
Multi-stage Convex Relaxation for Learning with
Sparse Regularization

Tong Zhang
Statistics Department

Rutgers University, NJ
tzhang@stat.rutgers.edu

Abstract

We study learning formulations with non-convex regularizaton that are natural for
sparse linear models. There are two approaches to this problem:
• Heuristic methods such as gradient descent that only find a local minimum.

A drawback of this approach is the lack of theoretical guarantee showing that
the local minimum gives a good solution.

• Convex relaxation such as L1-regularization that solves the problem under
some conditions. However it often leads to sub-optimal sparsity in reality.

This paper tries to remedy the above gap between theory and practice. In partic-
ular, we investigate a multi-stage convex relaxation scheme for solving problems
with non-convex regularization. Theoretically, we analyze the behavior of a re-
sulting two-stage relaxation scheme for the capped-L1 regularization. Our per-
formance bound shows that the procedure is superior to the standard L1 convex
relaxation for learning sparse targets. Experiments confirm the effectiveness of
this method on some simulation and real data.

1 Introduction

Consider a set of input vectors x1, . . . ,xn ∈ Rd, with corresponding desired output variables
y1, . . . , yn. The task of supervised learning is to estimate the functional relationship y ≈ f(x)
between the input x and the output variable y from the training examples {(x1, y1), . . . , (xn, yn)}.
The quality of prediction is often measured through a loss function φ(f(x), y). We assume that
φ(f, y) is convex in f throughout the paper. In this paper, we consider linear prediction model
f(x) = wT x. As in boosting or kernel methods, nonlinearity can be introduced by including non-
linear features in x.

We are mainly interested in the scenario that d � n. That is, there are many more features than the
number of samples. In this case, an unconstrained empirical risk minimization is inadequate because
the solution overfits the data. The standard remedy for this problem is to impose a constraint on w
to obtain a regularized problem. An important target constraint is sparsity, which corresponds to the
(non-convex) L0 regularization, defined as ‖w‖0 = |{j : wj 6= 0}| = k. If we know the sparsity
parameter k for the target vector, then a good learning method is L0 regularization:

ŵ = arg min
w∈Rd

1
n

n∑
i=1

φ(wT xi, yi) subject to ‖w‖0 ≤ k. (1)

If k is not known, then one may regard k as a tuning parameter, which can be selected through cross-
validation. This method is often referred to as subset selection in the literature. Sparse learning is
an essential topic in machine learning, which has attracted considerable interests recently. It can be
shown that the solution of the L0 regularization problem in (1) achieves good prediction accuracy
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if the target function can be approximated by a sparse w̄. However, a fundamental difficulty with
this method is the computational cost, because the number of subsets of {1, . . . , d} of cardinality k
(corresponding to the nonzero components of w) is exponential in k.

Due to the computational difficult, in practice, it is necessary to replace (1) by some easier to solve
formulations below:

ŵ = arg min
w∈Rd

1
n

n∑
i=1

φ(wT xi, yi) + λg(w), (2)

where λ > 0 is an appropriately chosen regularization condition. We obtain a formulation equiv-
alent to (2) by choosing the regularization function as g(w) = ‖w‖0. However, this function is
discontinuous. For computational reasons, it is helpful to consider a continuous approximation with
g(w) = ‖w‖p, where p > 0. If p ≥ 1, the resulting formulation is convex. In particular, by choos-
ing the closest approximation with p = 1, one obtain Lasso, which is the standard convex relaxation
formulation for sparse learning. With p ∈ (0, 1), the Lp regularization ‖w‖p is non-convex but con-
tinuous. In this paper, we are also interested in the following capped-L1 approximation of ‖w‖0,
with g(w) =

∑d
j=1 min(|wj |, α), where for v ∈ R: This is a good approximation to L0 because

as α → 0,
∑

j min(|wj |, α)/α → ‖w‖0. Therefore when α → 0, this regularization condition is
equivalent to the sparse L0 regularization upto a rescaling of λ. Note that the capped-L1 regulariza-
tion is also non-convex. It is related to the so-called SCAD regularization in statistics, which is a
smoother version. We use the simpler capped-L1 regularization because the extra smoothness does
not affect our algorithm or theory.

For a non-convex but smooth regularization condition such as capped-L1 or Lp with p ∈ (0, 1),
standard numerical techniques such as gradient descent leads to a local minimum solution. Unfor-
tunately, it is difficult to find the global optimum, and it is also difficult to analyze the quality of the
local minimum. Although in practice, such a local minimum solution may outperform the Lasso so-
lution, the lack of theoretical (and practical) performance guarantee prevents the more wide-spread
applications of such algorithms. As a matter of fact, results with non-convex regularization are dif-
ficult to reproduce because different numerical optimization procedures can lead to different local
minima. Therefore the quality of the solution heavily depend on the numerical procedure used.

The situation is very difficult for a convex relaxation formulation such as L1-regularization (Lasso).
The global optimum can be easily computed using standard convex programming techniques. It is
known that in practice, 1-norm regularization often leads to sparse solutions (although often sub-
optimal). Moreover, its performance has been theoretically analyzed recently. For example, it is
known from the compressed sensing literature that under certain conditions, the solution of L1 re-
laxation may be equivalent to L0 regularization asymptotically even when noise is present (e.g. [3]
and references therein). If the target is truly sparse, then it was shown in [9] that under some restric-
tive conditions referred to as irrepresentable conditions, 1-norm regularization solves the feature
selection problem. The prediction performance of this method has been considered in [4, 8, 1].

Despite of its success, L1-regularization often leads to suboptimal solutions because it is not a good
approximation to L0 regularization. Statistically, this means that even though it converges to the
true sparse target when n → ∞ (consistency), the rate of convergence can be suboptimal. The
only way to fix this problem is to employ a non-convex regularization condition that is closer to
L0 regularization, such as the capped-L1 regularization. The superiority of capped-L1 is formally
proved later in this paper.

Because of the above gap between practice and theory, it is important to study direct solutions of
non-convex regularization beyond the standard L1 relaxation. Our goal is to design a numerical pro-
cedure that leads to a reproducible solution with better theoretical behavior than L1-regularization.
This paper shows how this can be done. Specifically, we consider a general multi-stage convex re-
laxation method for solving learning formulations with non-convex regularization. In this scheme,
concave duality is used to construct a sequence of convex relaxations that give better and better
approximations to the original non-convex problem. Moreover, using the capped-L1 regularization,
we show that after only two stages, the solution gives better statistical performance than standard
Lasso when the target is approximately sparse. In essence, this paper establishes a performance
guarantee for non-convex formulations using a multi-stage convex relaxation approach that is more
sophisticated than the standard one-stage convex relaxation (which is the standard approach com-
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monly studied in the current literature). Experiments confirm the effectiveness of the multi-stage
approach.

2 Concave Duality

Given a continuous regularization function g(w) in (2) which may be non-convex, we are interested
in rewriting it using concave duality. Let h(w) : Rd → Ω ⊂ Rd be a map with range Ω. It may not
be a one-to-one map. However, we assume that there exists a function ḡh(u) defined on Ω such that
g(w) = ḡh(h(w)) holds.

We assume that we can find h so that the function ḡh(u) is a concave function of u on Ω. Under
this assumption, we can rewrite the regularization function g(w) as:

g(w) = inf
v∈Rd

[
vT h(w) + g∗h(v)

]
(3)

using concave duality [6]. In this case, g∗h(v) is the concave dual of ḡh(u) given below

g∗h(v) = inf
u∈Ω

[
−vT u + ḡh(u)

]
.

Moreover, it is well-known that the minimum of the right hand side of (3) is achieved at

v̂ = ∇uḡh(u)|u=h(w). (4)

This is a very general framework. For illustration, we include two example non-convex sparse
regularization conditions discussed in the introduction.

Lp regularization We consider the regularization condition g(w) =
∑d

j=1 |wj |p for some
p ∈ (0, 1). Given any q > p, (3) holds with h(w) = [|w1|q, . . . , |wd|q] and g∗h(v) =
c(p, q)

∑
j vp/(p−q)

j defined on the domain {v : vj ≥ 0}, where c(p, q) = (q− p)pp/(q−p)qq/(p−q).

In this case, ḡh(u) =
∑d

j=1 up/q
j on Ω = {u : uj ≥ 0}. The solution in (4) is given by

v̂j = (p/q)|wj |p−q.

Capped-L1 regularization We consider the regularization condition g(w) =
∑d

j=1 min(|wj |, α).

In this case, (2) holds with h(w) = [|w1|, . . . , |wd|] and g∗h(v) =
∑d

j=1 α(1 − vj)I(vj ∈ [0, 1])
defined on the domain {v : vj ≥ 0}, where I(·) is the set indicator function. The solution in (4) is
given by v̂j = I(|wj | ≤ α).

3 Multi-stage Convex Relaxation

We consider a general procedure for solving (2) with convex loss and non-convex regularization
g(w). Let h(w) =

∑
j hj(w) be a convex relaxation of g(w) that dominates g(w) (for example,

it can be the smallest convex upperbound (i.e., the inf over all convex upperbounds) of g(w)). A
simple convex relaxation of (2) becomes

ŵ = arg min
w∈Rd

 1
n

n∑
i=1

φ(wT xi, yi) + λ
d∑

j=1

hj(w)

 . (5)

This simple relaxation can yield a solution that is not close to the solution of (2). However, if h
satisfies the condition of Section 2, then it is possible to write g(w) as (3). Now, with this new
representation, we can rewrite (2) as

[ŵ, v̂] = arg min
w,v∈Rd

[
1
n

n∑
i=1

φ(wT xi, yi) + λvT h(w) + λg∗h(v),

]
, (6)

This is clearly equivalent to (2) because of (3). If we can find a good approximation of v̂ that
improves upon the initial value of v̂ = [1, . . . , 1], then the above formulation can lead to a refined
convex problem in w that is a better convex relaxation than (5).
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Our numerical procedure exploits the above fact, which tries to improve the estimation of vj over
the initial choice of vj = 1 in (5) using an iterative algorithm. This can be done using an alternating
optimization procedure, which repeatedly applies the following two steps:

• First we optimize w with v fixed: this is a convex problem in w with appropriately chosen
h(w).

• Second we optimize v with w fixed: although non-convex, it has a closed form solution
that is given by (4).

The general procedure is presented in Figure 1. It can be regarded as a generalization of CCCP
(concave-convex programming) [7], which takes h(w) = w. By repeatedly refining the parameter
v, we can potentially obtain better and better convex relaxation, leading to a solution superior to that
of the initial convex relaxation. Note that using the Lp and capped-L1 regularization conditions in
Section 2, this procedure lead to more specific multi-stage convex relaxation algorithms. We skip
the details due to the space limitation.

Tuning parameters: λ
Input: training data (x1,y1), . . . , (xn,yn)
Output: weight vector ŵ
initialize v̂j = 1
Repeat the following two steps until convergence:

• Let ŵ = arg minw∈Rd

[
1
n

∑n
i=1 φ(wT xi, yi) + λv̂T h(w)

]
(∗)

• Let v̂ = ∇uḡh(u))|u=h(w)

Figure 1: Multi-stage Convex Relaxation Method

4 Theory of Two-stage Convex Relaxation for Capped-L1 Regularization

Although the reasoning in Section 3 is appealing, it is only a heuristic argument without any formal
theoretical guarantee. In contrast, the simple one-stage L1 relaxation is known to perform reasonably
well under certain assumptions. Therefore unless we can develop a theory to show the effectiveness
of the multi-stage procedure in Figure 1, our proposal is mere yet another local minimum finding
scheme that may potentially stuck into a bad local solution.

This section tries to address this issue. Although we have not yet developed a complete theory for
the general procedure, we are able to obtain a learning bound for the capped-L1 regularization. In
particular, if the target function is sparse, then the performance of the solution after merely two-
stages of our procedure is superior to that of Lasso. This demonstrates the effectiveness of the
multi-stage approach. Since the analysis is rather complicated, we focus on the least squares loss
only, and only for the solution after two-stages of the algorithm.

For a complete theory, the following questions are worth asking:

• Under what conditions, the global solution with non-convex penalty is statistically better
than the (one-stage) convex relaxation solution? That is, when does it lead to better predic-
tion accuracy or generalization error?

• Under what conditions, there is only one local minimum solution close to the solution of
the initial convex relaxation, and it is also the global optimum? Moreover, does multi-stage
convex relaxation find this solution?

The first question answers whether it is beneficial to use a non-convex penalty function. The second
question answers whether we can effectively solve the resulting non-convex problem using multi-
stage convex relaxation. The combination of the two questions leads to a satisfactory theoretical
answer to the effectiveness of the multi-stage procedure.

A general theory along this line will be developed in the full paper. In the following, instead of
trying to answer the above questions separately, we provide a unified finite sample analysis for the
procedure that directly addresses the combined effect of the two questions. The result is adopted
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from [8], which justifies the multi-stage convex relaxation approach by showing that the two-stage
procedure using capped-L1 regularization can lead to better generalization than the standard one
stage L1 regularization.

The procedure we shall analyze, which is a special case of the multi-stage algorithm in Figure 1 with
capped-L1 regularization and only two stages, is described in Figure 2. It is related to the adaptive
Lasso method [10]. The result is reproducible when the solution of the first stage is unique because
it involves two well-defined convex programming problems. Note that it is described with least
squares loss only because our analysis assumes least squares loss: a more general analysis for other
loss functions is possible but would lead to extra complications that are not central to our interests.

Tuning parameters: λ, α
Input: training data (x1,y1), . . . , (xn,yn)
Output: weight vector ŵ′

Stage 1: Compute ŵ by solving the L1 penalization problem:

ŵ = arg min
w∈Rd

[
1
n

n∑
i=1

(wT xi − yi)2 + λ‖w‖1

]
.

Stage 2: Solving the following selective L1 penalization problem:

ŵ′ = arg min
w∈Rd

 1
n

n∑
i=1

(wT xi − yi)2 + λ
∑

j:|ŵj |≤α

|wj |

 .

Figure 2: Two-stage capped-L1 Regularization

This particular two-stage procedure also has an intuitive interpretation (besides treating it as a spe-
cial case of multi-stage convex relaxation). We shall refer to the feature components corresponding
to the large weights as relevant features, and the feature components smaller the cut-off threshold α
as irrelevant features. We observe that as an estimation method, L1 regularization has two impor-
tant properties: shrink estimated weights corresponding to irrelevant features toward zero; shrink
estimated weights corresponding to relevant features toward zero. While the first effect is desirable,
the second effect is not. In fact, we should avoid shrinking the weights corresponding to the relevant
features if we can identify these features. This is why the standard L1 regularization may have sub-
optimal performance. However, after the first stage of L1 regularization, we can identify the relevant
features by picking the components corresponding to the largest weights; in the second stage of L1

regularization, we do not have to penalize the features selected in the first stage, as in Figure 2.

A related method, called relaxed Lasso, was proposed recently by Meinshausen [5], which is similar
to a two-stage Dantzig selector in [2]. Their idea differs from our proposal in that in the second
stage, the weight coefficients w′

j are forced to be zero when j /∈ supp0(ŵ). It was pointed out
in [5] that if supp0(ŵ) can exactly identify all non-zero components of the target vector, then in
the second stage, the relaxed Lasso can asymptotically remove the bias in the first stage Lasso.
However, it is not clear what theoretical result can be stated when Lasso cannot exactly identify all
relevant features. In the general case, it is not easy to ensure that relaxed Lasso does not degrade
the performance when some relevant coefficients become zero in the first stage. On the contrary, the
two-stage penalization procedure in Figure 2, which is based on the capped-L1 regularization, does
not require that all relevant features are identified. Consequently, we are able to prove a result for
Figure 2 with no counterpart for relaxed Lasso.

Definition 4.1 Let w = [w1, . . . ,wd] ∈ Rd and α ≥ 0, we define the set of relevant features with
threshold α as:

suppα(w) = {j : |wj | > α}.

Moreover, if |wi1 | ≥ · · · ≥ |wid
| are in descending order, then define δk(w) =

(∑
j>k |wij

|2
)1/2

as the 2-norm of the largest k components (in absolute value) of w.

For simplicity, we assume sub-Gaussian noise as follows.
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Assumption 4.1 Assume that {yi}i=1,...,n are independent (but not necessarily identically dis-
tributed) sub-Gaussians: there exists σ ≥ 0 such that ∀i and ∀t ∈ R,

Eyi
et(yi−Eyi) ≤ eσ2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian using the above definition. For
example, if a random variable ξ ∈ [a, b], then Eξe

t(ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable is
Gaussian: ξ ∼ N(0, σ2), then Eξe

tξ ≤ eσ2t2/2.

Theorem 4.1 Let Assumption 4.1 hold. Let Â = 1
n

∑n
i=1 xixT

i , define MÂ = supi6=j |Âi,j |, and
assume that Âj,j = 1 for all j. Consider any target vector w̄ such that Ey = w̄T x, and assume that
w̄ contains only s non-zeros where s ≤ d/3 and assume that MÂs ≤ 1/6. Let k = |suppλ(w̄)|.
Consider the two-stage method in Figure 2. Given η ∈ (0, 0.5), with probability larger than 1− 2η:
if α/48 ≥ λ ≥ 12σ

√
2 ln(2d/η)/n, then

‖ŵ′ − w̄‖2 ≤ 24
√

k − qλ + 24σ

(
1 +

√
20q

n
ln(1/η)

)
+ 168δk(w̄),

where q = |supp1.5α(w̄)|.

The proof of this theorem can be found in [8]. Note that the theorem allows the situation d �
n, which is what we are interested in. The condition MÂs ≤ 1/6, often referred to as mutual
coherence, is also quite standard in the analysis of L1 regularization, e.g., in [1, 3]. Although the
condition is idealized, the theorem nevertheless yields important insights into the behavior of the
two-stage algorithm. This theorem leads to a bound for Lasso with α = ∞ or q = 0. The bound has
the form

‖ŵ′ − w̄‖2 = O(δk(w̄) +
√

kλ).
This bound is tight for Lasso, in the sense that the right hand side cannot be improved except for
the constant. In particular, the factor O(

√
kλ) cannot be removed using Lasso — this can be easily

verified with an orthogonal design matrix. It is known that in order for Lasso to be effective, one
has to pick λ no smaller than the order σ

√
ln d/n. Therefore, the generalization of standard Lasso

is of the order δk(w̄) + σ
√

k ln d/n, which cannot be improved. Similar results appear in [1, 4].

Now, with a small α, the bound in Theorem 4.1 can be significantly better than that of the standard
Lasso result if the sparse target satisfies δk(w̄) �

√
kλ and k − q � k. The latter condition is true

when |supp1.5α(w̄)| ≈ |suppλ(w̄)|. These conditions are satisfied when most non-zero coefficients
of w̄ in suppλ(w̄) are relatively large in magnitude and the rest is small in 2-norm. That is, when
the target w̄ can be decompose as a sparse vector with large coefficients plus another (less sparse)
vector with small coefficients. In the extreme case when q = k = |supp0(w̄)| (that is, all nonzero
components of w̄ are large), we obtain ‖ŵ′−w̄‖2 = O(

√
k ln(1/η)/n) for the two-stage procedure,

which is superior to the standard one-stage Lasso bound ‖ŵ − w̄‖2 = O(
√

k ln(d/η)/n). Again,
this bound cannot be improved for Lasso, and the difference can be significant when d is large.

5 Experiments

In the following, we show with a synthetic and a real data that our multi-stage approach improves
the standard Lasso in practice. In order to avoid cluttering, we only study results for the two-stage
procedure of Figure 2, which corresponds to the capped-L1 regularization. We shall also compare
it to the two-stage Lp regularization method with p = 0.5, which corresponds to the adaptive Lasso
approach [10]. Note that instead of tuning the α parameter in Figure 2, in these experiments, we
tune the number of features q in ŵ that are larger than the threshold α (i.e., q = |{j : |ŵj | > α}|
is the number of features that are not regularized in stage-2). This is clearly more convenient than
tuning α. The standard Lasso corresponds to q = 0.

In the first experiment, we generate an n × d random matrix with its column j corresponding to
[x1,j , . . . ,xn,j ], and each element of the matrix is an independent standard Gaussian N(0, 1). We
then normalize its columns so that

∑n
i=1 x2

i,j = n. A truly sparse target β̄, is generated with k

6



nonzero elements that are uniformly distributed from [−10, 10]. The observation yi = β̄T xi + εi,
where each εi ∼ N(0, σ2). In this experiment, we take n = 25, d = 100, k = 5, σ = 1, and repeat
the experiment 100 times. The average training error and 2-norm parameter estimation error are
reported in Figure 3. We compare the performance of the two-stage method with different q versus
the regularization parameter λ. As expected, the training error becomes smaller when q increases.
Compared to the standard Lasso (which corresponds to q = 0), substantially smaller estimation
error is achieved with q = 3 for Capped-L1 regularization and with p = 0.5 for Lp regularization.
This shows that the multi-stage convex relaxation approach is effective.
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Figure 3: Performance of multi-stage convex relaxation on simulation data. Left: average training
squared error versus λ; Right: parameter estimation error versus λ.

In the second experiment, we use real data to illustrate the effectiveness of the multi-stage approach.
Due to the space limitation, we only report the performance on a single data, Boston Housing. This
is the housing data for 506 census tracts of Boston from the 1970 census, available from the UCI
Machine Learning Database Repository: http://archive.ics.uci.edu/ml/. Each census tract is a data-
point, with 13 features (we add a constant offset on e as the 14th feature), and the desired output is
the housing price. In the experiment, we randomly partition the data into 20 training plus 456 test
points. We perform the experiments 100 times, and report training and test squared error versus the
regularization parameter λ for different q. The results are plotted in Figure 4. In this case, q = 1
achieves the best performance. This means one feature can be reliably identified in this example.
In comparison, adaptive Lasso is not effective. Note that this dataset contains only a small number
(d = 14) features, which is not the case where we can expect significant benefit from the multi-stage
approach (most of other UCI data similarly contain only small number of features). In order to
illustrate the advantage of the two-stage method more clearly, we also consider a modified Boston
Housing data, where we append 20 random features (similar to the simulation experiments) to the
original Boston Housing data, and rerun the experiments. The results are shown in Figure 5. As
expected from Theorem 4.1 and the discussion thereafter, since d becomes large, the multi-stage
convex relaxation approach with capped-L1 regularization (q > 0) has significant advantage over
the standard Lasso (q = 0).
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Figure 4: Performance of multi-stage convex relaxation on the original Boston Housing data. Left:
average training squared error versus λ; Right: test squared error versus λ.
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