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Abstract

We propose a nonparametric Bayesian factor regression model that accounts for
uncertainty in the number of factors, and the relationship between factors. To
accomplish this, we propose a sparse variant of the Indian Buffet Process and
couple this with a hierarchical model over factors, based on Kingman'’s coalescent.
We apply this model to two problems (factor analysis and factor regression) in
gene-expression data analysis.

1 Introduction

Factor analysis is the task of explaining data by means of a datenit factors. Factoregression
couples this analysis with a prediction task, where the predictions are made solely on the basis of the
factor representation. The latent factor representation achieves two-fold benefits: (1) discovering the
latentprocesaunderlying the data; (2) simpler predictive modeling through a compact data represen-
tation. In particular, (2) is motivated by the problem of prediction in‘taege P small N” paradigm

[1], where the number of featurésgreatly exceeds the number of examplggpotentially resulting

in overfitting.

We address three fundamental shortcomings of standard factor analysis approaches [2, 3, 4, 1]: (1)
we do not assume a known number of factors; (2) we do not assume factors are independent; (3)
we do not assume all features are relevant to the factor analysis. Our motivation for this work stems
from the task of reconstructing regulatory structure from gene-expression data. In this context, fac-
tors correspond to regulatory pathways. Our contributions thus parallel the needs of gene pathway
modeling. In addition, we couple predictive modeling (for factor regression) within the factor anal-
ysis framework itself, instead of having to model it separately.

Our factor regression model is fundamentally nonparametric. In particular, we treat the gene-to-

factor relationship nonparametrically by proposing a sparse variant of the Indian Buffet Process

(IBP) [5], designed to account for the sparsity of relevant genes (featuregoMgéethis IBP with

a hierarchical prior over the factors. This prior explains the fact that pathways are fundamentally

related: some are involved in transcription, some in signaling, some in synthesis. The nonparametric
nature of our sparse IBP requires that the hierarchical pigarbe nonparametric. A natural choice

is Kingman'’s coalescent [6], a popular distribution over infinite binary trees.

Since our motivation is an application in bioinformatics, our notation and terminology will be drawn
from that area. In particulagenesarefeatures,samplesare examples, an@athwaysarefactors.
However, our model is more general. An alternative application might be to a collaborative filtering
problem, in which case our genes might correspond to movies, our samples might correspond to
users and our pathways might correspond to genres. In this context, all three contributions of our
model still make sense: we do not know how many movie genres there are; some genres are closely
related (romance to comedy versus to action); many movies may be spurious.



2 Background

Our model uses a variant of the Indian Buffet Process to model the feature-factor (i.e., gene-pathway)
relationships. We further use Kingman'’s coalescent to model latent pathway hierarchies.

2.1 Indian Buffet Process

The Indian Buffet Process [7] defines a distribution over infinite binary matrices, originally moti-
vated by the need to model the latent factor structure of a given set of observations. In the standard
form it is parameterized by a scale value, The distribution can be explained by means of a simple
culinary analogy. Customers (in our contegénes) enter an Indian restaurant and select dishes
(in our contextpathways) from an infinite array of dishes. The first customer seleetsson(«)

dishes. Thereafter, each incoming custoirgglects a previously-selected diskwith a probability

my /(i — 1), wherem,, is the number of previous customers who have selectedidiSlustomer

then selects aadditional Poisson(a/i) new dishes. We can easily define a binary ma#riwith

value Z;;, = 1 precisely when customerselects disht. This stochastic process thus defines a
distribution over infinite binary matrices.

It turn out [7] that the stochastic process defined above corresponds to an infinite limit of an
exchangeable process over finite matrices withcolumns. This distribution takes the form

p(Z]a) =I5, %F(m’}fli)ff;mrl), wherem;, = Y, Z;, and P is the total number of cus-
K

tomers. TakingK — oo yields the IBP. The IBP has several nice properties, the most important

of which is exchangeablility. It is the exchangeablility (over samples) that makes efficient sam-

pling algorithms possible. There also exists a two-parameter generalization to IBP where the second

parametep3 controls the sharability of dishes.

2.2 Kingman’'s Coalescent

Our model makes use of a latent hierarchical structure over factors; we use Kingman'’s coalescent [6]
as a convenient prior distribution over hierarchies. Kingman’s coalescent originated in the study of
population genetics for a set of single-parent organisms. The coalescent is a nonparametric model
over a countable set of organisms. It is most easily understood in terms of its finite dimensional
marginal distributions over individuals, in which case it is called ancoalescent. We then take

the limitn — oo. In our case, the individuals afectors.

Then-coalescent considers a populationnobrganisms at time = 0. We follow the ancestry of
these individuals backward in time, where each organism has exactly one parenttattiond he
n-coalescent is a continuous-time, partition-valued Markov process which starts sitfyleton
clusters at tim¢ = 0 and evolvesackward, coalescing lineages until there is only one left. We
denote byt; the time at which theith coalescent event occurs (ndte< 0), andd; = t;—1 —

t; the time between events (naig > 0). Under then-coalescent, each pair of lineages merges
indepentently with exponential ratesod; ~ &p (("~2™")). With probability one, a random draw
from then-coalescent is a binary tree with a single root at —oco andn individuals at timef = 0.

We denote the tree structure by The marginal distribution over tree topologies is uniform and
independent of coalescent times; and the model is infinitely exchangeable. We therefore consider
the limit asn — oo, calledthe coalescent.

Once the tree structure is obtained, one can define an additional Markov process to evolve over the
tree. One common choice is a Brownian diffusion process. In Brownian diffusibhdimensions,

we assume an underlying diffusion covarianceAo RP*P p.s.d. The root is @-dimensional

vector drawnz. Each non-root node in the tree is drawn Gaussian with mean equal to the value of
the parent, and varianéeA, whered; is the time that has passed.

Recently, Teh et al. [8] proposed efficient bottom-up agglomerative inference algorithms for the
coalescent. These (approximately) maximize the probability afidjs, marginalizing out internal
nodes by Belief Propagation. If we associate with each node in the tremay andvariancewv
message, we update messages as Eq (1), wietke current node and andri are its children.

v = [(v1i + (tr — t)A)"E + (v + (b — t)A) ] (1)
y; = [y (i + (i — t)A) "+ ys(vei + (b — t)A) ]



3 Nonparametric Bayesian Factor Regression

Recall the standard factor analysis proble¥n= AF + E, for standardized datd. X isaP x N
matrix consisting ofN samples [z, ..., zy] of P features eachA is the factor loading matrix of
sizeP x K andF = [f, ..., f 5] is the factor matrix of sizé{ x N. E =[eq, ..., ex] is the matrix
of idiosyncratic variationsk, the number of factors, is known.

Recall that our goal is to treat the factor analysis problem nonparametrically, to model feature rele-
vance, and to model hierarchical factors. For expository purposes, it is simplest to deal with each of
these issues in turn. In our context, we begin by modeling the gene-factor relationship nonparamet-
rically (using the IBP). Next, we propose a variant of IBP to model gene relevance. We then present
the hierarchical model for inferring factor hierarchies. We conclude with a presentation of the full
model and our mechanism for modifying the facamalysisproblem to factoregression.

3.1 Nonparametric Gene-Factor Model

We begin by directly using the IBP to infer the number of factors. Although IBP has been applied
to nonparametric factor analysis in the past [5], the standard IBP formulation places IBP prior on
the factor matrix (F') associatirgamplegi.e. a set of features) with factors. Such a model assumes
that the sample-fctor relationship is sparse. However, this assumption is inappropriate in the gene-
expression context where it is not the factors themselves buagkeciationsamong genes and
factors (i.e., the factor loading matriX) that are sparse. In such a context, each sample depends on
all the factors but each gene within a sample usually depends only on a small number of factors.

Thus, it is more appropriate to model the factor loading matrix (A) with the IBP prior. Note that
sinceA andF are related with each other via the number of fackgrsodelingA nonparametrically
allows our model to also have an unbounded number of factors.

For most gene-expression problems [1], a binary factor loadings matrix (A) is inappropriate. There-
fore, we instead use the Hadamard (element-wise) product of a binary rAadnixi a matrixV

of reals. Z andV are of the same size @ The factor analysis model, for each samplehus
becomeszx; = (Z o V)f, + e;. We haveZ ~ IBP(«,3). o andg are IBP hyperparameters

and have vague gamma priors on them. Our initial model assumes no factor hierarchies and hence
the prior overV would simply be a Gaussian/ ~ Nor(0, o21) with an inverse-gamma prior on

o,. F has a zero mean, unit variance Gaussian prior, as used in standard factor analysis. Finally,
e; = Nor(0, ¥) models the idiosyncratic variations of genes whres a P x P diagonal matrix
(diag(Vy, ..., ¥p)). Each entryl p» has an inverse-gamma prior on it.

3.2 Feature Selection Prior

Typical gene-expression datasets are of the order of several thousands of genes, most of which
are not associated with any pathway (factor). In the above, these are accounted for only by the
idiosyncratic noise term. A more realistic model is that certain genes simply do not participate in
the factor analysis: for a culinary analogy, the genes enter the restaurant and leave before selecting
any dishes. Those genes that “leave”, we term “spurious.” We add an additional prior term to account
for such spurious genes; effectively leading to a sparse solution (over the rows of the IBP matrix).
It is important to note that this notion of sparsity is fundamentdifferentfrom the conventional

notion of sparsity in the IBP. The sparsity in IBP is oeelumns, notows. To see the difference,

recall that the IBP contains a “rich get richer” phenomenon: frequently selected factors are more
likely to get reselected. Consider a truly spurious gene and ask whether it is likely to select any
factors. If some factok is already frequently used, tharpriori this gene is more likely to select it.

The only downside to selecting it is the data likelihood. By setting the corresponding valligin

zero, there is no penalty.

Our sparse-IBP prior is identical to the standard IBP prior with one exception. Each customer (gene)
p is associated with Bernoulli random varialflgthat indicates whether it samplasydishes. The
T vector is given a parametgr which, in turn, is given a Beta prior with parameters.

3.3 Hierarchical Factor Model

In our basic model, each column of the matéxand the corresponding column¥n) is associated
with a factor. These factors are considered unrelated. To model the fact that factors are, in fact, re-



lated, we introduce a factor hierarchy. Kingman'’s coalesf&rs an attractive prior for integration
with IBP for several reasons. It is nonparametric and describes exchangeable distributions. This
means that it can model a varying number of factors. Moreover, efficient inference algorithms exist

[8].
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Figure 1: The graphical model for nonparametfiégure 2: Training and test data are combined to-
Bayesian Factor RegressioN. consists of respon@ether and test responses are treated as missing values
variables as well. to be imputed

3.4 Full Model and Extension to Factor Regression

Our proposed graphical model is depicted in Figure 1. The key aspects of this model are: the IBP
prior overZ, the sparse binary vect@r, and the Coalescent prior Ov¥f.

In standard Bayesian factor regression [1], factor analysis is followed by the regression task. The
regression is performed only on the basigbfrather than the full datX. For example, a simple

linear regression problem would involve estimatingladimensional parameter vectérwith re-
gression valu@ " F. Our model, on the other hand, integrates factor regression component in the
nonparametric factor analysis framework itself. We do so by prepending the respgrisahe
expression vectag; and joining the training and test data (see figure 2). The unknown responses
in the test data are treated as missing variables to be iteratively imputed in our MCMC inference
procedure. It is straightforward to see that it is equivalent to fitting another sparse model relating
factors to responses. Our model thus allows the factor analysis to take into account the regression
task as well. In case of binary responses, we add an extra probit regression step to predict binary
outcomes from real-valued responses.

4 Inference

We use Gibbs sampling with a few M-H steps. The Gibbs distributions are summarized here.

Sampling the IBP matrix Z: SamplingZ consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on the acceptance ratio in the associated M-H step. For
sampling existing dishes, an entry Fhis set as 1 according to(Z;x, = 1|X,Z_;x,V,F, ¥) x

%p(MZ,V,F,\P) whereas it is set as 0 according #0Z;, = 0|X,Z_;x,V,F, ¥)

%pmz,v, F,®). m_;x =>_,.; Zjx is how many other customers chose dish

For sampling new dishes, we use an M-H step where we simultaneously propose
(Knew ynew pnewy where K™ ~ Poisson(af/(8 + P — 1)). We accept the proposal with

an acceptance probability (following [9]) given by= min{1, %}. Here,p(rest|n) is the

likelihood of the data given parameteys We proposel/ " from its prior (either Gaussian or
Coalescent) but, for faster mixing, we propds&" from its posterior.

Samplingl’¢* from the coalescent is slightly involved. As shown pictorially in figure 3, proposing

a new column ofV corresponds to adding a new leaf node to the existing coalescent tree. In
particular, we need to find a sibling (s) to the new ngdand need to find an insertion point on the
branch joining the sibling to its parentp (the grandparent af’). Since the marginal distribution
over trees under the coalescent is uniform, the siblirgchosen uniformly over nodes in the tree.
We then use importance sampling to select an insertion time for the newyhdadweent, and

t,, according to the exponential distribution given by the coalescent prior (our proposal distribution
is uniform). This gives an insertion point in the tree, which corresponds to the new pargnt of



We denote this new parent by and the time of insertion as The predictive density of the newly
inserted nodg’ can be obtained by marginalizing the parghtThis yieldsNor(y,, vo), given by:

vo = [(vs + (ts = )A) ™! + (v + (t = £,)A) 7]
Yo = [Ys/(vs + (ts = A) + 9,/ (vp + (tp — 1) A)]vo

Here, y; and v, are the messages passguthrough the tree, whilg, andv, are the messages
passedlownthrough the tree (compare to Eq (1)).

Sampling the sparse IBP vector T:In thesparse IBP prior, recall that we P, (%)
have an additionaP-many variabled’,, indicating whether geng “eats”

any dishesT, is drawn from Bernoulli with parameter, which, in turn, is P ()
given alZt(a, b) prior. For inference, we collapseand ¥ and get Gibbs
posterior ovef}, of the formp(T}, = 1.) o (a + 3=, Tp) (@[ (Z, ©
Vp)F,g/h,g)) andp(T}, = 0].) oc (b+ P =3 ., Tq)SU(xy|0,9/h, g),
whereStu is the non-standard Student’s t-distributiginh are hyperparam- o ()
eters of the inverse-gamma prior on the entrie@of e

Sampling the real valued matrix V: For the case whel has a Gaus- Figure 3: Adding a
sian prior on it, we sample/ from its posteriorp(V, ;|X,Z,F,¥) « new node to the tree
N FZ, _
Nor(Vy jlig.j, Bg,5), where ¥g; = (X5, g+ + 5)”' and
N * — H *

Hgj = ng‘ (Zi:1 Fj,ngJ')\IJg 1. We define Xg,j = Xgﬂ‘ —
Zfil_’l#(Ag,lVg?l)FM, andA = Z ® V. The hyperparameter, onV has an inverse-gamma
prior and posterior also has the same form. For the case with coalescent pNorvem have

N F7, _ N « P
Ygi = Qimy \ﬁg + ﬁ) Vand g = 4500000 Fjﬂ'Xg,j)(\I’g + %) !, wherey, and
v, are the Gaussian posteriors of the leaf node added in the coalescent tree (see Eq (1)), which
corresponds to the column ¥fbeing sampled.

Sampling the factor matrix F: We sample foF from its posteriop(F|X, Z,V, ¥) oc Nor(F|u, X)
wherey = AT(AAT + )" 1X andE =1 — (AAT + ¥)"1A, whereA=Z oV

Sampling the idiosyncratic noise term:We place an inverse-gamma prior on the diagonal entries
of ¥ and the posterior too is inverse-gamma¥,|.) < ZG(g + ¥ h ), whereE =

2 TFEeETE)
X —(Z® V)F,

Sampling IBP parameters: We sample the IBP parameter from its posterior: p(«|.) ~
Gam( K + a, m), whereK , is the number of active features at any moment Bid5) =

S 1/(B+1i—1). Bis sampled from a prior proposal using an M-H step.
Sampling the Factor Tree: Use theGreedy-Ratel algorithm [8].

5 Related Work

A number of probabilistic approaches have been proposed in the past for the problem of gene-
regulatory network reconstruction [2, 3, 4, 1]. Some take into account the information on the prior
network topology [2], which is not always available. Most assume the number of factors is known.
To get around this, one can perform model selection via Reversible Jump MCMC [10] or evolu-
tionary stochastic model search [11]. Unfortunately, these methods are often difficult to design and
may take quite long to converge. Moreover, they are difficult to integrate with other forms of prior
knowledge (eg., factor hierarchies). A somewhat similar approach to ours is the infinite indepen-
dent component analysis (ilICA) model of [12] which treats factor analysis as a special case of ICA.
However, their model is limited to factor analysis and does not take into account feature selection,
factor hierarchy and factor regression. As a generalization to the standard ICA model, [13] proposed
a model in which the components can be related via a tree-structured graphical model. It, however,
assumes a fixed number of components.

Structurally, our model with Gaussian-{.e. no hierarchy over factors) is most similar to the
Bayesian Factor Regression Model (BFRM) of [1]. BFRM assumes a sparsity inducing mixture
prior on the factor loading matri&. Specifically, A, ~ (1 — mp)do(Apk) + TprNOIr(Apk|0, %)



wheredy () is a point mass centered at zero. To complete the model specification, theyxdgfine
(1= pr)do(mpk) + prBet(mpr|sr, s(L —r)) andpy, ~ Bet(py|av, a(1 —v)). Now, integrating outr,,
gives: Ay, ~ (1—vpg)do(Apk) +vprNor(A,,|0, 71,). Itis interesting to note that the nonparametric
prior of our model (factor loading matrix defined as= Z ©® V) is actually equivalent to the
(parametric) sparse mixture prior of the BFRM&Es— oo. To see this, note that our prior on the
factor loading matriXA (composed oZ having an IBP prior, an¥ having a Gaussian prior), can be
written asA,x ~ (1 — px)do(Apk) + peNOr (A, |0, 02), if we definepy, ~ Bet(1,a3/K). Itis easy

to see that, for BFRM wherg, ~ Bet(av, a(1 —v)), settinga = 1 + of/K andv = 1 — af/(aK)
recovers our model in the limiting case wh&n— oc.

6 Experiments

In this section, we report our results on synthetic and real datasets. We compare our nonparametric
approach with the evolutionary search based approach proposed in [11], which is the nonparametric
extension to BFRM.

We used the gene-factor connectivity matrix of E-coli network (described in [14]) to generate a
synthetic dataset having 100 samples of 50 genes and 8 underlying factors. Since we knew the
ground truth for factor loadings in this case, this dataset was ideal to test for efficacy in recovering
the factor loadings (binding sites and number of factors). We also experimented with a real gene-
expression data which is a breast cancer dataset having 251 samples of 226 genes and 5 prominent
underlying factors (we know this from domain knowledge).

6.1 Nonparametric Gene-Factor Modeling and Variable Selection

For the synthetic dataset generated by the E-coli network, the results are shown in figure 4 comparing
the actual network used to generate the data and the inferred factor loading matrix. As shown in
figure 4, we recovered exactly the same number (8) of factors, and almost exactly the same factor
loadings (binding sites and number of factors) as the ground truth. In comparison, the evolutionary
search based approach overestimated the number of factors and the inferred loadings clearly seem
to be off from the actual loadings (even modulo column permutations).

Factor Loadings Inferred by BFRM

True Factor Loadings Inferred Factor Loadings

Genes

50

4 5 6 4
Factors Factors

Figure 4: (Left and middle) True and inferred factor loadings (with our approach) for the synthetic data
with P=50, K=8 generated using connectivity matrix of E-coli data. (Right) Inferred factor loadings with the
evolutionary search based approach. White rectangles represent active sites. The data also has added noise with
signal-to-noise-ratio of 10

Our results on real data are shown in figure 5. To see the effect of variable selection for this data,
we also introduced spurious genes by adding 50 random features in each sample. We observe the
following: (1) Without variable selection being on, spurious genes resultin an overestimated number
of factors and falsely discovered factor loadings for spurious genes (see figure 5(a)), (2) Variable
selection, when on, effectively filters out spurious genes, without overestimating the number of
factors (see figure 5(b)). We also investigated the effect of noise on the evolutionary search based
approach and it resulted in an overestimated number of factor, plus false discovered factor loadings
for spurious genes (see figure 5(c)). To conserve space, we do not show here the cases when there
are no spurious genes in the data but it turns out that variable selection does not filter out any of 226
relevant genes in such a case.

6.2 Hierarchical Factor Modeling

Our results with hierarchical factor modeling are shown in figure 6 for synthetic and real data. As
shown, the model correctly infers the gene-factor associations, the number of factors, and the factor
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Figure 5: Effect of spurious genes (heat-plots of factor loading matrix shown): (a) Standard IBP (b) Our model
with variable selection (c) The evolutionary search based approach

hierarchy. There are several ways to interpret the hierarchy. From the factor hierarchy for E-coli data
(figure 6), we see that column-2 (corresponding to factor-2) oftmeatrix is the most prominent

one (it regulates the highest number of genes), and is closest to the tree-root, followed by column-
2, which it looks most similar to. Columns corresponding to lesser prominent factors are located
further down in the hierarchy (with appropriate relatedness). Figure 6 (d) can be interpreted in a
similar manner for breast-cancer data. The hierarchy can be used to find factors in order of their
prominence. The higher we chop off the tree along the hierarchy, the more prominent the factors,
we discover, are. For instance, if we are only interested in top 2 factors in E-coli data, we can
chop off the tree above the sixth coalescent point. This is akin to the agglomerative clustering sense
which is usually don@ost-hoc. In contrast, our model discovers the factor hierarchies as part of the
inference procedure itself. At the same time, there is no degradation of data reconstruction (in mean
squared error sense) and the log-likelihood, when compared to the case with Gaussian Yrior on
(see figure 7 - they actuallynprove). We also show in section 6.3 that hierarchical modeling results

in better predictive performance for the factor regression task. Empirical evidences also suggest that
the factor hierarchy leads to faster convergence since most of the unlikely configurations will never
be visited as they are constrained by the hierarchy.

ssssssss

(@) (b)
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Figure 6: Hierarchical factor modeling results. (a) Factor loadings for E-coli data. (b) Inferred hierarchy for
E-coli data. (c) Factor loadings for breast-cancer data. (d) Inferred hierarchy for breast-cancer data..

6.3 Factor Regression

We report factor regression results for binary and real-valued responses and compare both variants
of our model (Gaussial and Coalescernl) against 3 different approaches: logistic regression,
BFRM, and fitting a separate predictive model on the discovered factors (see figure 7 (c)). The
breast-cancer dataset had two binary response variables (phenotypes) associated with each sample.
For this binary prediction task, we split the data into training-set of 151 samples and test-set of 100
samples. This is essentially a transduction setting as described in section 3.4 and shown in figure 2.
For real-valued prediction task, we treated a 30x20 block of the data matrix as our held-out data and
predicted it based on the rest of the entries in the matrix. This method of evaluation is akin to the
task of image reconstruction [15]. The results are averaged over 20 random initializations and the
low error variances suggest that our method is fairly robust w.r.t. initializations.



“f Model Binary Real
’ (Yoerror,std dev) | (MSE)
LogReg 17.5(1.6) -

. BFRM 19.8(1.4) | 0.48
. Nor-V 15.8 (0.56) | 0.45
: Coal-V 14.6 (0.48) | 0.43

PredModel 18.1(2.1) -
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Figure 7: (a) MSE on the breast-cancer data for BFRM (horizontal line), our model with Gaussian (top red
curved line) and Coalescent (bottom blue curved line) priors. This MSE is the reconstruction error for the data
- different from the MSE for the held-out real valued responses (fig 7 ¢) (b) Log-likelihoods for our model with
Gaussian (bottom red curved line) and Coalescent (top blue curved line) priors. (c) Factor regression results

7 Conclusions and Discussion

We have presented a fully nonparametric Bayesian approach to sparse factor regression, modeling
the gene-factor relationship using a sparse variant of the IBP. However, the true power of nonpara-
metric priors is evidenced by the ease of integration of task-specific models into the framework.
Both gene selection and hierarchical factor modeling are straightforward extensions in our model
that do not significantly complicate the inference procedure, but lead to improved model perfor-
manceand more understandable outputs. We applied Kingman'’s coalescent as a hierarhical model
onV, the matrix modulating the expression levels of genes in factors. An interesting open question
is whether the IBP can, itself, be modeled hierarchically.
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