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Abstract

We analyse matching pursuit for kernel principal components analysis (KPCA)
by proving that the sparse subspace it produces is a sample compression scheme.
We show that this bound is tighter than the KPCA bound of Shawe-Taylor et al
[7] and highly predictive of the size of the subspace needed to capture most of the
variance in the data. We analyse a second matching pursuit algorithm called ker-
nel matching pursuit (KMP) which does not correspond to a sample compression
scheme. However, we give a novel bound that views the choice of subspace of the
KMP algorithm as a compression scheme and hence provide a VC bound to upper
bound its future loss. Finally we describe how the same bound can be applied to
other matching pursuit related algorithms.

1 Introduction

Matching pursuit refers to a family of algorithms that generate a set of bases for learning in a greedy
fashion. A good example of this approach is the matching pursuit algorithm [4]. Viewed from this
angle sparse kernel principal components analysis (PCA) looks for a small number of kernel ba-
sis vectors in order to maximise the Rayleigh quotient. The algorithm was proposed by [8]1 and
motivated by matching pursuit [4], but to our knowledge sparse PCA has not been analysed theo-
retically. In this paper we show that sparse PCA (KPCA) is a sample compression scheme and can
be bounded using the size of the compression set [3, 2] which is the set of training examples used
in the construction of the KPCA subspace. We also derive a more general framework for this algo-
rithm that uses the principle “maximise Rayleigh quotient and deflate”. A related algorithm called
kernel matching pursuit (KMP) [10] is a sparse version of least squares regression but without the
property of being a compression scheme. However, we use the number of basis vectors constructed
by KMP to help upper bound the loss of the KMP algorithm using the VC dimension. This bound
is novel in that it is applied in an empirically chosen low dimensional hypothesis space and applies
independently of the actual dimension of the ambient feature space (including one constructed from
the Gaussian kernel). In both cases we illustrate the use of the bounds on real and/or simulated data.

Finally we also show that the KMP bound can be applied to a sparse kernel canonical correlation
analysis that uses a similar matching pursuit technique. We do not describe the algorithm here due to
space constraints and only concentrate on theoretical results. We begin with preliminary definitions.

2 Preliminary definitions

Throughout the paper we consider learning from samples of data. For the regression section the
data is a sample S = {(xi, yi)}mi=1 of input-output pairs drawn from a joint space X × Y where
x ∈ Rn and y ∈ R. For the principal components analysis the data is a sample S = {xi}mi=1 of

1The algorithm was proposed as a low rank kernel approximation – however the algorithm turns out to be a
sparse kernel PCA (to be shown).
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multivariate examples drawn from a space X . For simplicity we always assume that the examples
are already projected into the kernel defined feature space, so that the kernel matrix K has entries
K[i, j] = 〈xi,xj〉. The notation K[i, :] and K[:, i] will denote the ith row and ith column of the
matrix K, respectively. When using a set of indices i = {i1, . . . , ik} (say) then K[i, i] denotes the
square matrix defined solely by the index set i. The transpose of a matrix X or vector x is denoted
by X′ or x′ respectively. The input data matrix X will contain examples as row vectors.

For analysis purposes we assume that the training examples are generated i.i.d. according to an un-
known but fixed probability distribution that also governs the generation of the test data. Expectation
over the training examples (empirical average) is denoted by Ê [·], while expectation with respect to
the underlying distribution is denoted E [·]. For the sample compression analysis the compression
function Λ induced by a sample compression learning algorithm A on training set S is the map
Λ : S 7−→ Λ(S) such that the compression set Λ(S) ⊂ S is returned by A. A reconstruction func-
tion Φ is a mapping from a compression set Λ(S) to a set F of functions Φ : Λ(S) 7−→ F . LetA(S)
be the function output by learning algorithm A on training set S. Therefore, a sample compression
scheme is a reconstruction function Φ mapping a compression set Λ(S) to some set of functions F
such that A(S) = Φ(Λ(S)). If F is the set of Boolean-valued or Real-valued functions then the
sample compression scheme is said to be a classification or regression algorithm, respectively.

2.1 Sparse kernel principal components analysis

Principal components analysis [6] can be expressed as the following maximisation problem:

max
w

w′X′Xw
w′w

, (1)

where w is the weight vector. In a sparse KPCA algorithm we would like to find a sparsely repre-
sented vector w = X[i, :]′α̃, that is a linear combination of a small number of training examples
indexed by vector i. Therefore making this substitution into Equation (1) we have the following
sparse dual PCA maximisation problem,

max
α̃

α̃′X[i, :]X′XX[i, :]′α̃
α̃′X[i, :]X[i, :]′α̃

,

which is equivalent to sparse kernel PCA (SKPCA) with sparse kernel matrix K[:, i]′ = X[i, :]X′,

max
α̃

α̃′K[:, i]′K[:, i]α̃
α̃′K[i, i]α̃

,

where α̃ is a sparse vector of length k = |i|. Clearly maximising the quantity above will lead to
the maximisation of the generalised eigenvalues corresponding to α̃ – and hence a sparse subset of
the original KPCA problem. We would like to find the optimal set of indices i. We proceed in a
greedy manner (matching pursuit) in much the same way as [8]. The procedure involves choosing
basis vectors that maximise the Rayleigh quotient without the set of eigenvectors. Choosing basis
vectors iteratively until some pre-specified number of k vectors are chosen. An orthogonalisation
of the kernel matrix at each step ensures future potential basis vectors will be orthogonal to those
already chosen. The quotient to maximise is:

max ρi =
e′iK

2ei
e′iKei

, (2)

where ei is the ith unit vector. After this maximisation we need to orthogonalise (deflate) the kernel
matrix to create a projection into the space orthogonal to the basis vectors chosen to ensure we find
the maximum variance of the data in the projected space. The deflation step can be carried out as
follows. Let τ = K[:, i] = XX′ei where ei is the ith unit vector. We know that primal PCA
deflation can be carried out with respect to the features in the following way:

X̂′ =
(
I− uu′

u′u

)
X′,

where u is the projection directions defined by the chosen eigenvector and X̂ is the deflated matrix.
However, in sparse KPCA, u = X′ei because the projection directions are simply the examples in
X. Therefore, for sparse KPCA we have:

X̂X̂′ = X
(
I− uu′

u′u

)(
I− uu′

u′u

)
X′ = XX′ − XX′eie′iXX′

e′iXX′ei
= K− K[:, i]K[:, i]′

K[i, i]
.
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Therefore, given a kernel matrix K the deflated kernel matrix K̂ can be computed as follows:

K̂ = K− ττ ′

K[ik, ik]
(3)

where τ = K[:, ik] and ik denotes the latest element in the vector i. The algorithm is presented
below in Algorithm 1 and we use the notation K.2 to denote component wise squaring. Also,
division of vectors are assumed to be component wise.

Algorithm 1: A matching pursuit algorithm for kernel principal components analysis (i.e., sparse
KPCA)
Input: Kernel K, sparsity parameter k > 0.

1: initialise i = [ ]
2: for j = 1 to k do
3: Set ij to index of max

{
(K.2)′1
diag{K}

}
4: set τ = K[:, ij ] to deflate kernel matrix like so: K = K− ττ ′

K[ij ,ij ]

5: end for
6: Compute K̃ using i and Equation (5)

Output: Output sparse matrix approximation K̃

This algorithm is presented in Algorithm 1 and is equivalent to the algorithm proposed by [8].
However, their motivation comes from the stance of finding a low rank matrix approximation of
the kernel matrix. They proceed by looking for an approximation K̃ = K[:, i]T for a set i such
that the Frobenius norm between the trace residuals tr{K −K[:, i]T} = tr{K − K̃} is minimal.
Their algorithm finds the set of indices i and the projection matrix T . However, the use of T in
computing the low rank matrix approximation seems to imply the need for additional information
from outside of the chosen basis vectors in order to construct this approximation. However, we
show that a projection into the space defined solely by the chosen indices is enough to reconstruct
the kernel matrix and does not require any extra information.2 The projection is the well known
Nyström method [11].

An orthogonal projection Pi(φ(xj)) of a feature vector φ(xj) into a subspace defined only by the
set of indices i can be expressed as: Pi(xj) = X̃′(X̃X̃′)−1X̃φ(xj), where X̃ = X[i, :] are the i
training examples from data matrix X. It follows that,

Pi(xj)′Pi(xj) = φ(xj)′X̃′(X̃X̃′)−1X̃X̃′(X̃X̃′)−1X̃φ(xj)

= K[i, j]K[i, i]−1K[j, i], (4)

with K[i, j] denoting the kernel entries between the index set i and the feature vector φ(xj). Giving
us the following projection into the space defined by i:

K̃ = K[:, i]K[i, i]−1K[:, i]′. (5)

Claim 1. The sparse kernel principal components analysis algorithm is a compression scheme.

Proof. We can reconstruct the projection from the set of chosen indices i using Equation (4). Hence,
i forms a compression set.

We now prove that Smola and Schölkopf’s low rank matrix approximation algorithm [8] (without
sub-sampling)3 is equivalent to sparse kernel principal components analysis presented in this paper
(Algorithm 1).

Theorem 1. Without sub-sampling, Algorithm 1 is equivalent to Algorithm 2 of [8].

2In their book, Smola and Schölkopf redefine their kernel approximation in the same way as we have done
[5], however they do not make the connection that it is a compression scheme (see Claim 1).

3We do not use the “59-trick” in our algorithm – although it’s inclusion would be trivial and would result in
the same algorithm as in [8]
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Proof. Let K be the kernel matrix and let K[:, i] be the ith column of the kernel matrix. Assume X is
the input matrix containing rows of vectors that have already been mapped into a higher dimensional
feature space using φ such that X = (φ(x1), . . . , φ(xm))′. Smola and Schölkopf [8] state in section
4.2 of their paper that their algorithm 2 finds a low rank approximation of the kernel matrix such that
it minimises the Frobenius norm ‖X−X̃‖2Frob = tr{K−K̃}where X̃ is the low rank approximation
of X. Therefore, we need to prove that Algorithm 1 also minimises this norm.

We would like to show that the maximum reduction in the Frobenius norm between the kernel K
and its projection K̃ is in actual fact the choice of basis vectors that maximise the Rayleigh quotient
and deflate according to Equation (3). At each stage we deflate by,

K = K− ττ ′

K[ik, ik]
.

The trace tr{K} =
∑m
i=1 K[i, i] is the sum of the diagonal elements of matrix K. Therefore,

tr{K} = tr{K} − tr{ττ ′}
K[ik, ik]

= tr{K} − tr{τ ′τ}
K[ik, ik]

= tr{K} − K2[ik, ik]
K[ik, ik]

.

The last term of the final equation corresponds exactly to the Rayleigh quotient of Equation (2).
Therefore the maximisation of the Rayleigh quotient does indeed correspond to the maximum re-
duction in the Frobenius norm between the approximated matrix X̃ and X.

2.2 A generalisation error bound for sparse kernel principal components analysis

We use the sample compression framework of [3] to bound the generalisation error of the sparse
KPCA algorithm. Note that kernel PCA bounds [7] do not use sample compression in order to
bound the true error. As pointed out above, we use the simple fact that this algorithm can be viewed
as a compression scheme. No side information is needed in this setting and a simple application
of [3] is all that is required. That said the usual application of compression bounds has been for
classification algorithms, while here we are considering a subspace method.
Theorem 2. LetAk be any learning algorithm having a reconstruction function that maps compres-
sion sets to subspaces. Let m be the size of the training set S, let k be the size of the compression
set, let Êm−k[`(Ak(S))] be the residual loss between the m − k points outside of the compression
set and their projections into a subspace, then with probability 1− δ, the expected loss E [`(Ak(S))]
of algorithm Ak given any training set S can be bounded by,

E [`(Ak(S))] ≤ min
1≤t≤k

[
Êm−t[`(At(S))] +

√
R

2(m− t)

[
t ln
(em
t

)
+ ln

(
2m
δ

)]]
,

where `(·) ≥ 0 and R = sup `(·).

Proof. Consider the case where we have a compression set of size k. Then we have
(
m
k

)
different

ways of choosing the compression set. Given δ confidence we apply Hoeffding’s bound to them−k
points not in the compression set once for each choice by setting it equal to δ/

(
m
k

)
. Solving for ε

gives us the theorem when we further apply a factor 1/m to δ to ensure one application for each
possible choice of k. The minimisation over t chooses the best value making use of the fact that
using more dimensions can only reduce the expected loss on test points.

We now consider the application of the above bound to sparse KPCA. Let the corresponding loss
function be defined as

`(At(S))(x) = ‖x− Pit(x)‖2,
where x is a test point and Pit(x) its projection into the subspace determined by the set it of indices
returned byAt(S). Thus we can give a more specific loss bound in the case where we use a Gaussian
kernel in the sparse kernel principal components analysis.
Corollary 1 (Sample compression bound for sparse KPCA). Using a Gaussian kernel and all of the
definitions from Theorem 2, we get the following bound:

E [`(A(S))] ≤ min
1≤t≤k

[
1

m− t

m−t∑
i=1

‖xi − Pit(xi)‖2 +

√
1

2(m− t)

[
t ln
(em
t

)
+ ln

(
2m
δ

)]]
,
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Note thatR corresponds to the smallest radius of a ball that encloses all of the training points. Hence,
for the Gaussian kernel R equals 1. We now compare the sample compression bound proposed
above for sparse KPCA with the kernel PCA bound introduced by [7]. The left hand side of Figure 1
shows plots for the test error residuals (for the Boston housing data set) together with its upper
bounds computed using the bound of [7] and the sample compression bound of Corollary 1. The
sample compression bound is much tighter than the KPCA bound and also non-trivial (unlike the
KPCA bound).

The sample compression bound is at its lowest point after 43 basis vectors have been added. We
speculate that at this point the “true” dimensions of the data have been found and that all other di-
mensions correspond to “noise”. This corresponds to the point at which the plot of residual becomes
linear, suggesting dimensions with uniform noise. We carry out an extra toy experiment to help
assess whether or not this is true and to show that the sample compression bound can help indicate
when the principal components have captured most of the actual data. The right hand side plot of
Figure 1 depicts the results of a toy experiment where we randomly sampled 1000 examples with
450 dimensions from a Gaussian distribution with zero mean and unit variance. We then ensured
that 50 dimensions contained considerably larger eigenvalues than the remaining 400. From the
right plot of Figure 1 we see that the test residual keeps dropping at a constant rate after 50 basis
vectors have been added. The compression bound picks 46 dimensions with the largest eigenvalues,
however, the KPCA bound of [7] is much more optimistic and is at its lowest point after 30 basis
vectors, suggesting erroneously that SKPCA has captured most of the data in 30 dimensions. There-
fore, as well as being tighter and non-trivial, the compression bound is much better at predicting the
best choice for the number of dimensions to use with sparse KPCA. Note that we carried out this
experiment without randomly permuting the projections into a subspace because SKPCA is rotation
invariant and will always choose the principal components with the largest eigenvalues.
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Figure 1: Bound plots for sparse kernel PCA comparing the sample compression bound proposed
in this paper and the already existing PCA bound. The plot on the left hand side is for the Boston
Housing data set and the plot on the right is for a Toy experiment with 1000 training examples (and
450 dimensions) drawn randomly from a Gaussian distribution with zero mean and unit variance.

3 Kernel matching pursuit

Unfortunately, the theory of the last section, where we gave a sample compression bound for SKPCA
cannot be applied to KMP. This is because the algorithm needs information from outside of the
compression set in order to construct its regressors and make predictions. However, we can use
a VC argument together with a sample compression trick in order to derive a bound for KMP in
terms of the level of sparsity achieved, by viewing the sparsity achieved in the feature space as a
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compression scheme. Please note that we do not derive or reproduce the KMP algorithm here and
advise the interested reader to read the manuscript of [10] for the algorithmic details.

3.1 A generalisation error bound for kernel matching pursuit

VC bounds have commonly been used to bound learning algorithms whose hypothesis spaces are
infinite. One problem with these results is that the VC-dimension can sometimes be infinite even in
cases where learning is successful (e.g., the SVM). However, in this section we can avoid this issue
by making use of the fact that the VC-dimension of the set of linear threshold functions is simply the
dimensionality of the function class. In the kernel matching pursuit algorithm this translates directly
into the number of basis vectors chosen and hence a standard VC argument.

The natural loss function for KMP is regression – however in order to use standard VC bounds we
map the regression loss into a classification loss in the following way.

Definition 1. Let S ∼ D be a regression training sample generated iid from a fixed but unknown
probability distribution D. Given the error `(f) = |f(x) − y| for a regression function f between
training example x and regression output y we can define, for some fixed positive scalar α ∈ R, the
corresponding true classification loss (error) as

`α(f) = Pr
(x,y)∼D

{|f(x)− y| > α} .

Similarly, we can define the corresponding empirical classification loss as

ˆ̀
α(f) = `Sα(f) = Pr

(x,y)∼S
{|f(x)− y| > α} = E(x,y)∼S {I(|f(x)− y| > α)} ,

where I is the indicator function and S is suppressed when clear from context.

Now that we have a loss function that is binary we can make a simple sample compression argument,
that counts the number of possible subspaces, together with a traditional VC style bound to upper
bound the expected loss of KMP. To help keep the notation consistent with earlier definitions we
will denote the indices of the chosen basis vectors by i. The indices of i are chosen from the training
sample S and we denote Si to be those samples indexed by the vector i. Given these definitions and
the bound of Vapnik and Chervonenkis [9] we can upper bound the true loss of KMP as follows.

Theorem 3. Fix α ∈ R, α > 0. LetA be the regression algorithm of KMP,m the size of the training
set S and k the size of the chosen basis vectors i. Let S be reordered so that the last m − k points
are outside of the set i and let t =

∑m
i=m−k I(|f(xi) − yi| > α) be the number of errors for those

points in S r Si. Then with probability 1− δ over the generation of the training set S the expected
loss E [`(·)] of algorithm A can be bounded by,

E [`(A(S))] ≤ 2
m− k − t

[
(k + 1) log

(
4e(m− k − t)

k + 1

)
+ k log

(em
k

)
+t log

(
e(m− k)

t

)
+ log

(
2m2

δ

)]
.

Proof. First consider a fixed size k for the compression set and number of errors t. Let S1 =
{xi1 , . . . ,xik} be the set of k training points chosen by the KMP regressor, S2 = {xik+1 , . . . ,xik+t

}
the set of points erred on in training and S̄ = S r (S1 ∪ S2) the points outside of the compression
set (S1) and training error set (S2). Suppose that the first k points form the compression set and
the next t are the errors of the KMP regressor. Since the remaining m − k − t points S̄ are drawn
independently we can apply the VC bound [9] to the `α loss to obtain the bound

Pr
{
S̄ : `S̄α(f) = 0, `α(f) > ε

}
≤ 2

(
4e(m− k − t)

k + 1

)k+1

2−ε(m−k−t)/2,

where we have made use of a bound on the number of dichotomies that can be generated by parallel

hyperplanes [1], which is
∑k+d−1
i=0

(
md−1
i

)
which is ≤

(
e(md−1)
k+d−1

)k+d−1

, where d is the number
of parallel hyperplanes and equals 2 in our case. We now need to consider all of the ways that the
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k basis vectors and t error points might have occurred and apply the union bound over all of these
possibilities. This gives the bound

Pr
{
S : ∃ f ∈ span{S1} s.t. `S2

α (f) = 1, `S̄α(f) = 0, `α(f) > ε
}

≤
(
m

k

)(
m− k
t

)
2
(

4e(m− k − t)
k + 1

)k+1

2−ε(m−k−t)/2. (6)

Finally we need to consider all possible choices of the values of k and t. The number of these
possibilities is clearly upper bounded by m2. Setting m2 times the rhs of (6) equal to δ and solving
for ε gives the result.

This is the first upper bound on the generalisation error for KMP that we are aware of and as such
we cannot compare the bound against any others. Figure 2 plots the KMP test error against the loss
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Figure 2: Plot of KMP bound against its test error. We used 450 examples for training and the 56
for testing. Bound was scaled down by a factor of 5.

bound given by Theorem 3. The bound value has been scaled by 5 in order to get the correct pictorial
representation of the two plots. Figure 2 shows its minima directly coincides with the lowest test
error (after 17 basis vectors). This motivates a training algorithm for KMP that would use the bound
as the minimisation criteria and stop once the bound fails to become smaller. Hence, yielding a more
automated training procedure.

4 Extensions

The same approach that we have used for bounding the performance of kernel matching pursuit can
be used to bound a matching pursuit version of kernel canonical correlation analysis (KCCA) [6].
By choosing the basis vectors greedily to optimise the quotient:

max
i
ρi =

e′iKxKyei√
e′iK2

xeie′iK2
yei

,

and proceeding in the same manner as Algorithm 1 by deflating after each pair of basis vectors are
chosen, we create a sparsely defined subspace within which we can run the standard CCA algorithm.
This again means that the overall algorithm fails to be a compression scheme as side information is
required. However, we can use the same approach described for KMP to bound the expected fit of
the projections from the two views. The resulting bound has the following form.

Theorem 4. Fix α ∈ R, α > 0. LetA be the SKCCA algorithm,m the size of the paired training sets
SX×Y and k the cardinality of the set i of chosen basis vectors. Let SX×Y be reordered so that the
last m−k paired data points are outside of the set i and define t =

∑m
i=m−k I(|fx(xi)− fy(yi)| >
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α) to be the number of errors for those points in SX×Y rSX×Yi , where fx is the projection function
of the X view and fy the projection function of the Y view. Then with probability 1 − δ over the
generation of the paired training sets SX×Y the expected loss E [`(·)] of algorithmA can be bounded
by,

E [`(A(S))] ≤ 2
m− k − t

[
(k + 1) log

(
4e(m− k − t)

k + 1

)
+ k log

(em
k

)
+t log

(
e(m− k)

t

)
+ log

(
2m2

δ

)]
.

5 Discussion

Matching pursuit is a meta-scheme for creating learning algorithms for a variety of tasks. We have
presented novel techniques that make it possible to analyse this style of algorithm using a combina-
tion of compression scheme ideas and more traditional learning theory. We have shown how sparse
KPCA is in fact a compression scheme and demonstrated bounds that are able to accurately guide di-
mension selection in some cases. We have also used the techniques to bound the performance of the
kernel matching pursuit (KMP) algorithm and to reinforce the generality of the approach indicated
and how the approach can be extended to a matching pursuit version of KCCA.

The results in this paper imply that the performance of any learning algorithm from the matching
pursuit family can be analysed using a combination of sparse and traditional learning bounds. The
bounds give a general theoretical justification of the framework and suggest potential applications
of matching pursuit methods to other learning tasks such as novelty detection, ranking and so on.
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