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Abstract

Covariance estimation for high dimensional vectors is a classically difficult prob-
lem in statistical analysis and machine learning. In this paper, we propose a
maximum likelihood (ML) approach to covariance estimation, which employs a
novel sparsity constraint. More specifically, the covariance is constrained to have
an eigen decomposition which can be represented as a sparse matrix transform
(SMT). The SMT is formed by a product of pairwise coordinate rotations known
as Givens rotations. Using this framework, the covariance can be efficiently esti-
mated using greedy minimization of the log likelihood function, and the number
of Givens rotations can be efficiently computed using a cross-validation proce-
dure. The resulting estimator is positive definite and well-conditioned even when
the sample size is limited. Experiments on standard hyperspectral data sets show
that the SMT covariance estimate is consistently more accurate than both tradi-
tional shrinkage estimates and recently proposed graphical lasso estimates for a
variety of different classes and sample sizes.

1 Introduction

Many problems in statistical pattern recognition and analysis require the classification and analysis
of high dimensional data vectors. However, covariance estimation for high dimensional vectors is
a classically difficult problem because the number of coefficients in the covariance grows as the
dimension squared [1, 2]. This problem, sometimes referred to as the curse of dimensionality [3],
presents a classic dilemma in statistical pattern analysis and machine learning.

In a typical application, one measuresn versions of ap dimensional vector. Ifn < p, then the sample
covariance matrix will be singular withp − n eigenvalues equal to zero. Over the years, a variety
of techniques have been proposed for computing a nonsingular estimate of the covariance. For
example, regularized and shrinkage covariance estimators [4, 5, 6] are examples of such techniques.

In this paper, we propose a new approach to covariance estimation, which is based on constrained
maximum likelihood (ML) estimation of the covariance [7]. In particular, the covariance is con-
strained to have an eigen decomposition which can be represented as a sparse matrix transform
(SMT) [8, 9]. The SMT is formed by a product of pairwise coordinate rotations known as Givens
rotations [10]. Using this framework, the covariance can be efficiently estimated using greedy min-
imization of the log likelihood function, and the number of Givens rotations can be efficiently com-
puted using a cross-validation procedure. The estimator obtained using this method is always posi-
tive definite and well-conditioned even when the sample size is limited.

In order to validate our model, we perform experiments using a standard set of hyperspectral data
[11], and we compare against both traditional shrinkage estimates and recently proposed graphical
lasso estimates [12] for a variety of different classes and sample sizes. Our experiments show that,
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for this example, the SMT covariance estimate is consistently more accurate. The SMT method
also has a number of other advantages. It seems to be particularly good when estimating small
eigenvalues and their associated eigenvectors. The cross-validation procedure used to estimate the
SMT model order requires little additional computation, and the resulting eigen decomposition can
be computed with very little computation (i.e.≪ p2 operations).

2 Covariance estimation for high dimensional vectors

In the general case, we observe a set ofn vectors,y1, y2, · · · , yn, where each vector,yi, is p dimen-
sional. Without loss of generality, we assumeyi has zero mean. We can represent this data as the
following p× n matrix

Y = [y1, y2, · · · , yn] . (1)

If the vectorsyi are identically distributed, then the sample covariance is given by

S =
1

n
Y Y t , (2)

andS is an unbiased estimate of the true covariance matrix withR = E [yiy
t
i ] = E[S].

While S is an unbiased estimate ofR it is also singular whenn < p. This is a serious deficiency
since as the dimensionp grows, the number of vectors needed to estimateR also grows. In practical
applications,n may be much smaller thanp which means that most of the eigenvalues ofR are
erroneously estimated as zero.

A variety of methods have been proposed to regularize the estimate ofR so that it is not singular.
Shrinkage estimators are a widely used class of estimators which regularize the covariance matrix by
shrinking it toward some target structures [4, 5, 13]. Shrinkage estimators generally have the form
R̂ = αD +(1−α)S, whereD is some positive definite matrix. Some popular choices forD are the
identity matrix (or its scaled version) [5, 13] and the diagonal entries ofS, i.e.diag(S) [5, 14]. In
both cases, the shrinkage intensityα can be estimated using cross-validation or boot-strap methods.

Recently, a number of methods have been proposed for regularizing the estimate by making either
the covariance or its inverse sparse [6, 12]. For example, the graphical lasso method enforces sparsity
by imposing anL1 norm constraint on the inverse covariance [12]. Banding or thresholding can also
be used to obtain a sparse estimate of the covariance [15].

2.1 Maximum likelihood covariance estimation

Our approach will be to compute a constrained maximum likelihood (ML) estimate of the covariance
R, under the modeling assumption that eigenvectors ofR may be represented as a sparse matrix
transform (SMT) [8, 9]. To do this, we first decomposeR as

R = EΛEt , (3)

whereE is the orthonormal matrix of eigenvectors andΛ is the diagonal matrix of eigenvalues.
Then we will estimate the covariance by maximizing the likelihood of the dataY subject to the
constraint thatE is an SMT. By varying the order,K, of the SMT, we may then reduce or increase
the regularizing constraint on the covariance.

If we assume that the columns ofY are independent and identically distributed Gaussian random
vectors with mean zero and positive-definite covarianceR, then the likelihood ofY givenR is given
by

pR(Y ) =
1

(2π)
np

2

|R|
−

n
2 exp

{

−
1

2
tr{Y tR−1Y }

}

. (4)

The log-likelihood ofY is then given by [7]

log p(E,Λ)(Y ) = −
n

2
tr{diag(EtSE)Λ−1} −

n

2
log |Λ| −

np

2
log(2π) , (5)

whereR = EΛEt is specified by the orthonormal eigenvector matrixE and diagonal eigenvalue
matrixΛ. Jointly maximizing the likelihood with respect toE andΛ then results in the ML estimates

2



−1

−1

−1

−1

−1

−1

−1

−1 −1

−1

−1

−1

y0

y1

y2

y3

y4

y5

y6

y7

ỹ0
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ỹ3

ỹ4
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Figure 1: (a) 8-point FFT. (b) The SMT implementation ofỹ = Ey. The SMT can be viewed as a
generalization of FFT and orthonormal wavelet transforms.

of E andΛ given by [7]

Ê = arg min
E∈Ω

{∣

∣diag(EtSE)
∣

∣

}

(6)

Λ̂ = diag(ÊtSÊ) , (7)

whereΩ is the set of allowed orthonormal transforms. So we may compute the ML estimate by first
solving the constrained optimization of (6), and then computing the eigenvalue estimates from (7).

2.2 ML estimation of eigenvectors using SMT model

The ML estimate ofE can be improved if the feasible set of eigenvector transforms,Ω, can be
constrained to a subset of all possible orthonormal transforms. By constrainingΩ, we effectively
regularize the ML estimate by imposing a model. However, as with any model-based approach, the
key is to select a feasible set,Ω, which is as small as possible while still accurately modeling the
behavior of the data.

Our approach is to selectΩ to be the set of all orthonormal transforms that can be represented as an
SMT of orderK [9]. More specifically, a matrixE is an SMT of orderK if it can be written as a
product ofK sparse orthornormal matrices, so that

E =

k=K−1
∏

0

Ek = E0E1 · · ·EK−1 , (8)

where every sparse matrix,Ek, is a Givens rotation operating on a pair of coordinate indices(ik, jk)
[10]. Every Givens rotationEk is an orthonormal rotation in the plane of the two coordinates,ik
andjk, which has the form

Ek = I + Θ(ik, jk, θk) , (9)

whereΘ(ik, jk, θk) is defined as

[Θ]ij =











cos(θk)− 1 if i = j = ik or i = j = jk

sin(θk) if i = ik andj = jk

− sin(θk) if i = jk andj = ik
0 otherwise

. (10)

Figure 1(b) shows the flow diagram for the application of an SMT to a data vectory. Notice that each
2D rotation,Ek, plays a role analogous to a “butterfly” used in a traditional fast Fourier transform
(FFT) [16] in Fig. 1(a). However, unlike an FFT, the organization of the butterflies in an SMT is
unstructured, and each butterfly can have an arbitrary rotation angleθk. This more general structure
allows an SMT to implement a larger set of orthonormal transformations. In fact, the SMT can
be used to represent any orthonormal wavelet transform because, using the theory of paraunitary
wavelets, orthonormal wavelets can be represented as a product of Givens rotations and delays [17].
More generally, whenK =

(

p
2

)

, the SMT can be used to exactly represent anyp × p orthonormal
transformation [7].

3



Using the SMT model constraint, the ML estimate ofE is given by

Ê = arg min
E=
∏

k=K−1

0
Ek

∣

∣diag(EtSE)
∣

∣ . (11)

Unfortunately, evaluating the constrained ML estimate of (11) requires the solution of an optimiza-
tion problem with a nonconvex constraint. So evaluation of the globally optimal solutions is difficult.
Therefore, our approach will be to use greedy minimization to compute a locally optimal solution to
(11). The greedy minimization approach works by selecting each new butterflyEk to minimize the
cost, while fixing the previous butterflies,El for l < k.

This greedy optimization algorithm can be implemented with the following simple recursive proce-
dure. We start by settingS0 = S to be the sample covariance, and initializek = 0. Then we apply
the following two steps fork = 0 to K − 1.

E∗

k = arg min
Ek

∣

∣diag
(

Et
kSkEk

)∣

∣ (12)

Sk+1 = E∗t
k SkE∗

k . (13)

The resulting values ofE∗

k are the butterflies of the SMT.

The problem remains of how to compute the solution to (12). In fact, this can be done quite easily
by first determining the two coordinates,ik andjk, that are most correlated,

(ik, jk)← arg min
(i,j)

(

1−
[Sk]2ij

[Sk]ii[Sk]jj

)

. (14)

It can be shown that this coordinate pair,(ik, jk), can most reduce the cost in (12) among all possible
coordinate pairs [7]. Onceik andjk are determined, we apply the Givens rotationE∗

k to minimize
the cost in (12), which is given by

E∗

k = I + Θ(ik, jk, θk) , (15)

where

θk =
1

2
atan(−2[Sk]ikjk

, [Sk]ikik
− [Sk]jkjk

) . (16)

By iterating the (12) and (13)K times, we obtain the constrained ML estimate ofE given by

Ê =

k=K−1
∏

0

E∗

k . (17)

The model order,K, can be determined by a simple cross-validation procedure. For example, we
can partition the data into three subsets, andK is chosen to maximize the average likelihood of the
left-out subsets given the estimated covariance using the other two subsets. OnceK is determined,
the proposed covariance estimator is re-computed using all the data and the estimated model order.

The SMT covariance estimator obtained as above has some interesting properties. First, it is positive
definite even for the limited sample sizen < p. Also, it is permutation invariant, that is, the
covariance estimator does not depend on the ordering of the data. Finally, the eigen decomposition
Ety can be computed very efficiently by applying theK sparse rotations in sequence.

2.3 SMT Shrinkage Estimator

In some cases, the accuracy of the SMT estimator can be improved by shrinking it towards the
sample covariance. Let̂RSMT represent the SMT covariance estimator. Then the SMT shrinkage
estimate (SMT-S) can be obtained as

R̂SMT−S = αR̂SMT + (1− α)S , (18)

where the parameterα can be computed using cross validation. Notice that

p
R̂SMT−S

(Y ) = p
ÊR̂SMT−SÊt(ÊY ) = p

αΛ̂+(1−α)ÊSÊt(ÊY ) . (19)

So cross validation can be efficiently implemented as in [5].
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3 Experimental results

The effectiveness of the SMT covariance estimation depends on how well the SMT model can cap-
ture the behavior of real data vectors. Therefore in this section, we compare the performance of the
SMT covariance estimator to commonly used shrinkage and graphical lasso estimators. We do this
comparison using hyperspectral remotely sensed data as our high dimensional data vectors.

The hyperspectral data we use is available with the recently published book [11]. Figure 2(a) shows
a simulated color IR view of an airborne hyperspectral data flightline over the Washington DC Mall.
The sensor system measured the pixel response in 191 effective bands in the 0.4 to 2.4µm region of
the visible and infrared spectrum. The data set contains 1208 scan lines with 307 pixels in each scan
line. The image was made using bands 60, 27 and 17 for the red, green and blue colors, respectively.
The data set also provides ground truth pixels for five classes designated as grass, water, roof, street,
and tree. In Fig. 2(a), the ground-truth pixels of the grass class are outlined with a white rectangle.
Figure 2(b) shows the spectrum of the grass pixels, and Fig. 2(c) shows multivariate Gaussian vectors
that were generated using the measured sample covariance for the grass class.

For each class, we computed the “true” covariance by using all the ground truth pixels to calculate
the sample covariance. The covariance is computed by first subtracting the sample mean vector
for each class, and then computing the sample covariance for the zero mean vectors. The number
of pixels for the ground-truth classes of grass, water, roof, street, and tree are1928, 1224, 3579,
416, and388, respectively. In each case, the number of ground truth pixels was much larger than
191, so the true covariance matrices are nonsingular, and accurately represent the covariance of the
hyperspectral data for that class.

3.1 Review of alternative estimators

A popular choice of the shrinkage target is the diagonal ofS [5, 14]. In this case, the shrinkage
estimator is given by

R̂ = αdiag (S) + (1− α) S . (20)

We use an efficient algorithm implementation of the leave-one-out likelihood (LOOL) cross-
validation method to chooseα as suggested in [5].

An alternative estimator is the graphic lasso (glasso) estimate recently proposed in [12] which is an
L1 regularized maximum likelihood estimate, such that

R̂ = arg max
R∈Ψ

{

log(Y | R)− ρ ‖ R−1 ‖1
}

, (21)

whereΨ denotes the set ofp × p positive definite matrices andρ the regularization parameter. We
used the R code for glasso that is publically available online. We found cross-validation estimation
of ρ to be difficult, so in each case we manually selected the value ofρ to minimize the Kullback-
Leibler distance to the known covariance.

3.2 Gaussian case

First, we compare how different estimators perform when the data vectors are samples from an ideal
multivariate Gaussian distribution. To do this, we first generated zero mean multivariate vectors
with the true covariance for each of the five classes. Next we estimated the covariance using the
four methods, the shrinkage estimator, glasso, SMT and SMT shrinkage estimation. In order to
determine the effect of sample size, we also performed each experiment for a sample size ofn = 80,
40, and20, respectively. Every experiment was repeated 10 times.

In order to get an aggregate accessment of the effectiveness of SMT covariance estimation, we com-
pared the estimated covariance for each method to the true covariance using the Kullback-Leibler
(KL) distance [7]. The KL distance is a measure of the error between the estimated and true distri-
bution. Figure 3(a)(b) and (c) show plots of the KL distances as a function of sample size for the
four estimators. The error bars indicate the standard deviation of the KL distance due to random
variation in the sample statistics. Notice that the SMT shrinkage (SMT-S) estimator is consistently
the best of the four.
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(a) (b) (c)

Figure 2: (a) Simulated color IR view of an airborne hyperspectral data over the Washington DC
Mall [11]. (b) Ground-truth pixel spectrum of grass that are outlined with the white rectangles in
(a). (c) Synthesized data spectrum using the Gaussian distribution.

Figure 4(a) shows the estimated eigenvalues for the grass class withn = 80. Notice that the eigen-
values of the SMT and SMT-S estimators are much closer to the true values than the shrinkage and
glasso methods. Notice that the SMT estimators generate good estimates especially for the small
eigenvalues.

Table 1 compares the computational complexity, CPU time and model order for the four estimators.
The CPU time and model order were measured for the Guassian case of the grass class withn = 80.
Notice that even with the cross validation, the SMT and SMT-S estimators are much faster than
glasso. This is because the SMT transform is a sparse operator. In this case, the SMT uses an
average ofK = 495 rotations, which is equal toK/p = 495/191 = 2.59 rotations (or equivalently
multiplies) per spectral sample.

3.3 Non-Gaussian case

In practice, the sample vectors may not be from an ideal multivariate Gaussian distribution. In
order to see the effect of the non-Gaussian statistics on the accuracy of the covariance estimate,
we performed a set of experiments which used random samples from the ground truth pixels as
input. Since these samples are from the actual measured data, their distribution is not precisely
Gaussian. Using these samples, we computed the covariance estimates for the five classes using the
four different methods with sample sizes ofn = 80, 40, and20.

Plots of the KL distances for the non-Gaussian grass case1are shown in Fig. 3(d)(e) and (f); and
Figure 4(b) shows the estimated eigenvalues for grass withn = 80. Note that the results are similar
to those found for the ideal Guassian case.

4 Conclusion

We have proposed a novel method for covariance estimation of high dimensional data. The new
method is based on constrained maximum likelihood (ML) estimation in which the eigenvector
transformation is constrained to be the composition ofK Givens rotations. This model seems to
capture the essential behavior of the data with a relatively small number of parameters. The con-
straint set is aK dimensional manifold in the space of orthonormal transforms, but since it is not a
linear space, the resulting ML estimation optimization problem does not yield a closed form global
optimum. However, we show that a recursive local optimization procedure is simple, intuitive, and
yields good results.

We also demonstrate that the proposed SMT covariance estimation methods substantially reduce
the error in the covariance estimate as compared to current state-of-the-art estimates for a stan-
dard hyperspectral data set. The MATLAB code for SMT covariance estimation is available at:
https://engineering.purdue.edu/∼bouman/publications/pubsmt.html.

1In fact, these are the KL distances between the estimated covariance and the sample covariance computed
from the full set of training data, under the assumption of a multivariate Gaussian distribution.
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(f) Street

Figure 3: Kullback-Leibler distance from true distribution versus sample size for various classes:
(a) (b) (c) Gaussian case (d) (e) (f) non-Gaussian case.
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(b)

Figure 4: The distribution of estimated eigenvalues for the grass class withn = 80: (a) Gaussian
case (b) Non-Gaussian case.

Complexity CPU time Model order(without cross-validation) (seconds)
Shrinkage Est. p 8.6 (with cross-validation) 1

glasso p3I 422.6 (without cross-validation) 4939
SMT p2 + Kp 6.5 (with cross-validation) 495

SMT-S p2 + Kp 7.2 (with cross-validation) 496

Table 1: Comparison of computational complexity, CPU time and model order for various covari-
ance estimators. The complexity is without cross validation and does not include the computation
of the sample covariance (order ofnp2). The CPU time and model order were measured for the
Guassian case of the grass class withn = 80. I is the number of cycles used in glasso.
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