
PSDBoost: Matrix-Generation Linear Programming
for Positive Semidefinite Matrices Learning

Chunhua Shen†‡, Alan Welsh‡, Lei Wang‡

†NICTA Canberra Research Lab, Canberra, ACT 2601, Australia∗

‡Australian National University, Canberra, ACT 0200, Australia

Abstract

In this work, we consider the problem of learning a positive semidefinite matrix.
The critical issue is how to preserve positive semidefiniteness during the course
of learning. Our algorithm is mainly inspired by LPBoost [1] and the general
greedy convex optimization framework of Zhang [2]. We demonstrate the essence
of the algorithm, termed PSDBoost (positive semidefinite Boosting), by focus-
ing on a few different applications in machine learning. The proposed PSDBoost
algorithm extends traditional Boosting algorithms in that its parameter is a posi-
tive semidefinite matrix with trace being one instead of a classifier. PSDBoost is
based on the observation that any trace-one positive semidefinite matrix can be de-
composed into linear convex combinations of trace-one rank-one matrices, which
serve as base learners of PSDBoost. Numerical experiments are presented.

1 Introduction

Column generation (CG) [3] is a technique widely used in linear programming (LP) for solving
large-sized problems. Thus far it has mainly been applied to solve problems with linear constraints.
The proposed work here—which we dub matrix generation (MG)—extends the column generation
technique to non-polyhedral semidefinite constraints. In particular, as an application we show how
to use it for solving a semidefinite metric learning problem. The fundamental idea is to rephrase a
bounded semidefinite constraint into a polyhedral one with infinitely many variables. This construc-
tion opens possibilities for use of the highly developed linear programming technology. Given the
limitations of current semidefinite programming (SDP) solvers to deal with large-scale problems,
the work presented here is of importance for many real applications.

The choice of a metric has a direct effect on the performance of many algorithms such as the simplest
k-NN classifier and some clustering algorithms. Much effort has been spent on learning a good
metric for pattern recognition and data mining. Clearly a good metric is task-dependent: different
applications should use different measures for (dis)similarity between objects. We show how a
Mahalanobis metric is learned from examples of proximity comparison among triples of training
data. For example, assuming that we are given triples of imagesai, aj andak (ai, aj have same
labels andai, ak have different labels,ai ∈ R

D), we want to learn a metric between pairs of images
such that the distance fromaj to ai (distij) is smaller than fromak to ai (distik). Triplets like this
are the input of our metric learning algorithm. By casting the problem as optimization of the inner
product of the linear transformation matrix and its transpose, the formulation is based on solving
a semidefinite program. The algorithm finds anoptimal linear transformation that maximizes the
margin between distancesdistij anddistik.

∗NICTA is funded by the Australian Government as represented by the Department of Broadband, Commu-
nications and the Digital Economy and the Australian Research Council through the ICT Center of Excellence
program.

A major drawback of this formulation is that current SDP solvers utilizing interior-point (IP) meth-
ods do not scale well to large problems with computation complexity roughlyO(n4.5) (n is the
number of variables). On the other hand, linear programming is much better in terms of scalability.
State-of-the-art solvers like CPLEX [4] can solve large problems up to millions of variables and
constraints. This motivates us to develop an LP approach to solve our SDP metric learning problem.

2 Related Work

We overview some relevant work in this section.

Column generation was first proposed by Dantzig and Wolfe [5] for solving some special structured
linear programs with extremely large number of variables. [3] has presented a comprehensive survey
on this technique. The general idea of CG is that, instead of solving the original large-scale prob-
lem (master problem), one works on a restricted master problem with a reasonably small subset of
variables at each step. The dual of the restricted master problem is solved by the simplex method,
and the optimal dual solution is used to find the new column to be included into the restricted master
problem. LPBoost [1] is a direct application of CG in Boosting. For the first time, LPBoost shows
that in an LP framework, unknown weak hypotheses can be learned from the dual although the
space of all weak hypotheses is infinitely large. This is the highlight of LPBoost, which has directly
inspired our work.

Metric learning using convex optimization has attracted a lot of attention recently [6–8]. These
work has made it possible to learn distance functions that are more appropriate for a specific task,
based on partially labeled data or proximity constraints. These techniques improve classification
or clustering accuracy by taking advantage of prior information. There is plenty of work reported.
We list a few that are most relevant to ours. [6] learns a Mahalanobis metric for clustering using
convex optimization to minimize the distance between examples belonging to the same class, while
at the same time restricting examples in difference classes not to be too close. The work in [7] also
learns a Mahalanobis metric using SDP by optimizing a modifiedk-NN classifier. They have used
first-order alternating projection algorithms, which are faster than generic SDP solvers. The authors
in [8] learns a Mahalanobis by considering proximity relationships of training examples. The final
formulation is also an SDP. They replace the positive semidefinite (PSD) conic constraint using a
sequence of linear constraints under the fact that a diagonal dominance matrix must be PSD (but not
vice versa). In other words the conic constraint is replaced by a more strict one. The feasibility set
shrinks and the solution obtained is not necessarily a solution of the original SDP.

3 Preliminaries

We begin with some notational conventions and basic definitions that will be useful.

A bold lower case letterx represents a column vector and an upper case letterX is a matrix. We
denote the space ofD × D symmetric matrices bySD, and positive semidefinite matrices byS

D
+ .

Tr(·) is the trace of a square matrix and〈X,Z〉 = Tr(XZ
⊤) =

∑

ij XijZij calculates the inner
product of two matrices. An element-wise inequality between two vectors writesu ≤ v, which
meansui ≤ vi for all i.

We useX < 0 to indicate that matrixX is positive semidefinite. For a matrixX ∈ S
D, the

following statements are equivalent: (1)X < 0 (X ∈ S
D
+); (2) All eigenvalues ofX are nonnegative

(λi(X) ≥ 0, i = 1, · · · , D); and (3)∀u ∈ R
D, u⊤Xu ≥ 0.

3.1 Extreme Points of Trace-one Semidefinite Matrices

Before we present our main results, we prove an important theorem that serves the basis of the
proposed algorithm.

Definition 3.1 For any positive integerM , given a set of points{x1, ...,xM} in a real vector or
matrix spaceSp, theconvex hullof Sp spanned byM elements inSp is defined as:

convM (Sp) =

{

∑M

i=1
θixi

∣

∣

∣
θi ≥ 0,

∑M

i=1
θi = 1,xi ∈ Sp

}

.

Define the convex hull1 of Sp as:

conv(Sp) =
⋃

M

convM (Sp)

=

{

∑M

i=1
θixi

∣

∣

∣
θi ≥ 0,

∑M

i=1
θi = 1,xi ∈ Sp,M ∈ Z+

}

.

HereZ+ denotes the set of all positive integers.

Definition 3.2 Let us defineΓ1 to be the space of all positive semidefinite matricesX ∈ S
D
+ with

trace equaling one:
Γ1 = {X |X < 0,Tr(X) = 1} ; 2

andΩ1 to be the space of all positive semidefinite matrices with both trace and rank equaling one:

Ω1 = {Z |Z < 0,Tr(Z) = 1, rank(Z) = 1} .

We also defineΓ2 as the convex hull ofΩ1, i.e.,

Γ2 = conv(Ω1).

Lemma 3.3 Let Ω2 be a convex polytope defined asΩ2 = {λ ∈ R
D|λk ≥ 0, ∀k = 1, · · · , D,

∑D

k=1
λk = 1}, then the points with only one element equaling one and all the others being zeros

are the extreme points (vertexes) ofΩ2. All the other points can not be extreme points.

Proof: Without loss of generality, let us consider such a pointλ′ = {1, 0, · · · , 0}. If λ′ is not an
extreme point ofΩ2, then it must be expressed as an convex combination of a fewotherpoints in
Ω2: λ′ =

∑M

i=1
θiλ

i, θi > 0,
∑M

i=1
θi = 1 andλi 6= λ′. Then we have equations:

∑M

i=1
θiλ

i
k = 0,

∀k = 2, · · · , D. It follows thatλi
k = 0, ∀i andk = 2, · · · , D. That means,λi

1 = 1 ∀i. This is
inconsistent withλi 6= λ′. Therefore such a convex combination does not exist andλ′ must be
an extreme point. It is trivial to see that anyλ that has more than one active element is an convex
combination of the above-defined extreme points. So they can not be extreme points. �

Theorem 3.4 Γ1 equals toΓ2; i.e., Γ1 is also the convex hull ofΩ1. In other words, allZ ∈ Ω1,
forms the set of extreme points ofΓ1.

Proof: It is easy to check that any convex combination
∑

i θiZ
i, such thatZi ∈ Ω1, resides inΓ1,

with the following two facts: (1) a convex combination of PSD matrices is still a PSD matrix; (2)
Tr

(
∑

i θiZ
i
)

=
∑

i

(

θi Tr(Zi)
)

= 1.

By denotingλ1 ≥ · · · ≥ λD ≥ 0 the eigenvalues of aZ ∈ Γ1, we know thatλ1 ≤ 1 because
∑D

i=1
λi = Tr(Z) = 1. Therefore, all eigenvalues ofZ must satisfy:λi ∈ [0, 1], ∀i = 1, · · · , D

and
∑D

i λi = 1. By looking at the eigenvalues ofZ and using Lemma 3.3, it is immediate to see that
a matrixZ such thatZ < 0, Tr(Z) = 1 andrank(Z) > 1 can not be an extreme point ofΓ1. The
only candidates for extreme points are those rank-one matrices (λ1 = 1 andλ2,··· ,D = 0). Moreover,
it is not possible that some rank-one matrices are extreme points and others are not because the other
two constraintsZ < 0 andTr(Z) = 1 do not distinguish between different rank-one matrices.

Hence, allZ ∈ Ω1 forms the set of extreme points ofΓ1. Furthermore,Γ1 is a convex and compact
set, which must have extreme points. Krein-Milman Theorem [9] tells us that a convex and compact
set is equal to the convex hull of its extreme points. �

This theorem is a special case of the results from [10] in the context of eigenvalue optimization. A
different proof for the above theorem’s general version can also be found in [11]. In the context of
SDP optimization, what is of interest about Theorem 3.4 is as follows: it tells us that a bounded
PSD matrix constraintX ∈ Γ1 can be equivalently replaced with a set of constrains which belong to
Γ2. At the first glance, this is a highly counterintuitive proposition becauseΓ2 involves many more
complicated constraints. Bothθi andZ

i (∀i = 1, · · · ,M) are unknown variables. Even worse,M
could be extremely (or even indefinitely) large.

1Strictly speaking, the union of convex hulls may not be a convex hull in general. It is a linear convex span.
2Such a matrixX is called a density matrix, which is one of the main concepts in quantum physics. A

density matrix of rank one is called a pure state, and a density matrix of rank higher than one is called a mixed
state.

3.2 Boosting

Boosting is an example of ensemble learning, where multiple learners are trained to solve the same
problem. Typically a boosting algorithm [12] creates a single strong learner by incrementally adding
base (weak) learners to the final strong learner. The base learner has an important impact on the
strong learner. In general, a boosting algorithm builds on a user-specified base learning procedure
and runs it repeatedly on modified data that are outputs from the previous iterations.

The inputs to a boosting algorithm are a set of training examplex, and their corresponding class
labelsy. The final output strong classifier takes the form

Fθ(x) =
∑M

i=1
θifi(x). (1)

Herefi(·) is a base learner. From Theorem 3.4, we know that a matrixX ∈ Γ1 can be decomposed
as

X =
∑M

i=1
θiZ

i,Zi ∈ Ω1. (2)

By observing the similarity between Equations (1) and (2), we may viewZ
i as a weak classifier

and the matrixX as the strong classifier we want to learn. This is exactly the problem that boosting
methods have been designed to solve. This observation inspires us to solve a special type of SDPs
using boosting techniques.

A sparse greedy approximation algorithm proposed by Zhang [2] is an efficient way of solving a
class of convex problems, which provides fast convergence rates. It is shown in [2] that boosting
algorithms can be interpreted within the general framework of [2]. The main idea of sequential
greedy approximation is as follows. Given an initializationu

0 ∈ V, V can be a subset of a linear
vector space, a matrix space or a functional space. The algorithm findsu

i ∈ V, i = 1, · · · , and
0 ≤ λ ≤ 1 such that the cost functionF ((1−λ)ui−1 +λu

i) is approximately minimized; Then the
solutionu

i is updated asui = (1 − λ)ui−1 + λu
i and the iteration goes on.

4 Large-margin Semidefinite Metric Learning

We consider the Mahalanobis metric learning problem as an example although the proposed tech-
nique can be applied to many other problems in machine learning such as nonparametric kernel
matrix learning [13].

We are given a set of training examplesai ∈ R
D, i = 1, 2, · · · . The task is to learn a distance metric

such that with the learned metric, classification or clustering will achieve better performance on
testing data. The information available is a bunch of relative distance comparisons. Mathematically
we are given a setS which contains the training triplets:S = {(ai,aj ,ak)|distij < distik},
wheredistij measures distance betweenai andaj with a certain metric. In this work we focus
on the case thatdist calculates the Mahalanobis distance. Equivalently we are learning a linear
transformationP ∈ R

D×d such thatdist is the Euclidean distance in the projected space:distij =
∥

∥P
⊤
ai −P

⊤
aj

∥

∥

2

2
= (ai −aj)

⊤
PP

⊤(ai −aj). It is not difficult to see that the inequalities in the set
S are non-convex because a difference of quadratic terms inP is involved. In order toconvexifythe
inequalities inS, a new variableX = PP

⊤ is instead used. This is a typical technique for modeling
an SDP problem [14]. We wish to maximize the margin that is defined as the distance between
distij anddistik. That is,ρ = distik − distij = (ai −ak)⊤X(ai −ak) − (ai −aj)

⊤
X(ai −aj).

Also one may use soft margin to tolerate noisy data. Putting these thoughts together, the final convex
program we want to optimize is:

max
ρ,X,ξ

ρ − C
∑|S|

r=1
ξr

s.t. X < 0,Tr(X) = 1, ξ ≥ 0, (3)

(ai − ak)⊤X(ai − ak) − (ai − aj)
⊤
X(ai − aj) ≥ ρ − ξr,

∀(ai,aj ,ak) ∈ S.

Herer indexes the training setS. |S| denotes the size ofS. C is a trade-off parameter that balances
the training error and the margin. Same as in support vector machine, the slack variableξ ≥ 0

corresponds to the soft-margin hinge loss. Note that the constraint Tr(X) = 1 removes the scale
ambiguity because the distance inequalities are scale invariant.

To simplify our exposition, we write

A
r = (ai − ak)(ai − ak)⊤ − (ai − aj)(ai − aj)

⊤. (4)

The last constraint in (3) is then written

〈Ar,X〉 ≥ ρ − ξr, ∀A
r built from S; r = 1, · · · |S|. (5)

Problem (3) is a typical SDP since it has a linear cost function and linear constraints plus a PSD
conic constraint. Therefore it can be solved using off-the-shelf SDP solvers like CSDP [15]. As
mentioned general interior-point SDP solvers do not scale well to large-sized problems. Current
solvers can only solve problems up to a few thousand variables, which makes many applications
intractable. For example, in face recognition if the inputs are30 × 30 images, thenD = 900 and
there would be0.41 million variables. Next we show how we reformulate the above SDP into an LP.

5 Boosting via Matrix-Generation Linear Programming

Using Theorem 3.4, we can replace the PSD conic constraint in (3) with a linear convex combination
of rank-one unitary PSD matrices:X =

∑M

i=1
θiZ

i. SubstitutingX in Problem (3), we obtain

max
ρ,θ,ξ,Z

ρ − C
∑|S|

r=1
ξr

s.t. ξ ≥ 0,
〈

A
r,

∑M

i=1
θiZ

i
〉

=
∑M

i=1

〈

A
r,Zi

〉

θi ≥ ρ − ξr,

∀Ar built from S; r = 1, · · · |S|, (P1)
∑M

i=1
θi = 1,θ ≥ 0,

Z
i ∈ Ω1, i = 1, · · · ,M.

This above problem is still very hard to solve since it has non-convex rank constraints and an in-
definite number of variables (Mis indefinite because there are an indefinite number of rank-one
matrices). However if we somehow know matricesZ

i (i = 1, · · ·) a priori, we can then drop all the
constraints imposed onZi (i = 1, · · ·) and the problem becomes a linear program; or more precisely
a semi-infinite linear program (SILP) because it has an infinitely large set of variablesθ.

Column generation is a state-of-the-art method for optimally solving difficult large-scale optimiza-
tion problems. It is a method to avoid considering all variables of a problemexplicitly. If an LP
has extremely many variables (columns) but much fewer constraints, CG can be very beneficial.
The crucial insight behind CG is: for an LP problem with many variables, the number of non-zero
variables of the optimal solution is equal to the number of constraints, hence although the number
of possible variables may be large, we only need a small subset of these in the optimal solution. It
works by only considering a small subset of the entire variable set. Once it is solved, we ask the
question: “Are there any other variables that can be included to improve the solution?”. So we must
be able to solve thesubproblem: given a set of dual values, one either identifies a variable that has
a favorable reduced cost, or indicates that such a variable does not exist. In essence, CG finds the
variables with negative reduced costs without explicitly enumerating all variables. For a general LP,
this may not be possible. But for some types of problems it is possible.

We now consider Problem (P1) as if all Zi, (i = 1, · · ·) were known. The dual of (P1) is easily
derived:

min
π,w

π

s.t.
∑|S|

r=1

〈

A
r,Zi

〉

wr ≤ π, i = 1, · · · ,M, (D1)
∑|S|

r=1
wr = 1,

0 ≤ wr ≤ C, r = 1, · · · , |S|.

For convex programs with strong duality, the dual gap is zeros, which means the optimal value of
the primal and dual problems coincide. For LPs and SDPs, strong duality holds under very mild
conditions (almost always satisfied by LPs and SDPs considered here).

We now only consider a small subset of the variables in the primal;i.e., only a subset ofZ (denoted
by Z̃)3 is used. The LP solved using̃Z is usually termedrestricted master problem(RMP). Because
the primal variables correspond to the dual constraints, solving RMP is equivalent to solving a
relaxed version of the dual problem. With a finiteZ̃, the first set of constraints in (D1) are finite, and
we can solve the LP that satisfies all the existing constraints.

If we can prove that among all the constraints that we have not added to the dual problem, no
single constraint is violated, then we can conclude that solving the restricted problem is equivalent
to solving the original problem. Otherwise, there exists at least one constraint that is violated. The
violated constraints correspond to variables in primal that are not in RMP. Adding these variables
to RMP leads to a new RMP that needs to be re-optimized. In our case, by finding the violated
constraint, we generate a rank-one matrixZ

′. Hence, as in LPBoost [1] we have a base learning
algorithm as an oracle that either finds a newZ

′ such that
∑|S|

r=1

〈

A
r,Z′

〉

wr > π̃,

whereπ̃ is the solution of the current restricted problem, or a guarantee that such aZ
′ does not exist.

To make convergence fast, we find the one that has largest deviation. That is,

Z
′ = argmax

Z

{

∑|S|
r=1

〈

A
r,Z

〉

w̃r, s.t. Z ∈ Ω1

}

. (B1)

Again herew̃r (r = 1, · · · , |S|) are obtained by solving the current restricted dual problem (D1). Let
us denoteOpt(B1) the optimal value of the optimization problem in (B1). We now have a criterion
that guarantees the optimal convex combination over allZ’s satisfying the constraints inΓ2 has been
found. If Opt(B1) ≤ π̃, then we are done—we have solved the original problem.

The presented algorithm is a variant of the CG technique. At each iteration, a new matrix is gener-
ated, hence the namematrix generation.

5.1 Base Learning Algorithm

In this section, we show that the optimization problem (B1) can be exactly and efficiently solved
using eigen-decomposition.

FromZ < 0 andrank(Z) = 1, we know thatZ has the format:Z = uu
⊤, u ∈ R

D; andTr(Z) = 1
means‖u‖

2
= 1. We have

∑|S|
r=1

〈

A
r,Z

〉

w̃r =
〈
∑|S|

r=1
w̃rA

r,Z
〉

= u
(
∑|S|

r=1
w̃rA

r
)

u
⊤.

By denoting
H̃ =

∑|S|
r=1

w̃rA
r, (6)

the optimization in (B1) equals:

max
u

u
⊤
H̃u, subject to ‖u‖

2
= 1. (7)

It is clear that the largest eigenvalue ofH̃, λmax(H̃), and its corresponding eigenvectoru1 give the
solution to the above problem. Note thatH̃ is symmetric. Therefore we have the solution of the
original problem (B1): Opt(B1) = λmax(H̃) andZ

′ = u1u
⊤
1 .

There are approximate eigenvalue solvers, which guarantee that for a symmetric matrixU and any
ε > 0, a vectorv is found such thatv⊤Uv ≥ λmax−ε. To approximately find the largest eigenvalue
and eigenvector can be very efficient using Lanczos or power method. We use the MATLAB function
eigsto calculate the largest eigenvector, which calls mex files of ARPACK. ARPACK is a collection
of Fortran subroutines designed to solve large scale eigenvalue problems. When the input matrix is
symmetric, this software uses a variant of the Lanczos process called the implicitly restarted Lanczos
method [16].

3We also usẽθ, π̃ andw̃ etc. to denote the solution of the current RMP and its dual.

Algorithm 1: PSDBoost for semidefinite metric learning.

Input: Training set triplets(ai,aj ,ak) ∈ S; CalculateAr, r = 1, · · · from S using Equation (4).
Initialization:

1. M = 1 (no bases selected);

2. θ = 0 (all primal coefficients are zeros);

3. π = 0;

4. wr = 1

|S| , r = 1, · · · , |S| (uniform dual weights).

while true do

1. Find a new baseZ′ by solving Problem (B1), i.e., eigen-decomposition of̃H in (6);

2. if Opt(B1) ≤ π then break (problem solved);

3. AddZ
′ to the restricted master problem, which corresponds to a new constraint in

Problem (D1);

4. Solve the dual (D1) to obtain updatedπ andwr (r = 1, · · · , |S|);

5. M = M + 1 (base count).

end
Output:

1. Calculate the primal variableθ from the optimality conditions and the last solved dual LP;

2. The learned PSD matrixX ∈ R
D×D, X =

∑M

i=1
θiZ

i.

Putting all the above analysis together, we summarize our PSDBoost algorithm for metric learning
in Algorithm 1. Note that, in practice, we can relax the convergence criterion by setting a small
positive thresholdε′ > 0 in order to obtain a good approximation quickly. Namely the convergence
criterion isOpt(B1) ≤ π + ε′.

The algorithm has some appealing properties. Each iteration the solution is provably better than the
preceding one, and has rank at most one larger. Hence afterM iterations the algorithm attains a
solution with rank at mostM . The algorithm preserves CG’s property that each iteration improves
the quality of the solution. The bounded rank follows the fact thatrank(A + B) ≤ rank(A) +
rank(B), ∀ matricesA andB.

An advantage of the proposed PSDBoost algorithm over standard boosting schemes is the totally-
corrective weight update in each iteration, which leads faster convergence. The coordinate descent
optimization employed by standard boosting algorithms is known to have a slow convergence rate in
general. However, the price of this totally-corrective update is obvious. PSDBoost spans the space of
the parameterX incrementally. The computational cost for solving the subproblem grows with the
number of linear constraints, which increases by one at each iteration. Also it needs more and more
memory to store the generated base learnerZ

i as represented by a series of unit vectors. To alleviate
this problem, one can use aselection and compression mechanismas the aggregation step of bundle
methods [17]. When the size of of the bundle becomes too large, bundle methods select columns to
be discarded and the selected information is aggregated into a single one. It can be shown that as
long as the aggregated column is introduced in the bundle, the bundle algorithm remains convergent,
although different selection of discarded columns may lead to different convergence speeds. See [17]
for details.

6 Experiments

In the first experiment, we have artificially generated600 points in24 dimensions. Therefore the
learned metric is of size24 × 24. The triplets are obtained in this way: For a pointai, we find its
nearest neighbor in the same classaj and its nearest neighbor in the different classak. We subsample
to have550 triplets for training. To show the convergence, we have plotted the optimal values of
the dual problem (D1) at each iteration in Figure 1. We see that PSDBoost quickly converges to

the near-optimal solution. We have observed the so-calledtailing-off effectof CG on large datasets.
While a near-optimal solution is approached considerably fast, only little progress per iteration is
made close to the optimum. Stabilization techniques have been introduced to partially alleviate
this problem [3]. However, approximate solutions are sufficient for most machine learning tasks.
Moreover, we usually are not interested in the numerical accuracy of the solution but the test error
for many problems such as metric and kernel learning.

The second experiment uses the Pendigits data from the UCI repository that contains handwritten
samples of digits 1, 5, 7, 9. The data for each digits are16-dimensional.80 samples for each digit
are used for training and500 for each digit for testing. The results show that PSDBoost converges
quickly and the learned metric is very similar to the results obtained by a standard SDP solver. The
classification errors on testing data with a1-nearest neighbor are identical using the metrics learned
by PSDBoost and a standard SDP solver. Both are1.3%.

7 Conclusion

We have presented a new boosting algorithm, PSDBoost, for learning a positive semidefinite ma-
trix. In particular, as an example, we use PSDBoost to learn a distance metric for classification.
PSDBoost can also be used to learn a kernel matrix, which is of interest in machine learning. We
are currently exploring new applications with PSDBoost. Also we want to know what kind of SDP
optimization problems can be approximately solved by PSDBoost.

References
[1] A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation.Mach. Learn., 46(1-3):225–254,

2002.
[2] T. Zhang. Sequential greedy approximation for certain convex optimization problems.IEEE Trans. Inf. Theory, 49(3):682–691, 2003.
[3] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.Operation Res., 53(6):1007–1023, 2005.
[4] ILOG, Inc. CPLEX 11.1, 2008.http://www.ilog.com/products/cplex/.
[5] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs.Operation Res., 8(1):101–111, 1960.
[6] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. InProc. Adv.

Neural Inf. Process. Syst.MIT Press, 2002.
[7] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. InProc. Adv.

Neural Inf. Process. Syst., pages 1473–1480, 2005.
[8] R. Rosales and G. Fung. Learning sparse metrics via linear programming. InProc. ACM Int. Conf. Knowledge Discovery & Data Mining,

pages 367–373, Philadelphia, PA, USA, 2006.
[9] M. Krein and D. Milman. On extreme points of regular convex sets.Studia Mathematica, 9:133–138, 1940.

[10] M. L. Overton and R. S. Womersley. On the sum of the largest eigenvalues of a symmetric matrix.SIAM J. Matrix Anal. Appl.,
13(1):41–45, 1992.

[11] P. A. Fillmore and J. P. Williams. Some convexity theorems for matrices.Glasgow Math. Journal, 12:110–117, 1971.
[12] R. E. Schapire. Theoretical views of boosting and applications. InProc. Int. Conf. Algorithmic Learn. Theory, pages 13–25, London,

UK, 1999. Springer-Verlag.
[13] B. Kulis, M. Sustik, and I. Dhillon. Learning low-rank kernel matrices. InProc. Int. Conf. Mach. Learn., pages 505–512, Pittsburgh,

Pennsylvania, 2006.
[14] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.
[15] B. Borchers. CSDP, a C library for semidefinite programming.Optim. Methods and Softw., 11(1):613–623, 1999.
[16] D. Calvetti, L. Reichel, and D. C. Sorensen. An implicitly restarted Lanczos method for large symmetric eigenvalue problems.Elec.

Trans. Numer. Anal, 2:1–21, Mar 1994.http://etna.mcs.kent.edu.
[17] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. Numerical Optimization: Theoretical and Practical Aspects (1st

edition). Springer-Verlag, Berlin, 2003.

0 50 100 150 200
−25

−20

−15

−10

−5

0

5

O
pt

(D
1)

iterations
0 50 100 150

−300

−200

−100

0

100

200

300

iterations

O
pt

(D
1)

Figure 1: The objective value of the dual problem (D1) on the first (left) and second (right) experiment. The dashed line shows the ground
truth obtained by directly solving the original primal SDP (3) using interior-point methods.

