
Deflation Methods for Sparse PCA

Lester Mackey
Computer Science Division

University of California, Berkeley
Berkeley, CA 94703

Abstract

In analogy to the PCA setting, the sparse PCA problem is often solved by iter-
atively alternating between two subtasks: cardinality-constrained rank-one vari-
ance maximization and matrix deflation. While the former has received a great
deal of attention in the literature, the latter is seldom analyzed and is typically
borrowed without justification from the PCA context. In this work, we demon-
strate that the standard PCA deflation procedure is seldom appropriate for the
sparse PCA setting. To rectify the situation, we first develop several deflation al-
ternatives better suited to the cardinality-constrained context. We then reformulate
the sparse PCA optimization problem to explicitly reflect the maximumadditional
variance objective on each round. The result is a generalized deflation procedure
that typically outperforms more standard techniques on real-world datasets.

1 Introduction

Principal component analysis (PCA) is a popular change of variables technique used in data com-
pression, predictive modeling, and visualization. The goal of PCA is to extract several principal
components, linear combinations of input variables that together best account for the variance in a
data set. Often, PCA is formulated as an eigenvalue decomposition problem: each eigenvector of
the sample covariance matrix of a data set corresponds to theloadingsor coefficients of a principal
component. A common approach to solving this partial eigenvalue decomposition is to iteratively
alternate between two subproblems: rank-one variance maximization and matrix deflation. The first
subproblem involves finding the maximum-variance loadings vector for a given sample covariance
matrix or, equivalently, finding the leading eigenvector of the matrix. The second involves modifying
the covariance matrix to eliminate the influence of that eigenvector.

A primary drawback of PCA is its lack of sparsity. Each principal component is a linear combination
of all variables, and the loadings are typically non-zero. Sparsity is desirable as it often leads to
more interpretable results, reduced computation time, and improved generalization. Sparse PCA
[8, 3, 16, 17, 6, 18, 1, 2, 9, 10, 12] injects sparsity into the PCA process by searching for “pseudo-
eigenvectors”, sparse loadings that explain a maximal amount variance in the data.

In analogy to the PCA setting, many authors attempt to solve the sparse PCA problem by itera-
tively alternating between two subtasks: cardinality-constrained rank-one variance maximization
and matrix deflation. The former is an NP-hard problem, and a variety of relaxations and approx-
imate solutions have been developed in the literature [1, 2, 9, 10, 12, 16, 17]. The latter subtask
has received relatively little attention and is typically borrowed without justification from the PCA
context. In this work, we demonstrate that the standard PCA deflation procedure is seldom appro-
priate for the sparse PCA setting. To rectify the situation, we first develop several heuristic deflation
alternatives with more desirable properties. We then reformulate the sparse PCA optimization prob-
lem to explicitly reflect the maximumadditionalvariance objective on each round. The result is a
generalized deflation procedure that typically outperforms more standard techniques on real-world
datasets.
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The remainder of the paper is organized as follows. In Section2 we discuss matrix deflation as it re-
lates to PCA and sparse PCA. We examine the failings of typical PCA deflation in the sparse setting
and develop several alternative deflation procedures. In Section 3, we present a reformulation of the
standard iterative sparse PCA optimization problem and derive a generalized deflation procedure
to solve the reformulation. Finally, in Section 4, we demonstrate the utility of our newly derived
deflation techniques on real-world datasets.

Notation

I is the identity matrix. S
p
+ is the set of all symmetric, positive semidefinite matrices inR

p×p.
Card(x) represents the cardinality of or number of non-zero entries in the vectorx.

2 Deflation methods

A matrix deflationmodifies a matrix to eliminate the influence of a given eigenvector, typically by
setting the associated eigenvalue to zero (see [14] for a more detailed discussion). We will first
discuss deflation in the context of PCA and then consider its extension to sparse PCA.

2.1 Hotelling’s deflation and PCA

In the PCA setting, the goal is to extract ther leading eigenvectors of the sample covariance matrix,
A0 ∈ S

p
+, as its eigenvectors are equivalent to the loadings of the firstr principal components.

Hotelling’s deflation method [11] is a simple and popular technique for sequentially extracting these
eigenvectors. On thet-th iteration of the deflation method, we first extract the leading eigenvector
of At−1,

xt = argmax
x:xT x=1

xT At−1x (1)

and we then use Hotelling’s deflation to annihilatext:

At = At−1 − xtx
T
t At−1xtx

T
t . (2)

The deflation step ensures that thet + 1-st leading eigenvector ofA0 is the leading eigenvector of
At. The following proposition explains why.

Proposition 2.1. If λ1 ≥ . . . ≥ λp are the eigenvalues ofA ∈ S
p
+, x1, . . . , xp are the corresponding

eigenvectors, and̂A = A− xjx
T
j Axjx

T
j for somej ∈ 1, . . . , p, thenÂ has eigenvectorsx1, . . . , xp

with corresponding eigenvaluesλ1, . . . , λj−1, 0, λj+1, . . . , λp.

PROOF.

Âxj = Axj − xjx
T
j Axjx

T
j xj = Axj − xjx

T
j Axj = λjxj − λjxj = 0xj .

Âxi = Axi − xjx
T
j Axjx

T
j xi = Axi − 0 = λixi,∀i 6= j.

Thus, Hotelling’s deflation preserves all eigenvectors of a matrix and annihilates a selected eigen-
value while maintaining all others. Notably, this implies that Hotelling’s deflation preserves positive-
semidefiniteness. In the case of our iterative deflation method, annihilating thet-th leading eigen-
vector ofA0 renders thet + 1-st leading eigenvector dominant in the next round.

2.2 Hotelling’s deflation and sparse PCA

In the sparse PCA setting, we seekr sparse loadings which together capture the maximum amount
of variance in the data. Most authors [1, 9, 16, 12] adopt the additional constraint that the loadings
be produced in a sequential fashion. To find the first such ”pseudo-eigenvector”, we can consider a
cardinality-constrained version of Eq. (1):

x1 = argmax
x:xT x=1,Card(x)≤k1

xT A0x. (3)
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That leaves us with the question of how to best extract subsequent pseudo-eigenvectors. A common
approach in the literature [1, 9, 16, 12] is to borrow the iterative deflation method of the PCA setting.
Typically, Hotelling’s deflation is utilized by substituting an extracted pseudo-eigenvector for a true
eigenvector in the deflation step of Eq. (2). This substitution, however, is seldom justified, for the
properties of Hotelling’s deflation, discussed in Section 2.1, depend crucially on the use of a true
eigenvector.

To see what can go wrong when Hotelling’s deflation is applied to a non-eigenvector, consider the
following example.

Example. Let C =

(

2 1
1 1

)

, a2 × 2 matrix. The eigenvalues ofC areλ1 = 2.6180 andλ2 =

.3820. Let x = (1, 0)T , a sparse pseudo-eigenvector, andĈ = C − xxT CxxT , the corresponding

deflated matrix. Then̂C =

(

0 1
1 1

)

with eigenvaluesλ̂1 = 1.6180 and λ̂2 = −.6180. Thus,

Hotelling’s deflation does not in general preserve positive-semidefiniteness when applied to a non-
eigenvector.

ThatSp
+ is not closed under pseudo-eigenvector Hotelling’s deflation is a serious failing, for most

iterative sparse PCA methods assume a positive-semidefinite matrix on each iteration. A second,
related shortcoming of pseudo-eigenvector Hotelling’s deflation is its failure to render a pseudo-
eigenvector orthogonal to a deflated matrix. IfA is our matrix of interest,x is our pseudo-eigenvector
with varianceλ = xT Ax, and Â = A − xxT AxxT is our deflated matrix, then̂Ax = Ax −
xxT AxxT x = Ax − λx is zero iff x is a true eigenvector. Thus, even though the “variance” of
x w.r.t. Â is zero (xT Âx = xT Ax − xT xxT AxxT x = λ − λ = 0), “covariances” of the form
yT Âx for y 6= x may still be non-zero. This violation of the Cauchy-Schwarz inequality betrays a
lack of positive-semidefiniteness and may encourage the reappearance ofx as a component of future
pseudo-eigenvectors.

2.3 Alternative deflation techniques

In this section, we will attempt to rectify the failings of pseudo-eigenvector Hotelling’s deflation by
considering several alternative deflation techniques better suited to the sparse PCA setting. Note
that any deflation-based sparse PCA method (e.g. [1, 9, 16, 12]) can utilize any of the deflation
techniques discussed below.

2.3.1 Projection deflation

Given a data matrixY ∈ R
n×p and an arbitrary unit vector inx ∈ R

p, an intuitive way to remove
the contribution ofx from Y is to projectY onto the orthocomplement of the space spanned byx:
Ŷ = Y (I − xxT ). If A is the sample covariance matrix ofY , then the sample covariance ofŶ is
given byÂ = (I − xxT )A(I − xxT ), which leads to our formulation for projection deflation:

Projection deflation

At = At−1 − xtx
T
t At−1 −At−1xtx

T
t + xtx

T
t At−1xtx

T
t = (I − xtx

T
t )At−1(I − xtx

T
t ) (4)

Note that whenxt is a true eigenvector ofAt−1 with eigenvalueλt, projection deflation reduces to
Hotelling’s deflation:

At = At−1 − xtx
T
t At−1 −At−1xtx

T
t + xtx

T
t At−1xtx

T
t

= At−1 − λtxtx
T
t − λtxtx

T
t + λtxtx

T
t

= At−1 − xtx
T
t At−1xtx

T
t .

However, in the general case, whenxt is not a true eigenvector, projection deflation maintains the
desirable properties that were lost to Hotelling’s deflation. For example, positive-semidefiniteness
is preserved:

∀y, yT Aty = yT (I − xtx
T
t )At−1(I − xtx

T
t )y = zT At−1z

wherez = (I − xtx
T
t )y. Thus, ifAt−1 ∈ S

p
+, so isAt. Moreover,At is rendered left and right

orthogonal toxt, as(I−xtx
T
t )xt = xt−xt = 0 andAt is symmetric. Projection deflation therefore

annihilates all covariances withxt: ∀v, vT Atxt = xT
t Atv = 0.
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2.3.2 Schur complement deflation

Since our goal in matrix deflation is to eliminate the influence, as measured through variance and
covariances, of a newly discovered pseudo-eigenvector, it is reasonable to consider the conditional
variance of our data variables given a pseudo-principal component. While this conditional variance
is non-trivial to compute in general, it takes on a simple closed form when the variables are normally
distributed. Letx ∈ R

p be a unit vector andW ∈ R
p be a Gaussian random vector, representing the

joint distribution of the data variables. IfW has covariance matrixΣ, then(W,Wx) has covariance

matrix V =

(

Σ Σx
xT Σ xT Σx

)

, andV ar(W |Wx) = Σ − ΣxxT Σ
xT Σx

wheneverxT Σx 6= 0 [15].

That is, the conditional variance is the Schur complement of the vector variancexT Σx in the full
covariance matrixV . By substituting sample covariance matrices for their population counterparts,
we arrive at a new deflation technique:

Schur complement deflation

At = At−1 −
At−1xtx

T
t At−1

xT
t At−1xt

(5)

Schur complement deflation, like projection deflation, preserves positive-semidefiniteness. To

see this, supposeAt−1 ∈ S
p
+. Then, ∀v, vT Atv = vT At−1v −

vT At−1xtx
T

t
At−1v

xT

t
At−1xt

≥ 0 as

vT At−1vxT
t At−1xt − (vT At−1xt)

2 ≥ 0 by the Cauchy-Schwarz inequality andxT
t At−1xt ≥ 0

asAt−1 ∈ S
p
+.

Furthermore, Schur complement deflation rendersxt left and right orthogonal toAt, sinceAt is

symmetric andAtxt = At−1xt −
At−1xtx

T

t
At−1xt

xT

t
At−1xt

= At−1xt −At−1xt = 0.

Additionally, Schur complement deflation reduces to Hotelling’s deflation whenxt is an eigenvector
of At−1 with eigenvalueλt 6= 0:

At = At−1 −
At−1xtx

T
t At−1

xT
t At−1xt

= At−1 −
λtxtx

T
t λt

λt

= At−1 − xtx
T
t At−1xtx

T
t .

While we motivated Schur complement deflation with a Gaussianity assumption, the technique ad-
mits a more general interpretation as a column projection of a data matrix. SupposeY ∈ R

n×p

is a mean-centered data matrix,x ∈ R
p has unit norm, and̂Y = (I − Y xxT Y T

||Y x||2 )Y , the projection
of the columns ofY onto the orthocomplement of the space spanned by the pseudo-principal com-
ponent,Y x. If Y has sample covariance matrixA, then the sample covariance ofŶ is given by
Â = 1

n
Y T (I − Y xxT Y T

||Y x||2 )T (I − Y xxT Y T

||Y x||2 )Y = 1
n
Y T (I − Y xxT Y T

||Y x||2 )Y = A− AxxT A
xT Ax

.

2.3.3 Orthogonalized deflation

While projection deflation and Schur complement deflation address the concerns raised by per-
forming a single deflation in the non-eigenvector setting, new difficulties arise when we attempt to
sequentially deflate a matrix with respect to aseriesof non-orthogonal pseudo-eigenvectors.

Whenever we deal with a sequence of non-orthogonal vectors, we must take care to distinguish
between the variance explained by a vector and theadditional variance explained, given all pre-
vious vectors. These concepts are equivalent in the PCA setting, as true eigenvectors of a matrix
are orthogonal, but, in general, the vectors extracted by sparse PCA will not be orthogonal. The
additional variance explained by thet-th pseudo-eigenvector,xt, is equivalent to the variance ex-
plained by the component ofxt orthogonal to the space spanned by all previous pseudo-eigenvectors,
qt = xt−Pt−1xt, wherePt−1 is the orthogonal projection onto the space spanned byx1, . . . , xt−1.
On each deflation step, therefore, we only want to eliminate the variance associated withqt. Anni-
hilating the full vectorxt will often lead to “double counting” and could re-introduce components
parallel to previously annihilated vectors. Consider the following example:
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Example. Let C0 = I. If we apply projection deflation w.r.t.x1 = (
√

2
2 ,

√
2

2 )T , the result is

C1 =

(

1
2 − 1

2
− 1

2
1
2

)

, andx1 is orthogonal toC1. If we next apply projection deflation toC1 w.r.t.

x2 = (1, 0)T , the result,C2 =

(

0 0
0 1

2

)

, is no longer orthogonal tox1.

The authors of [12] consider this issue of non-orthogonality in the context of Hotelling’s deflation.
Their modified deflation procedure is equivalent to Hotelling’s deflation (Eq. (2)) fort = 1 and can
be easily expressed in terms of a running Gram-Schmidt decomposition fort > 1:

Orthogonalized Hotelling’s deflation (OHD)

qt =
(I −Qt−1Q

T
t−1)xt

∣

∣

∣

∣(I −Qt−1QT
t−1)xt

∣

∣

∣

∣

(6)

At = At−1 − qtq
T
t At−1qtq

T
t

whereq1 = x1, andq1, . . . , qt−1 form the columns ofQt−1. Sinceq1, . . . , qt−1 form an orthonormal
basis for the space spanned byx1, . . . , xt−1, we have thatQt−1Q

T
t−1 = Pt−1, the aforementioned

orthogonal projection.

Since the first round of OHD is equivalent to a standard application of Hotelling’s deflation, OHD
inherits all of the weaknesses discussed in Section 2.2. However, the same principles may be applied
to projection deflation to generate an orthogonalized variant that inherits its desirable properties.

Schur complement deflation is unique in that it preserves orthogonality in all subsequent rounds.

That is, if a vectorv is orthogonal toAt−1 for any t, thenAtv = At−1v −
At−1xtx

T

t
At−1v

xT

t
At−1xt

= 0 as
At−1v = 0. This further implies the following proposition.

Proposition 2.2. Orthogonalized Schur complement deflation is equivalent to Schur complement
deflation.

Proof. Consider thet-th round of Schur complement deflation. We may writext = ot + pt, where
pt is in the subspace spanned by all previously extracted pseudo-eigenvectors andot is orthogonal
to this subspace. Then we know thatAt−1pt = 0, aspt is a linear combination ofx1, . . . , xt−1,
andAt−1xi = 0,∀i < t. Thus,xT

t Atxt = pT
t Atpt + oT

t Atpt + pT
t Atot + oT

t Atot = oT
t Atot.

Further,At−1xtx
T
t At−1 = At−1ptp

T
t At−1+At−1pto

T
t At−1+At−1otp

T
t At−1+At−1oto

T
t At−1 =

At−1oto
T
t At−1. Hence,At = At−1 −

At−1oto
T

t
At−1

oT

t
At−1ot

= At−1 −
At−1qtq

T

t
At−1

qT

t
At−1qt

as qt = ot

||ot|| .

Table 1 compares the properties of the various deflation techniques studied in this section.

Method xT
t Atxt = 0 Atxt = 0 At ∈ S

p
+ Asxt = 0,∀s > t

Hotelling’s X × × ×
Projection X X X ×
Schur complement X X X X

Orth. Hotelling’s X × × ×
Orth. Projection X X X X

Table 1: Summary of sparse PCA deflation method properties

3 Reformulating sparse PCA

In the previous section, we focused on heuristic deflation techniques that allowed us to reuse the
cardinality-constrained optimization problem of Eq. (3). In this section, we explore a more princi-
pled alternative: reformulating the sparse PCA optimization problem to explicitly reflect our maxi-
mization objective on each round.

Recall that the goal of sparse PCA is to findr cardinality-constrained pseudo-eigenvectors which
together explain the most variance in the data. If we additionally constrain the sparse loadings to
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be generated sequentially, as in the PCA setting and the previous section, then a greedy approach of
maximizing theadditionalvariance of each new vector naturally suggests itself.

On roundt, the additional variance of a vectorx is given by qT A0q
qT q

whereA0 is the data covari-
ance matrix,q = (I − Pt−1)x, andPt−1 is the projection onto the space spanned by previous
pseudo-eigenvectorsx1, . . . , xt−1. As qT q = xT (I − Pt−1)(I − Pt−1)x = xT (I − Pt−1)x, max-
imizing additional variance is equivalent to solving a cardinality-constrained maximum generalized
eigenvalue problem,

max
x

xT (I − Pt−1)A0(I − Pt−1)x

subject toxT (I − Pt−1)x = 1

Card(x) ≤ kt.

(7)

If we let qs = (I −Ps−1)xs,∀s ≤ t− 1, thenq1, . . . , qt−1 form an orthonormal basis for the space
spanned byx1, . . . , xt−1. Writing I − Pt−1 = I −

∑t−1
s=1 qsq

T
s =

∏t−1
s=1 (I − qsq

T
s ) suggests a

generalized deflation technique that leads to the solution of Eq. (7) on each round. We imbed the
technique into the following algorithm for sparse PCA:

Algorithm 1 Generalized Deflation Method for Sparse PCA

Given:A0 ∈ Sp
+, r ∈ N, {k1, . . . , kr} ⊂ N

Execute:

1. B0 ← I

2. Fort := 1, . . . , r

• xt ← argmax
x:xT Bt−1x=1,Card(x)≤kt

xT At−1x

• qt ← Bt−1xt

• At ← (I − qtq
T
t )At−1(I − qtq

T
t )

• Bt ← Bt−1(I − qtq
T
t )

• xt ← xt/ ||xt||

Return:{x1, . . . , xr}

Adding a cardinality constraint to a maximum eigenvalue problem renders the optimization problem
NP-hard [10], but any of several leading sparse eigenvalue methods, including GSLDA of [10],
DCPCA of [12], and DSPCA of [1] (with a modified trace constraint), can be adapted to solve this
cardinality-constrained generalized eigenvalue problem.

4 Experiments

In this section, we present several experiments on real world datasets to demonstrate the value added
by our newly derived deflation techniques. We run our experiments with Matlab implementations
of DCPCA [12] (with the continuity correction of [9]) and GSLDA [10], fitted with each of the
following deflation techniques: Hotelling’s (HD), projection (PD), Schur complement (SCD), or-
thogonalized Hotelling’s (OHD), orthogonalized projection (OPD), and generalized (GD).

4.1 Pit props dataset

The pit props dataset [5] with 13 variables and 180 observations has become a de facto standard for
benchmarking sparse PCA methods. To demonstrate the disparate behavior of differing deflation
methods, we utilize each sparse PCA algorithm and deflation technique to successively extract six
sparse loadings, each constrained to have cardinality less than or equal tokt = 4. We report the
additional variances explained by each sparse vector in Table 2 and the cumulative percentage vari-
ance explained on each iteration in Table 3. For reference, the first 6 true principal components of
the pit props dataset capture 87% of the variance.
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DCPCA GSLDA
HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD

2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938
2.209 2.209 2.076 2.209 2.209 2.209 2.107 2.280 2.065 2.107 2.280 2.280
0.935 1.464 1.926 0.935 1.464 1.477 1.988 2.067 2.243 1.985 2.067 2.072
1.301 1.464 1.164 0.799 1.464 1.464 1.352 1.304 1.120 1.335 1.305 1.360
1.206 1.057 1.477 0.901 1.058 1.178 1.067 1.120 1.164 0.497 1.125 1.127
0.959 0.980 0.725 0.431 0.904 0.988 0.557 0.853 0.841 0.489 0.852 0.908

Table 2: Additional variance explained by each of the first 6 sparse loadings extracted from the Pit
Props dataset.

On the DCPCA run, Hotelling’s deflation explains 73.4% of the variance, while the best performing
methods, Schur complement deflation and generalized deflation, explain approximately 79% of the
variance each. Projection deflation and its orthogonalized variant also outperform Hotelling’s defla-
tion, while orthogonalized Hotelling’s shows the worst performance with only 63.2% of the variance
explained. Similar results are obtained when the discrete method of GSLDA is used. Generalized
deflation and the two projection deflations dominate, with GD achieving the maximum cumulative
variance explained on each round. In contrast, the more standard Hotelling’s and orthogonalized
Hotelling’s underperform the remaining techniques.

DCPCA GSLDA
HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD

22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6%
39.6% 39.6% 38.6% 39.6% 39.6% 39.6% 38.8% 40.1% 38.5% 38.8% 40.1% 40.1%
46.8% 50.9% 53.4% 46.8% 50.9% 51.0% 54.1% 56.0% 55.7% 54.1% 56.0% 56.1%
56.8% 62.1% 62.3% 52.9% 62.1% 62.2% 64.5% 66.1% 64.4% 64.3% 66.1% 66.5%
66.1% 70.2% 73.7% 59.9% 70.2% 71.3% 72.7% 74.7% 73.3% 68.2% 74.7% 75.2%
73.4% 77.8% 79.3% 63.2% 77.2% 78.9% 77.0% 81.2% 79.8% 71.9% 81.3% 82.2%

Table 3: Cumulative percentage variance explained by the first 6 sparse loadings extracted from the
Pit Props dataset.

4.2 Gene expression data

The Berkeley Drosophila Transcription Network Project (BDTNP) 3D gene expression data
[4] contains gene expression levels measured in each nucleus of developing Drosophila em-
bryos and averaged across many embryos and developmental stages. Here, we analyze 0-
3 1160524183713s10436-29ap05-02.vpc, an aggregate VirtualEmbryo containing 21 genes and
5759 example nuclei. We run GSLDA for eight iterations with cardinality pattern 9,7,6,5,3,2,2,2
and report the results in Table 4.

GSLDA additional variance explained GSLDA cumulative percentage variance
HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD

PC 1 1.784 1.784 1.784 1.784 1.784 1.784 21.0% 21.0% 21.0% 21.0% 21.0% 21.0%
PC 2 1.464 1.453 1.453 1.464 1.453 1.466 38.2% 38.1% 38.1% 38.2% 38.1% 38.2%
PC 3 1.178 1.178 1.179 1.176 1.178 1.187 52.1% 51.9% 52.0% 52.0% 51.9% 52.2%
PC 4 0.716 0.736 0.716 0.713 0.721 0.743 60.5% 60.6% 60.4% 60.4% 60.4% 61.0%
PC 5 0.444 0.574 0.571 0.460 0.571 0.616 65.7% 67.4% 67.1% 65.9% 67.1% 68.2%
PC 6 0.303 0.306 0.278 0.354 0.244 0.332 69.3% 71.0% 70.4% 70.0% 70.0% 72.1%
PC 7 0.271 0.256 0.262 0.239 0.313 0.304 72.5% 74.0% 73.4% 72.8% 73.7% 75.7%
PC 8 0.223 0.239 0.299 0.257 0.245 0.329 75.1% 76.8% 77.0% 75.9% 76.6% 79.6%

Table 4: Additional variance and cumulative percentage variance explained by the first 8 sparse
loadings of GSLDA on the BDTNP VirtualEmbryo.

The results of the gene expression experiment show a clear hierarchy among the deflation methods.
The generalized deflation technique performs best, achieving the largest additional variance on every
round and a final cumulative variance of 79.6%. Schur complement deflation, projection deflation,
and orthogonalized projection deflation all perform comparably, explaining roughly 77% of the total
variance after 8 rounds. In last place are the standard Hotelling’s and orthogonalized Hotelling’s
deflations, both of which explain less than 76% of variance after 8 rounds.
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5 Conclusion

In this work, we have exposed the theoretical and empirical shortcomings of Hotelling’s deflation in
the sparse PCA setting and developed several alternative methods more suitable for non-eigenvector
deflation. Notably, the utility of these procedures is not limited to the sparse PCA setting. Indeed,
the methods presented can be applied to any of a number of constrained eigendecomposition-based
problems, including sparse canonical correlation analysis [13] and linear discriminant analysis [10].
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