids
and this voxel activity was projected to the sensors. We could adjust both the signal-to-noise-plus-
interefence ratio (SNIR) and the correlations between the different voxel time-courses to examine
the algorithm performance on correlated sources and unknown dipole orientations.
We ran 100 simulations of three randomly seeded sources at different SNIR levels (-5, 0, 5, 10dB).
The sources in these simulations always had an inter-dipole correlation coefficient of 0.5; intra-
dipole correlations were present as well. We ran the simulation with both Gaussian-noise and real
brain noise using a MVAB and our proposed method. In order to evaluate performance, we used the
following test for a hit or miss. We drew spheres around each seeded source location and obtained the
maximum voxel value in each sphere. Then we calculated the maximum voxel activation outside the
three spheres. If the maximum inside each sphere was greater than the maximum outside all of the
spheres, it was counted as a hit (in this way, we are implicitly accounting somewhat for false alarms).
Each simulation could get a score or 0, 1 ,2 , or 3, with 3 being the best. Figure 1 (left) displays
comparative results averaged over 100 trials with standard errors. Our method quite significantly
outperforms the MVAB, which is designed to handle unknown orientations but has difficulty with



source correlations. Figure 1 (middle) shows a sample reconstruction on a much more complex
source configuration composed of 10 dipolar sources. Finally, Figure 1 (right) gives an example
of the relative convergence improvement afforded by our method relative to an EM implementation
analogous to [3, 8]. We also wanted to test the performance on perfectly correlated sources with
unknown orientations and compare it to other state-of-the-art Bayesian methods. An example using
three such sources and 5 dB SNIR is given in Figure 2.
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Figure 1: Left: Aggregate localization results for MVAB and the proposed method recovering three
correlated sources with unknown orientations. Middle: Example reconstruction of 10 relatively
shallow sources (green circles) using proposed method (MVAB performs poorly on this task). Right:
Convergence rate of proposed method relative to a conventional EM implementation based on [3, 8].
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Figure 2: Reconstructions of three perfectly correlated dipoles (green circles) with unknown ori-
entations using, Left: MVAB, Middle: variational Bayesian method from [13], Right: proposed
method.

Real Data: Two stimulus-evoked data sets were collected from normal, healthy research subjects
on a 275-channel CTF System MEG device. The first data set was a sensory evoked field (SEF)
paradigm, where the subject’s right index finger was tapped for a total of 256 trials. A peak is typ-
ically seen 50ms after stimulation in the contralateral (in this case, the left) somatosensory cortical
area for the hand, i.e., dorsal region of the postcentral gyrus. The proposed algorithm was able to
localize this activation to the correct area of somatosensory cortex as seen in Figure 3 (left) and the
estimated time course shows the typical 50ms peak (data not shown). The second data set analyzed
was an auditory evoked field (AEF) paradigm. In this paradigm the subject is presented tones binau-
rally for a total of 120 trials. There are two typical peaks seen after the presentation of an auditory
stimulus, one at 50ms and one at 100ms, called the M50 and M100 respectively. The auditory pro-
cessing of tones is bilateral at early auditory areas and the activations are correlated. The algorithm
was able to localize activity in both primary auditory cortices and the time courses for these two
activations reveal the M50 and M100. Figure 3 (middle) and (right) displays these results. The
analysis of simple auditory paradigms is problematic because many source localization algorithms,
such as the MVAB, do not handle the bilateral correlated sources well. We also ran MVAB on the
AEF data and it localized activity to the center of the head between the two auditory cortices (data
not shown).

6 Discussion

This paper derives a novel empirical Bayesian algorithm for MEG source reconstruction that readily
handles multiple correlated sources with unknown orientations, a situation that commonly arises
even with simple imaging tasks. Based on a principled cost function and fast, convergent update
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Figure 3: Real-world example Left: Somatosensory reconstruction. Middle: Bilateral auditory re-
construction. Right: Recovered timecourse from left auditory cortex (right auditory cortex, not
shown, is similar).

rules, this procedure displays significant theoretical and empirical advantages over many existing
methods. We have restricted most of our exposition and analyses to MEG; however, preliminary
work with EEG is also promising. For example, on a real-world passive visual task where subjects
viewed flashing foreground/background textured images, our method correctly localizes activity to
the lateral occipital cortex while two state-of-the-art beamformers fail. This remains an active area
of research.
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