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Abstract

The problem of ranking arises ubiquitously in almost every aspect of life, and
in particular in Machine Learning/Information Retrieval. A statistical model for
ranking predicts how humans rank subsetsV of some universeU . In this work we
define a statistical model for ranking that satisfies certain desirable properties.
The model automatically gives rise to a logistic regression based approach to
learning how to rank, for which the score and comparison based approaches are
dual views. This offers a new generative approach to ranking which can be used
for IR.
There are two main contexts for this work. The first is the theory of econometrics
and study of statistical models explaining human choice of alternatives. In this
context, we will compare our model with other well known models. The second
context is the problem of ranking in machine learning, usually arising in the con-
text of information retrieval. Here, much work has been done in the discriminative
setting, where different heuristics are used to define ranking risk functions.
Our model is built rigorously and axiomatically based on very simple desirable
properties defined locally for comparisons, and automatically implies the exis-
tence of a global score function serving as a natural model parameter which can
be efficiently fitted to pairwise comparison judgment data by solving a convex
optimization problem.

1 Introduction

Ranking is an important task in information sciences. The most notable application is information
retrieval (IR), where it is crucial to return results in a sorted order for the querier. The subject of
preference and ranking has been thoroughly studied in the context of statistics and econometric
theory [8, 7, 29, 36, 34, 31], combinatorial optimization [26, 37, 20, 3, 4, 14] and machine learning
[6, 9, 33, 21, 19, 35, 23, 22, 25, 16, 17, 1, 13, 15, 28, 18].

Recently Ailon and Mehryar [5] following Balcan et al [9] have made significant progress in reduc-
ing the task of learning ranking to the binary classification problem of learning preferences. This
comparison based approach is in contrast with ascorebased approach which tries to regress to a
score function on the elements we wish to rank, and sort the elements based on this score as a final
step.

The difference between the score based and comparison approaches is an example of ”local vs.
global” views: A comparison is local (how do two elements compare with each other), and a score
is global (how do we embed the universe on a scale). The score based approach seems reasonable
in cases where the score can be defined naturally in terms of measurable utility. In some real world
scenarios, either (i) an interpretable score is difficult to define (e.g. a relevance score in information
retrieval) and (ii) an interpretable score is easy to define (e.g. how much a random person is willing



to pay for product X in some population) but learning the scoreis difficult due to noisy or costly
label acquisition for scores on individual points [7].

A well known phenomenon in the psychological study of human choice seems to potentially offer an
elegant solution to the above difficulties: Human response to comparison questions is more stable in
the sense that it is not easily affected by irrelevant alternatives. This phenomenon makes acquisition
of comparison labels for learning tasks more appealing, but raises the question of how to go back
and fit a latent score function that explains the comparisons. Moreover, the score parameter fitting
must be computationally efficient. Much effort has been recently put in this subject from a machine
learning perspective [6, 9, 33, 21, 19, 35, 23, 22, 25, 16, 17, 1, 13, 15, 28, 18].

2 Ranking in Context

The study of ranking alternatives has not been introduced by ML/IR, and has been studied throughly
from the early years of the 20th century in the context of statistics and econometrics. We mention
work in ML/IR by Lebanon and Lafferty [27] and Cao et al. [12] who also draw from the classic
work for information retrieval purposes.

ML/IR is usually interested in the question of how amachineshould correctly rank alternatives
based on experience from human feedback, whereas in statistics and econometrics the focus is on
the question of how ahumanchooses from alternatives (for the purpose of e.g. effective marketing
or policy making). Therefore, there are notable differences between the modern and classic foci.
Notwithstanding these differences, the classic foci is relevant to modern applications, and vice versa.
For example, any attempt to correctly choose from a set (predominantly asked in the classic context)
can be converted into a ranking algorithm by repeatedly choosing and removing from the set.

Definition 2.1 A ranking model forU is a functionD mapping any finite subsetV ⊆ U to a
distribution on rankings ofV . In other words,D(V ) is a probability distribution on the|V |! possible
orderings ofV .

A Thurstonian model for ranking (so named after L. Thurstone [36]) is one in which an independent
random real valued variableZv is associated with eachv ∈ V , and the ranking is obtained by sorting
the elements ifV in decreasing order (assuming the value represents utility). Often the distributions
governing theZv ’s are members of a parametric family, with a location parameter representing an
intrinsic ”value”. The source of variability inZv is beyond the scope of this work. This model is
related to the more general random utility model (RUM) approach studied in econometrics.

A purely comparison based model is due to Babington and Smith: The parameter of the model is a
matrix{puv}u,v∈U . Given itemsu, v, a subject would preferu overv with probabilitypuv = 1−pvu.
Given a subsetV , the subject flips a corresponding biased coin independently to decide on the
preference of all pairsu, v ∈ V , and repeats the process until the set of preferences is transitive. This
model is unwieldy in full generality, and more succinct representations were proposed. Mallows [30]
following Bradley and Terry [11] proposed to takepuv asα(u)/(α(u) + α(v)), where theα(v)’s
are constants attached to each element. Note that the marginal probability ofu being preferred over
v in the context of a setV ⊃ {u, v} in the Babington-Smith model is in general notpuv, even in
Mallows’s special case.

In distance based models it is assumed that there is a ”modal” ranking of the setV , and the prob-
ability of any ranking decreases with its distance from the mode. Several definitions of distances
between permutations. Often the probability density itself is defined as an exponential model. We
refer the reader to [31] for in depth analysis of such models.

The Plackett-Luce model.The classic model most related to this work is Plackett and Luce’s [29,
34] multistage model for ranking. Each elementv ∈ U has an assigned ”value” parameterα(v). At
each stage a choice is made. Given a setV , itemu ∈ V wins with probabilityα(u)/

∑

v∈V α(v).1

The winner is removed fromV and the process is repeated for the remaining elements, until a
ranking is obtained. Yellott [38] made the surprising observation that the Luce-Plackett model is
exactly Thurstone’s model where theZu’s are translated Gumbel (doubly-exponential) distributed

1This choice function is known as the multinomial logit (MNL) and is equivalent to the standard (dichoto-
mous) logit when only two alternatives are available.



variables. The underlying winner choice model satisfies Luce’s choice axiom [29] which, roughly
speaking, stipulates that the probability of an elementu winning inV is the same as the product of
the probability of the winner contained inV ′ ⊆ V and the probability ofu winning in V ′. It turns
out that this axiom (often used as criticism of the model) implies the underlying choice function of
the Plackett-Luce model.

An interesting property of Plackett-Luce for our purpose is that it isasymmetricin the sense that it
is winner-centric and not loser-centric. The model cannot explain both ranking by successive loser
choice and successive winner choice simultaneously unless it is trivial (this point was noticed by
McCullagh [32]). It is clear however that breaking down the process of ranking by humans to an
iterated choice of winners ignores the process of elimination (placing alternatives at the bottom of
the list). In the following sections we propose a newsymmetricmodel for ranking, in which the basic
discrete task is a comparison of pairs of elements, and not choice of an element from arbitrarily large
sets (as in Plackett-Luce).

3 An Axiomatic Approach for Defining a Pairwise-Stable Model for Ranking

For a rankingπ of some subsetV ⊆ U , we use the notationu ≺π v to denote thatu precedes2 v
according toπ. We letπ(v) ∈ {1, . . . , n} denote the rank ofv ∈ V , where lower numbers designate
precedence (henceu ≺π v if π(u) < π(v)). The inverseπ−1(i) is the unique elementv of V with
π(v) = i. We overload notation and letπ(u, v) denote the indicator variable taking the value of1 if
u ≺ v and0 otherwise.

Definition 3.1 A ranking modelD for U satisfiespairwise stabilityif for anyu, v ∈ U and for any
V1, V2 ⊇ {u, v}, Prπ∼D(V1)[u ≺π v] = Prπ∼D(V2)[u ≺ v].

Pairwise stability means that the preference (or comparison) ofu, v is statistically independent of
the context (subset) they are ranked in. Note that Plackett-Luce is pairwise stable (this follows
from the fact that the model is Thurstonian) but Babington-Smith/Mallows is not. If a ranking
modelD satisfies pairwise stability, then the probabilityPrD[u ≺ v] is naturally defined and equals
Prπ∼D(V )[u ≺π v] for anyV ⊇ {u, v}.

Pairwise stability is a weak property which permits a very wide family of ranking distributions. In
particular, if the universeU is a finite set then any distributionΠ on rankings on the entire universe
U gives rise to a modelDΠ with DΠ(V ) defined as the restriction ofΠ to V . This model clearly
satisfies pairwise stability but does not have a succint description and hence undesirable.

We strengthen the conditions on our model by considering triplets of elements. Assume that a
modelD satisfies pairwise stability. Fix three elementsu, v, w. Consider a process in which we
randomly and independently decide howu and w should compare withv. What would be the
induced distribution on the order ofu andw, conditioned on them being placed on opposite sides
of v? If we sample from the distributionsD({u, v}) andD({v, w}) to independently decide how to
compareu with v andw with v (respectively), then we get

Pr[u ≺ w |( u ≺ v ≺ w) ∨ (w ≺ v ≺ u)] =

PrD[u ≺ v] PrD[v ≺ w]

PrD[u ≺ v] PrD[v ≺ w] + PrD[w ≺ v] PrD[v ≺ u]
.

What happens if we force this to equalPrD[u ≺ w]? In words, this would mean that the comparison
of u with w conditioned on the comparison being determined by pivoting aroundv is distributed like
D({u,w}). We write this desired property as follows (the second line follows from the first):

2We choose in this work to use the convention that an elementu precedesv if u is in a more favorable
position. When a score function is introduced later, the convention will be that higher scores correspond to
more favorable positions. We will use the symbol< (resp. >) to compare scores, which is semantically
opposite to≺ (resp.≻) by our convention.
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[u ≺ w] =
PrD[u ≺ v] PrD[v ≺ w]

PrD[u ≺ v] PrD[v ≺ w] + PrD[w ≺ v] PrD[v ≺ u]

Pr
D

[w ≺ u] =
PrD[w ≺ v] PrD[v ≺ u]

PrD[w ≺ v] PrD[v ≺ u] + PrD[u ≺ v] PrD[v ≺ w]
.

(1)

Definition 3.2 AssumeD is a ranking model forU satisfying pairwise stability. For a pairu,w ∈ U
and another elementv ∈ U we say thatu andw satisfy the pivot condition with respect tov if (1)
holds.

Dividing the two desired equalities in (1), we get (assuming the ratio exists):

PrD[u ≺ w]

PrD[w ≺ u]
=

PrD[u ≺ v] PrD[v ≺ w]

PrD[w ≺ v] PrD[v ≺ u]
. (2)

If we denote by∆D(a, b) the ”comparison logit3”: ∆D(a, b) = log(PrD[a ≺ b]/PrD[b ≺ a]) , then
(2) implies∆D(u, v) + ∆D(v, w) + ∆D(w, u) = 0 . This in turn implies that there exist numbers
s1, s2, s3 such that∆(u, v) = s1 − s2, ∆(v, w) = s2 − s3 and∆(w, u) = s1 − s3. These numbers,
defined up to any additive constant, should be called (additive)scores. We will see in what follows
that the score function can be extended to a larger set by patching scores on triplets.

By the symmetry it is now clear that the pivoting condition ofu andw with respect tov implies the
pivoting condition ofu andv with respect tow and ofv andw with respect tou. In other words, the
pivoting condition is a property of the triplet{u, v, w}.

Definition 3.3 Assume a ranking modelD for U satisfies pairwise stability, and let∆D : U ×U →
R denote the comparison logit as defined above. A triplet{u, v, w} ⊆ U is said to satisfy thepivot
conditionin D if ∆D(u, v)+∆D(v, w)+∆D(w, u) = 0 . We say thatU satisfies the pivot condition
in D if {u, v, w} satisfies the pivot condition for all{u, v, w} ⊆ U .

Lemma 3.1 If U satisfies the pivot condition in a pairwise stability modelD for U , then there exists
a real valued score functions : V → R such that for alla, b ∈ V , ∆D(a, b) = s(a) − s(b) .

Proof Fix some elementv ∈ U and sets(v) = 0. For every other elementu ∈ V \ {v} set
s(v) = ∆D(v, u). It is now immediate to verify that for alla, b ⊆ V one has∆D(a, b) = s(a)−s(b).
Indeed, by constructions(a) − s(b) = ∆D(a, u) − ∆D(b, u) but by the pivot property this equals
exactly∆D(a, b), as required (remember that∆D(a, b) = −∆D(a, b) by definition of∆D).

By starting withlocal assumptions (pairwise stability and the pivoting property), we obtained a nat-
uralglobalscore functions on the universe of elements. The score function governs the probability
of u precedingv via the differences(u) − s(v) passed through the inverse logit. Note that we used
the assumption that the comparison logit is finite on allu, v (equivalently, that0 < PrD(u ≺ v) < 1
for all u, v), but this assumption can be dropped if we allow the score function to obtain values in
R + ωZ, whereω is the limit ordinal ofR.

The Plackett-Luce model satisfies both pairwise stability and the pivot condition withs(u) =
log α(u). Hence our definitions are non empty. Inspired by recent work on the QuickSort algo-
rithm [24] as a random process [4, 3, 5, 37], we define a newsymmetricmodel based on a series of
comparisons rather than choices from sets.

4 The New Ranking Model

We define a model calledQSs (short for QuickSort), parametrized by a score functions : U 7→ R

as follows. Given a finite subsetV ⊂ U :

1. Pick a ”pivot element”v uniformly at random fromV .

3The ”logit of p” is standard shorthand for the log-odds, orlog(p/(1 − p)).



2. For allu ∈ V \ {v}, placeu to the left ofv with probability1/(1 + es(v)−s(u)), and to the
right with the remaining probability1/(1+ es(u)−s(v)), independently of all other choices.

3. Recurse on the left and on the right sides, and output the ranking ofV obtained by joining
the results in an obvious way (left≺ pivot≺ right).

(The function1/(1 + e−x) is the inverse logit function.) We shall soon see that QuickSort gives
us back all the desired statistical local properties of a ranking models. That the modelQSs can
be sampled efficiently is a simple consequence of the fact that QuickSort runs in expected time
O(n log n) (some attention needs to be paid the fact that unlike in the textbook proofs for QuickSort
the pivoting process is randomized, but this is not difficult [5]).

Theorem 4.1 The ranking modelQSs for U satisfies both pairwise stability and the pivoting condi-
tion. Additionally, for any subsetV ⊆ U the mode ofQSs(V ) is any rankingπ∗ satisfyingu ≺π∗ v
whenevers(u) > s(v).

Proof (of Theorem 4.1): First we note that ifQSs satisfies pairwise stability, then the pivot prop-
erty will be implied as well. Indeed, by takingV = {u, v} we would get from the model that
PrQS

s

(u ≺ v) = 1/(1 + es(v)−s(u)), immediately implying the pivot property.

To see thatQSs satisfies pairwise stability, we show that for anyu, v andV ⊇ {u, v}, the probability
of the eventu ≺π v is exactly1/(1 + es(v)−s(u)), whereπ ∼ QSs(V ). Indeed, the order ofu, v
can be determined in one of two ways. (i)Directly: u or v are chosen as pivot when the other is
present in the same recursive call. We call this eventE{u,v}. Conditioned on this event, clearly the
probability thatu ≺π v is exactly the required probability1/(1+ es(v)−s(u)) by step 2 of QuickSort
(note that it doesn’t matter which one ofv or u is the pivot). (ii)Indirectly: A third elementw ∈ V
is the pivot when bothu andv are present in the recursive call, andw sendsu andv to opposite
recursion sides. We denote this event byE′

{u,v},w
. Conditionedon this event, the probability that

u ≺π v, is exactly as required (by using the same logit calculus we used in Section 3).

To conclude the proof of pairwise stability, it remains to observe that the collection of events

{E{u,v}} ∪
{

E′
{u,v},w

: w ∈ V \ {u, v}
}

is a pairwise disjoint cover of the probability space. This

implies thatPrπ∼QS
s
(V )(u ≺π v) is the desired quantity1/(1 + es(v)−s(u)), concluding the proof

of pairwise stability.

We need to work harder to prove the intuitive mode argument. Letτ, σ be two permutations onV
such that

a1 ≺τ a2 ≺τ · · · ≺τ ak ≺τ u ≺τ v ≺τ ak+1 ≺τ · · · ≺τ an−2

a1 ≺ a2 ≺σ · · · ≺σ ak ≺σ v ≺σ u ≺σ ak+1 ≺σ · · · ≺σ an−2 ,

whereV = {u, v}∪{a1, . . . , an−2}. In words,τ andσ differ on the order of exactly two consecutive
elementsu, v. Assume thats(u) > s(v) (so τ , placingu in a more favorable position thanv, is
intuitively more ”correct”). We will prove that the probability of gettingτ is strictly higher than the
probability of gettingσ from QSs. Sinceπ∗, the permutation sorting bys, can be obtained from
any permutation by a sequence of swapping incorrectly ordered (according tos) adjacent pairs, this
would prove the theorem by a standard inductive argument.

Let qτ = Prπ∼QS[π = τ ], and similarly defineqσ. To prove thatqτ > qσ we need extra notation.
Our QuickSort generative model gives rise to a random integer node-labeled ordered binary tree4

implicitly constructed as an execution side effect. This tree records the final position of the pivots
chosen in each step as follows: The labelL of the root of the tree is the rank of the pivot in the final
solution (which equals the size of the left recursion plus1). The left subtree is the tree recursively
constructed on the left, and the right subtree is the tree recursively constructed on the right with
L added to the labels of all the vertices. Clearly the resulting tree has exactlyn nodes with each
label in{1 . . . n} appearing exactly once. Letpπ,T denote the probability that QuickSort outputs a
permutationπ and (implicitly) constructs a pivot selection treeT . Let T denote the collection of
all ordered labeled binary trees with node labels in{1, . . . , n}. For T ∈ T and a nodex ∈ T let
ℓ(x) denote the integer label onx. Let Tx denote the subtree rooted byx and letℓ(Tx) denote the

4By that we mean a tree in which each node has at most oneleft child node and at most oneright child node,
and the nodes are labeled with integers.



collection of labels on those nodes. By construction, if QuickSort outputted a rankingπ with an
(implicitly constructed) treeT , then at some point the recursive call to QuickSort tookπ−1(ℓ(Tx))
as input and choseπ−1(ℓ(x)) as pivot, for any nodex of T . By a standard probability argument
(summing over a disjoint cover of events):qτ =

∑

T∈T qτ,T andqσ =
∑

T∈T qσ,T . It suffices to
show now that for any fixedT ∈ T , qτ,T > qσ,T . To computeqπ,T for π = τ, σ we proceed as
follows: At each nodex of T we will attach a numberPπ(x) which is the likelihood of the decisions
made at that level, namely, the choice of the pivot itself and the separation of the rest of the elements
to its right and left.

Pπ(x) =
1

|Tx|

∏

y∈TL(x)

Pr
QS

[π−1(ℓ(y)) ≺ π−1(ℓ(x))] ×
∏

y∈TR(x)

Pr
QS

[π−1(ℓ(x)) ≺ π−1(ℓ(y))] ,

Where|Tx| is the number of nodes inTx, TR(x) is the set of vertices in the left subtree ofx and sim-
ilarly for TL(x). The factor1/|Tx| comes from the likelihood of uniformly at random having chosen
the pivotπ−1(ℓ(x)) from the set of nodes ofTx. The first product corresponds to the random com-
parison decisions made on the elements thrown to the left, and the second to right. By construction,
pτ,T =

∏

x∈T Pτ (x) and similarlypσ,T =
∏

x∈T Pσ(x). Sinceu, v are adjacent in bothτ andσ, it is
clear that the two nodesx1, x2 ∈ T labeledτ(u) andτ(v) respectively have an ancestor-descendent
relation inT (otherwise their least common ancestor inT would have been placed between them,
violating the consecutiveness ofu andv in our construction and implyingpτ,T = qτ,T = 0). Also
recall thatσ(u) = τ(v) andσ(v) = τ(u). By our assumption thatτ andσ differ only on the order
of the adjacent elementsu, v, Pτ (x) andPσ(x) could differ only on nodesx on the path between
x1 andx2. Assume w.l.o.g. thatx1 is an ancestor ofx2, and thatx2 is a node in the left subtree of
x1. By our construction,x2 is the rightmost node5 in TL(x1). Let Y denote the set of nodes on the
path fromx1 to x2 (exclusive) inT . Let W denote the set of nodes in the left (and only) subtree
of x2, and letZ denote the set of remaining nodes inTL(x1): Z = TL(x1) \ (W ∪ Y ∪ {x2}).
Sinceτ−1(ℓ(z)) = σ−1(ℓ(z)) for all z ∈ Z we can defineelt(z) = τ−1(ℓ(z)) = σ−1(ℓ(z)) and
similarly we can correspond eachy ∈ Y with a single elementelt(y) and eachw ∈ W with a single
elementselt(w) of V . As claimed above, we only need to compare betweenPτ (x1) andPσ(x1),
betweenPτ (x2) andPσ(x2) andPτ (y) andPσ(y) for y ∈ Y . Carefully unfolding these products
node by node, we see that it suffices to notice that for ally ∈ Y , the probability of throwingelt(y)
to the left ofu (pivoting onu) times the probability of throwingv to the right ofelt(y) (pivoting
on elt(y)) as appears inside the productPσ(x1)Pσ(y) is exactly the probability of throwingelt(y)
to the left ofv (pivoting onv) times the probability of throwingu to the right ofelt(y) (pivoting on
elt(y)) as appears inside the productPτ (x1)Pτ (y). Also for all w ∈ W the probability of throw-
ing elt(w) to the left ofu (pivoting onu) times the probability of throwingelt(w) to the left ofv
(pivoting onv) appears exactly once in bothPτ (x1)Pτ (x2) andPσ(x1)Pσ(x2) (though in reversed
order). Following these observations one can be convinced by the desired result of the theorem by
noting that in virtue ofs(u) > s(v): (i) PrQS[v ≺ u] > PrQS[u ≺ v], and (ii) for all z ∈ Z,
PrQS[elt(z) ≺ u] > PrQS[elt(z) ≺ v].

5 Comparison of Models

The stochastic QuickSort model as just defined as well as Plackett-Luce share much in common,
but they are not identical for strictly more than2 elements. Both satisfy the intuitive property that
the mode of the distribution corresponding to a setV is any ranking which sorts the elements of
V in decreasings(v) = log α(v) value. The stochastic QuickSort model, however, does not suffer
from the asymmetry problem which is often stated as a criticism of Plackett-Luce. Indeed, the
distributionsQSs(V ) has the following property: If we draw fromQSs(V ) and flip the resulting
permutation, the resulting distribution isQS−s(V ). This property does not hold in general for
Plackett-Luce, and hence serves as proof of their nonequivalence.

Assume we want to fits in the MLE sense by drawing random permutations fromQSs(V ). This
seems to be difficult due to the unknown choice of pivot. On the other hand, the log-likelihood
function corresponding to Plackett-Luce is globally concave in the values of the functions on V ,
and hence a global maximum can be efficiently found. This also holds true in a generalized linear
model, in whichs(v) is given as the dot product of a feature vectorφ(v) with an unknown weight

5The rightmost node ofT is the root if it has no right descendent, or the rightmost node of its right subtree.



vector which we estimate (as done in [10] in the context of predicting demand for electric cars).
Hence, for the purpose of learning given full permutations of strictly more than two elements, the
Plackett-Luce model is easier to work with.

In practical IR settings, however, it is rare that training data is obtained as full permutations: such
a task is tiresome. In most applications, the observables used for training are in the form of bi-
nary response vectors (eitherrelevantor irrelevant for each alternative) or comparison of pairs of
alternatives (eitherA betteror B bettergiven A,B). For the latter, Plackett-Luce is identical to Quick-
Sort, and hence efficient fitting of parameters is easy (using logistic regression). As for the former,
the process of generating a binary response vector can be viewed as the task performed at a single
QuickSort recursive level. It turns out that by defining a nuisance parameter to represent the values
of an unknown pivot, MLE estimation can be performed efficiently and exactly [2].
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