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Abstract

Using machine learning algorithms to decode intended behavior from neural ac-
tivity serves a dual purpose. First, these tools allow patients to interact with
their environment through a Brain-Machine Interface (BMI). Second, analyzing
the characteristics of such methods can reveal the relative significance of various
features of neural activity, task stimuli, and behavior. In this study we adapted, im-
plemented and tested a machine learning method called Kernel Auto-Regressive
Moving Average (KARMA), for the task of inferring movements from neural ac-
tivity in primary motor cortex. Our version of this algorithm is used in an online
learning setting and is updated after a sequence of inferred movements is com-
pleted. We first used it to track real hand movements executed by a monkey in
a standard 3D reaching task. We then applied it in a closed-loop BMI setting to
infer intended movement, while the monkey’s arms were comfortably restrained,
thus performing the task using the BMI alone. KARMA is a recurrent method
that learns a nonlinear model of output dynamics. It uses similarity functions
(termed kernels) to compare between inputs. These kernels can be structured to
incorporate domain knowledge into the method. We compare KARMA to various
state-of-the-art methods by evaluating tracking performance and present results
from the KARMA based BMI experiments.

1 Introduction

Performing a behavioral action such as picking up a sandwich and bringing it to one’s mouth is a
motor control task achieved easily every day by millions of people. This simple action, however,
is impossible for many patients with motor deficits. In the future, patients with enough cortical
activity remaining may benefit from Brain Machine Interfaces that will restore motor control with
agility, precision, and the degrees of freedom comparable to natural movements. Such high quality
BMI’s are not yet available. The BMI framework involves recording neural activity, typically using
chronically implanted electrodes, which is fed in real-time to a decoding algorithm. Such algorithms
attempt to infer the subject’s intended behavior. The algorithm’s predictions can be used to artifi-
cially control an end-effector: a cursor on a screen, a prosthetic arm, a wheelchair, or the subject’s
own limbs by stimulation of their muscles. This study focuses on the algorithmic component.

Motor control is a dynamic process involving many feedback loops, relevant time frames, and con-
straints of the body and neural processing. Neural activity in primary motor cortex (MI) is part of
this process. An early approach at decoding movement from MI activity for BMI (see [1]) was rather
simplistic. Instantaneous velocity of the cursor, across a set of movements, was linearly regressed
against neuronal spike rates. This algorithm (known as the Population Vector Algorithm) is equiva-
lent to modelling each neuron as a consine function of movement velocity. This method is still used
today for BMI’s [2], and has become the standard model in many studies of encoding and learning in
MI. Our understanding of motor cortex has progressed, and many other factors have been shown to
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correlate with neuronal activity, but are typically overlooked in modeling. For example, MI activity
has been shown to encode arm posture [3], the dynamic aspects of the movement (such as current
acceleration, or interaction forces) and the interactions between neurons and their dynamics [4].

State-of-the-art movement decoding methods typically involve improved modeling of behavior, neu-
ral activity, and the relations between them. For example, Kalman filtering (see [5]) has been used to
model the system state as being comprised of current hand position, velocity and acceleration. Thus,
the hand movement is assumed to have roughly constant acceleration (with added Gaussian noise
and, consequently, minimal jerk) and the neural activity is assumed to be a linear function of the
hand state (with added Gaussian noise). Particle filtering, which relaxes some of the linearity and
Gaussian assumptions, has also been applied in an offline setting (see [6]). Support Vector Regres-
sion (SVR) from neural activity to current hand velocity (see [7]) has the advantage of allowing for
extraction of nonlinear information from neuronal interactions, but is missing a movement model.
One of our previous studies ([8]) combines a linear movement model (as in Kalman filtering) with
SVR-based nonlinear regression from neural activity.

KARMA (see [9] for one of its first appearances, or [10] for a more recent one) is a kernelized
version of the ARMA method [11]. It performs ARMA in a kernel-induced feature space (for a
comprehensive explanation of this kernel-trick, see [12]). It estimates the next system state as a
function of both the time window of previous state estimates (the Auto-Regressive part) and the
time window of previous observations (the Moving-Average part). In our application, we extend
its formulation to the Multi-Input Multi-Output (MIMO) case, allowing for better modeling of the
system state. We apply it in an online learning paradigm, and by limiting the number of support
vectors turn it into an adaptive method. This allows for real-time inference, as is necessary for BMI.
In section 2 we explain the lab setup, the problem setting, and introduce our notation. In section 3
we describe KARMA, and our online and adaptive version of it, in detail. We explain the available
modeling options and how they can be used to either improve performance or to test ideas regarding
motor control and neural encoding. Section 4 describes KARMA’s performance in tracking hand
movements and compares it with other state-of-the-art methods. Section 5 presents results from our
BMI experiment using KARMA and, finally, we summarize in section 6

2 Lab setup and problem setting

In our experiments, a monkey performed a visuomotor control task that involved moving a cursor
on a screen from target to target in 3D virtual space. Neuronal activity from a population of single
and multi-units was recorded with a chronically implanted array of 96 electrodes (Cyberkinetics,
Inc.) in MI, and used to calculate spike rates (spike counts in 50ms time bins smoothed by a causal
filter). In hand-control (open-loop) mode, the monkey used its hand (continuously tracked by an
optical motion capture system; Phoenix Tech., Inc.) to move the cursor. Data collected from these
sessions is used here to assess algorithm performance, by using the real arm movements as the
target trajectories. In hand-control, behavior is segmented into sequences of continuous recordings,
separated by time periods during which the monkey’s hand is not in view of the tracking device (e.g.
when the monkey stops to scratch itself). Each sequence is made up of target-to-target reaching trials
(some successful and some not). The targets appeared randomly in the 27 corners, centers of faces,
and middle of a virtual cube whose side was 6cm. The target radii were 2.4cm. A successful trial
consisted of one reaching movement that started at rest in one target and ended at rest in the next
target (with required target hold periods during which the cursor must not leave the target). The next
target appears at some point during the hold period of the previous target. Food reward is provided
through a tube after each success. In case of failure, the cursor disappears for 1-2 seconds (failure
period). During this time the monkey’s hand is still tracked. In the BMI (closed-loop) setting, the
monkey’s hands were comfortably restrained and the KARMA algorithm’s inference was used to
move the cursor. Trial failures occured if the reaching movement took longer than 6 seconds or if
the cursor was not kept inside the target during a 0.25s hold period. During trial-failure periods the
inference was stopped and at the next trial the cursor reappeared where it left off. The trial-failure
period was also used to pass the latest recorded trial sequence to the model-learning process, and to
replace the working model with an updated one, if available.

In this text, X (Capital, bold) is a matrix, x (bold) is a vector ( so is xi, xt or xit) and x is a scalar.
(x)T signifies transposition. We will use xit ∈ IRq to designate the neural activity (of q cortical
units) at time bin t in behavior sequence i, which we refer to as observations. Given a window size,
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s, xit−s+1:t =
((

xit−s+1

)T
, . . . ,

(
xit
)T)T ∈ IRsq is an sq-long vector comprising a concatenated

window of observations ending at time t, of trajectory i. xi will be short-hand notation meaning
xi1:tfi

where tfi
is the number of steps in the whole ith trajectory. Similarly, yit ∈ IRd are used

to designate cursor position (d = 3). We refer to yit as the state trajectory. Given a window size,
r ,yit−r:t−1 ∈ IRrd is a concatenated vector of states. Estimated states are differentiated from true
states (or desired states, as will be explained later) by addition of a hat: ŷit. Furthermore (given s and

r) we will use v̂it =
((

ŷit−r:t−1

)T (
xit−s+1:t

)T)T ∈ IRrd+sq to concatenate windows of estimated

states and of neural observations and vit to concatenate true (rather than estimated) state values.

In the hand-control setting, we are given a (fully observed) data-set of neural activities and state
trajectories:

{
xi,yi

}n
i=1

. Our goal is to learn to reconstruct the state trajectories from the neural
activities. We adhere to the online learning paradigm in which at each step, i, of the process we are
given one observation sequence, xi, predict ŷi, then receive the true yi and update the model. This
allows the model to adapt to changes in the input-output relation that occurs over time.

In BMI mode, since hand movements were not per-
formed, we do not know the correct cursor movement.
Instead, during learning we use the cursor movement
generated in the BMI and the positions of the targets
that the monkey was instructed to reach to guess a
desired cursor trajectory which is used to replace the
missing true trajectory as feedback. The illustration
on the right shows the BMI setup from an algorithmic
point of view.

3 KARMA, modeling options, and online learning

As stated earlier, KARMA is a kernelized ARMA. In ARMA: yit =
∑r
k=1 Akyit−k +∑s

l=1 Bl xit−l+1 + eit, where {Ak}rk=1 and {Bl}sl=1 are the respective Auto-Regressive (AR) and
Moving Average (MA) parameters and eit are residual error terms. Given these model parameters
and initial state values, the rest of the state trajectory can be estimated from the observations by
recursive application, replacing true state values with the estimated ones. Thus, ARMA inference is
essentially application of a linear (MIMO) IIR filter. Defining W = [Ar, . . . ,A1,Bs, . . . ,B1], the
next state estimate is simply ŷit = Wv̂it (see notation section).

Kernelizing ARMA involves application of the kernel trick. A kernel function k (v1,v2) :
IRrd+sq × IRrd+sq → IR is introduced, which, conceptually, can be viewed as a dot product of
feature vectors: k (v1,v2) = φT (v1)φ (v2) where the features are possibly complicated functions
of both states and (neural) observations. Inference takes the form ŷit =

∑
j,τ α

j
τk
(
v̂it,v

j
τ

)
where

αjτ ∈ IRd are learned weight vectors and vjτ are examples from a training set, known as the support
set. Conceptually, KARMA inference can be viewed as ŷit = Wφφ

(
v̂it
)

where, as compared
with ARMA, v̂it is replaced by its feature vector, W is replaced by Wφ =

∑
j,τ α

j
τφ

T (vjτ ) and
each recursive step of KARMA is linear regression in the feature space of observations + states. The
weights,

{
αjτ
}

are learned so as to solve the following optimization problem (presented in its primal
form): arg minWφ

‖Wφ‖2 + c
∑
i,t,k

∣∣(yit)k − (Wφφ
(
vit
))
k

∣∣
ε
, where ‖w‖2 =

∑
a,b (W)2ab is

the Frobenius matrix norm, the sum in the second term is over all trials, times and state dimensions
of the examples in the training set, |v|ε = max{0, |v|−ε} is the ε-insensitive absolute error and c is a
constant that determines the relative trade-off between the first (regularization) term and the second
(error) term. Note that during learning, the states are estimated using the true / desired previous state
values as input instead of the estimated ones (contrary to what is done during inference). “Luckily”,
this optimization problem reduces to standard SVR where xit is replaced with vit. This replacement
can be done as a preprocessing step in learning and a standard SVR solver can then be used to find
the weights. Inference would require plugging in the previously estimated state values as part of the
inputs between iterative calls to SVR inference.

Application of KARMA to a specific domain entails setting of some key hyper-parameters that
may have drastic effects on performance. The relatively simple ones are the window sizes (r and
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s) and trade-off parameter c. Beyond the necessary selection of the cursor trajectories as the states,
augmenting state dimensions (whose values are known at training and inferred during model testing)
can be added in order to make the model use them as explicit features. This idea was tried in our
hand tracking experiments using features such as absolute velocity and current trial state (reaching
target, holding at target and trial-failure time). But since results did not improve significantly, we
discontinued this line of research. The kernel function and its parameters must also be chosen.
Note that the kernel in this algorithm is over structured data, which opens the door to a plethora
of choices. Depending on one’s view this can be seen as an optimization curse or as a modeling
blessing. It obviously complicates the search for effective solutions but it allows to introduce domain
knowledge (or assumptions) into the problem. It can also be used as a heuristic for testing the relative
contribution of the assumptions behind the modeling choices. For example, by choosing r = 0 the
algorithm reduces to SVR and the state model (and its dynamics) are ignored. By selecting a kernel
which is a linear sum of two kernels, one for states and one for observations, the user assumes that
states and observations have no “synergy” (i.e. each series can be read without taking the other into
account). This is because summing of kernels is equivalent to calculating the features on their inputs
separately and then concatenating the feature vectors. Selecting linear kernels reduces KARMA to
ARMA (using its regularized loss function).

In online learning, one may change the learned model between consecutive inferences of (whole)
time series. At learning step k, all of

{
xi,yi

}k
i=1

are available for training. A naive solution would
be to re-learn the model at every step, however, this would not be the best solution if one believes
that the source of the input-output relation is changing (for example, in our BMI, cortical units may
change their response properties, or units may appear or disappear during a recording session). Also,
it may not be feasible to store all the sequences, or learning may take too long (opening up a delay
between data acquisition until a new model is ready). If the resulting model has too many support
vectors, too much time is required for each inference step (which is less than 50ms in our BMI
setup). We deal with all the issues above by limiting the number of examples (vit) that are kept in
memory (to 5000 in hand-control tracking and 3000 for real-time use in the BMI). At each online
learning iteration, the latest data is added to the pool of examples one example at a time, and if
the limit has been reached another example is selected at random (uniformly over the data-set) and
thrown out. This scheme gives more mass to recent observations while allowing for a long tail of
older observations. For a 3000 sized database and examples coming in at the rate of one per 50ms,
the cache is filled after the first 150 seconds. Afterwards, the half life (the time required for an
example to have a 50% chance of being thrown out) of an example is approximately 104 seconds,
or conversely, at each point, approx. 63% of the examples in the database are from the last 150
seconds and the rest are earlier ones. This scheme keeps the inference time to a constant and seems
reasonable in terms of rate of adaptation. We chose 5000 for the tracking (hand-control) experiments
since in those experiments there is no real-time inference constraint and the performance improves
a bit (suggesting that the 3000 size is not optimal in terms of inference quality). The similarity
between consecutive examples is rather high as they share large parts of their time windows (when
ARMA parameters r or s are large). Throwing away examples at random has a desired effect of
lessening the dependency between remaining examples.

4 Open-loop hand tracking testing

To test various parametrization of KARMA and to compare its performance to other methods we
used data from 11 hand-control recording days. These sessions vary in length from between 80
to 120 minutes of relatively continuous performance on the part of the monkey. Success rates in
this task were at the 65-85% range. Cortical units were sorted in an automated manner every day
with additional experimenter tuning. The number of very well-isolated single units ranged between
21-41. The remaining units consisted of 140-150 medium quality and multi-units, which the sorting
software often split into more than one channel.

Most of the different algorithms that are compared here have free hyper-parameters that need to be
set (such as a Gaussian kernel width for spike rates, the maximal informative time window of neural
activities, s and the c trade-off parameter). We had a rough estimate for some of these from previous
experiments using similar data (see [8]). To fine-tune these parameters, a brute-force grid search was
performed on data from one of the 11 sessions in a (batch) 5-fold cross validation scheme. Those
parameters were then kept fixed.
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Earlier experiments showed the Gaussian kernel to be a good candidate for comparing neural spike
rate vectors. It can also be calculated quickly, which is important for the BMI real-time constraint.
We tested several variations of structured kernels on neuro-movement inputs. These variations con-
sisted of all combinations of summing or multiplying Gaussian or linear kernels for the spike rates
and movement states. Taking a sum of Gaussians or their product produced the best results (with
no significant difference between these two options). We chose the sum (having the conceptual in-
ference form: ŷit = Wψψ(ŷit−r:t−1) + Wφφ(xit−s:t) where ψ,φ are the infinite feature vectors
of the Gaussian kernel). The next best result was achieved by summing a Gaussian spike rate ker-
nel and a linear movement kernel (which we will call lin-y-KARMA). The sum of linear kernels
produces ARMA (which we also tested). The test results that are presented in this study are only
for the remaining 10 recording sessions. The main performance measure that we use here is the
(Pearson) correlation coefficient (CC) between true and estimated values of positions (in each of the
3 movement dimensions). To gauge changes in prediction quality over time we use CC in a running
window of sequences (window size is chosen so as to decrease the noise in the CC estimate). In
other cases, the CC for a whole data-set is computed.

To illustrate KARMA’s performance we provide a movie (see video 1 in supplementary material)
showing the true hand position (in black) and KARMA’s tracking estimate (in blue) during a con-
tinuous 150 second sequence of target-to target reach movements. This clip is of a model that was
learned in an online manner using the previous (180) sequences, using a support vector cache of
3000 (as described in section 3). The initial position of the cursor is not given to the algorithm.
Instead the average start positions in previous sequences is given as the starting point. The CC in
the time window of the previous 40 sequences (0.9, 0.92 and 0.96 for the 3 dimensions) is given to
provide a feeling of what such CC’s look like. Similarly, Figure 1.B shows tracking and true position
values for an 80 second segment towards the end of a different session.

KARMA achieves good performance and it does so with relatively small amounts of data. Figure
1.A shows tracking quality in terms of a running window of CC’s over time. CC’s for the first
sequences are calculated on predictions made up to those times. While these CC’s are more noisy it
is clear that a useful model is reached within the first 3 minutes (CC’s all higher than 0.6) and close
to peak performance is already available within the first 10 minutes.
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Figure 1: KARMA performance: (A) Correlation coefficients in a running window of 20 sequences (or less
at the session start) for a whole 95 minute session (mean CC window size is 9.7 minutes). (B) True (gray)
vs. tracked positions in an 80 second segment at minute 90 of the session. (C) Effect of loosing recording
electrodes: tracking was performed over a full recording session using randomly chosen subsets of electrodes.
For each selected number of electrodes (from the full 92 available down to 5 electrodes) 50 repetitions were
run. CC’s were calculated per run over the last two thirds of the session (to avoid effects of initial performance
transients) and averaged over the 3 movement dimensions. Their distributions (over repetitions) are shown
in terms of the median CC (red center line), quartile values (skirt containing 50% of the CC’s) and extremal
values (whiskers) for each number of electrodes. (D) Effect of delay time between training data and test data:
For the session shown in (A), marked ’day 1’ and for another session (marked ’day 2’), hand movement in 20
minute time windows towards the session ends were reconstructed in an online manner but instead of using
the same sequences as training data (with a 1 step delay), earlier sequences were used. Figure (A) shows the
time window that corresponded to opening a maximal time difference of 60 minutes between the last inferred
sequence (at minute 90) and the last learned sequence (at minute 30). CC’s for the test windows (averaged over
movement dimensions) are shown as a function of delay time for the two days.
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Figure 2: Algorithm comparisons: 10 hand-movement sessions were each divided into 3 equally long blocks
of 25-35 minutes (the last few minutes were discarded since during this time the monkey often stopped paying
attention to the task) to create 30 data-sets. The following algorithms were run on each data-set in an online
manner: KARMA, lin-y-KARMA, ARMA and SVR. All four were implemented as versions of the KARMA
by varying its parameters. In all cases a support vector cache of 5000 was enforced as described in section 4.
A Kalman Filter was also implemented so as to allow for a window of observations as input and a window of
movement positions as the state (this version was previously shown to outperform the standard Kalman Filter
which has r = s = 1). It was also learned in an online manner, replacing inverses with pseudo-inverses where
necessary to avoid non-invertible matrices when data-sets are too small. Results are shown as scatter plots of
CC values (30 data-sets and 3 movement dimensions produce 90 points per scatter plot). Each point compares
KARMA to another algorithm in a specific data-set and movement dimension pair. Points above the diagonal
mean a higher score for KARMA. The Graph on the left shows win-scores for each pair of algorithm. Win-
score is defined at the percentage of times one algorithm got a higher CC than another. Edge direction points
to the loser. The movement reconstruction on the right (horizontal position only) shows KARMA vs. SVR in a
sample 18 second window.

Probably the highest source of variability in BMI performance across subjects is the location and
number of electrodes in the brain. To test how performance with KARMA would degrade if elec-
trodes were lost we simulated an electrode dropping experiment (see figure 1.C). Let’s consider a
CC of 0.7 as a minimal reasonable performance quality. Let’s also assume that with 50 repetitions,
minimal values roughly represent a worst case scenario in terms of mishaps that do not involve
movement of the whole array. Then it seems that we can get by easily with only a third of the
array (28 electrodes) operational. In terms of medians (average bad luck) we could do with less.
Maximal values are relevant in case we need to choose the good electrodes. This may be relevant
in situations involving implanted chips that extract and wirelessly transmit neural activity and may
have constraints in terms of energy expenditure or bandwidth.

Most BMI experiments (e.g. [2, 13] with the exception of [1]) use fixed models that are learned
once at the beginning of a session. Our version of KARMA is adaptive. In order to check the
importance of adapting to changes in the recorded neural activity we ran an experiment in which
variable delays were opened between the inference times and the latest available data for learning.
i.e. after inference of sequence yi from xi , sequence pair

{
xi−k,yi−k

}
where k > 0 was first

made available. Figure 1.D shows a degradation in performance during the test periods as the delay
grows for two recording sessions. This suggests that adaptability of the algorithm is important for
keeping high performance levels. There are two possible reasons for the observed degradation. One
is changes in the neural activity within the brain. The other is changes in the process that extracts
the neural activity in the BMI (e.g. electrode movements). Differentiating between the two options
is a subject of future work. In the BMI setting, feedback is involved. The subject might be able to
effortlessly modulate his neural activity and keep it in good fit with the algorithm. In section 5 we
address this issue by running BMI sessions in which the model was frozen.

Comparison of KARMA to other methods is shown in figure 2. It is clear that KARMA performs
much better than ARMA and the Kalman Filter, suggesting that a nonlinear interpretation of neural
activity is helpful. While KARMA is statistically significantly better than SVR, the differences in
CC values are not very big (note the scaling difference of the scatter plots). Looking at the movement
reconstruction comparison it seems that SVR has a good average estimate of the current position,
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however, missing a movement model (SVR has the form ŷit = Wφφ(xit−s:t) ) it fluctuates rapidly
around the true value. This fluctuation may not be very apparent in the CC values however it would
make a BMI much more difficult to control. Lin-y-KARMA uses a linear movement model (and
has the form: ŷit = Aŷit−r:t−1 + Wφφ(xit−s:t)). Its performance is inferior to full KARMA.
Having a nonlinear movement model means that different areas of the state-space get treated in
locally relevant fashion. This might explain why full KARMA outperforms. Note that the difference
between lin-y-KARMA and SVR are not very significant (win-score of only 65.6%). Comparison
to the Population Vector algorithm was also done however the PVA achieved especially bad results
for our long sequences since it accumulates errors without any decay (this is less of a problem in
BMI since the subject can correct accumulated errors ). We therefore omit showing them here.
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Figure 3: All graphs show success rates. The light, noisy plots are success rates in consecutive bins of 10 trials
while the smoother plots are the result of running a smoothing filter on the noisy plots. Mixing mode was used
on day 1 and part of day 2. Afterwards we switched to full BMI (mixing factor 100%). Hands were allowed
to move freely until day 4. On day 4 both hands were comfortably restrained for the first time and though
performance levels dropped, the monkey did not attempt to move its hands. On day 5 an attempt to freeze the
model was made. When performance dropped and the monkey became agitated we restarted the BMI from
scratch and performance improved rapidly. Day 6 consists of full BMI but with the targets not as far apart as
with hand-control. This makes the task a bit easier and allowed for higher success rates. On days 7 and 8 a
BMI block was interleaved with hand control blocks. Only the BMI blocks are shown in the top graph. The full
three blocks of day 8 are shown in the bottom right graph. Bottom left graph shows a recording session during
which the model was frozen.

5 BMI experiment

The BMI experiment was conducted after approximately four months of neural recordings during
which the monkey learned and performed the hand-control task. Figure 3 shows a trace of the
first days of the BMI task. A movie showing footage from these days is in the supplementary
material (video 2). To make the transition to BMI smooth, the first 1.5 days consisted of work in
a mixed mode, during which control of the cursor was a linear combination of the hand position
and KARMA’s predictions. We did this in order to see if the monkey would accept a noisier control
scheme than it was used to. During the next 1.5 days the cursor was fully controlled by KARMA,
but the monkey kept moving as if it was doing hand-control. i.e. it made movements and corrections
with its hands. On day 4 the monkey’s free hand was comfortably restrained. Despite our concerns
that the monkey would stop performing it seemed impervious to this change, except that control over
the cursor became more difficult. On days 5 and 6 we made some tweaks to the algorithm (tried to
freeze learning and change the way in which correct movement trajectories are generated) and the
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task (tried to decrease target size and the distance between targets) which had some effects of task
difficulty and on success rates. On days 8 and 9 we interleaved a BMI block with hand-control
blocks. We saw that performance is better in hand-control than in BMI but not drastically so. In
the following sessions we discontinued all tweaking with the algorithm and we’ve seen some steady
improvement in performance.

We repeated the freezing of model learning on two days (one of these session appears in figure 3).
In all cases where we froze the model, we noticed that the monkey starts experiencing difficulty in
controlling the cursor after a period of 10-15 minutes and stopped working completely when this
happened. As stated earlier, in most BMI experiments the subjects interact with fixed models. One
possible explanation for the deterioration is that because our monkey is trained in using an adaptive
model it does not have experience in conforming to such a model’s constraints. Instead, the opposite
burden (that of following a drifting source of neural activity) falls on the algorithm’s shoulders.

As mentioned in section 2, in BMI mode no hand movements are performed and therefore model
learning is based on our guess of what is the desired cursor trajectory (the monkey’s emphintended
cursor movement). We chose to design the desired trajectory as a time varying linear combination of
the cursor trajectory that the monkey saw and the target location: yit =

(
1− t

tfi

)
ŷit +

t
tfi

ỹi where

ỹi is the target location on trial i. Note that this trajectory starts at the observed cursor location at
the trial start and ends at the target location (regardless of where the cursor actually was at the end
of the trial).

6 Summary

This study was motivated by the view that lifting overly simplifying assumptions and integrating
domain knowledge into machine learning algorithms can make significant improvements to BMI
technology. In turn, this technology can be used as a testbed for improved modeling of the interaction
between the brain and environment, especially in visuomotor control. We showed in open-loop hand
tracking experiments that the incorporation of a nonlinear movement model, interpreting the neural
activity as a whole (rather than as the sum of contributions made by single neurons) and allowing the
model to adapt to changes, results in better predictions. The comparison was done against similar
models that lack one or more of these properties. Finally, we showed that this model can be used
successfully in a real-time BMI setting, and that the added mathematical ’complications’ result in a
very intuitive and high quality interface.
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