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Abstract

“How is information decoded in the brain?” is one of the most difficult and im-
portant questions in neuroscience. Whether neural correlation is important or not
in decoding neural activities is of special interest. We have developed a general
framework for investigating how far the decoding process in the brain can be sim-
plified. First, we hierarchically construct simplified probabilistic models of neu-
ral responses that ignore more thanKth-order correlations by using a maximum
entropy principle. Then, we compute how much information is lost when infor-
mation is decoded using the simplified models, i.e., “mismatched decoders”. We
introduce an information theoretically correct quantity for evaluating the informa-
tion obtained by mismatched decoders. We applied our proposed framework to
spike data for vertebrate retina. We used 100-ms natural movies as stimuli and
computed the information contained in neural activities about these movies. We
found that the information loss is negligibly small in population activities of gan-
glion cells even if all orders of correlation are ignored in decoding. We also found
that if we assume stationarity for long durations in the information analysis of dy-
namically changing stimuli like natural movies, pseudo correlations seem to carry
a large portion of the information.

1 Introduction

An ultimate goal of neuroscience is to elucidate how information is encoded and decoded by neural
activities. To investigate what information is encoded by neurons in certain area of the brain, the
mutual information between stimuli and neural responses is often calculated. In the analysis of
mutual information, it is implicitly assumed that encoded information is decoded by an optimal
decoder, which exactly matches the encoder. In other words, the brain is assumed to have full
knowledge of the encoding process. Generally, if the neural activities are correlated, the amount of
data needed for the optimal decoding scales exponentially with the number of neurons. Since a large
amount of data and many complex computations are needed for optimal decoding, the assumption
of an optimal decoder in the brain is doubtful.

The reason mutual information is widely used in neuroscience despite the doubtfulness of the opti-
mal decoder is that we are completely ignorant of how information is decoded in the brain. Thus,
we simply evaluate the maximal amount of information that can be extracted from neural activities
by calculating the mutual information. To address this lack of knowledge, we can ask a different
question: “How much information can be obtained by a decoder that has partial knowledge of the
encoding process?” [10, 14] We call this type of a decoder “simplified decoder” or a “mismatched
decoder”. For example, an independent decoder is a simplified decoder; it takes only the marginal
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distribution of the neural responses into consideration andignores the correlations between neuronal
activities. The independent decoder is of particular importance because several studies have shown
that maximum likelihood estimation can be implemented by a biologically plausible network [2, 4].
If it is experimentally shown that a sufficiently large portion of information is obtained by the in-
dependent decoder, we can say that the brain may function in a manner similar to the independent
decoder. In this context, Nirenberget al. computed the amount of information obtained by the in-
dependent decoder in pairs of retinal ganglion cells activities [10]. They showed that no pair of
cells showed a loss of information greater than 11%. Because only pairs of cells were considered
in their analysis, it has not been still elucidated whether correlations are not important in population
activities.

To elucidate whether correlations are important or not in population activities, we have developed
a general framework for investigating the importance of correlation in decoding neural activities.
When population activities are analyzed, we have to deal with not only second-order correlations
but also higher-order correlations in general. Therefore, we need to hierarchically construct simpli-
fied decoders that account of up toKth-order correlations, whereK = 1, 2, ..., N . By computing
how much information is obtained by the simplified decoders, we investigate how many orders of
correlation should be taken into account to extract enough information. To compute the information
obtained by the mismatched decoders, we introduce a information theoretically correct quantity de-
rived by Merhavet al. [8]. Information for mismatched decoders previously proposed by Nirenberg
and Latham is the lower bound on the correct information [5, 11]. Because this lower bound can be
very loose and their proposed information can be negative when many cells are analyzed as is shown
in the paper, we need to accurately evaluate the information obtained by mismatched decoders.

The plan of the paper is as follows. In Section 2, we describe a way of computing the information
that can be extracted from neural activities by mismatched decoders using the information derived
by Merhavet al.. Using analytical computation, we demonstrate how information for mismatched
decoders previously proposed by Nirenberg and Latham differs from the correct information derived
by Merhavet al., especially when many cells are analyzed. In Section 3, we apply our framework to
spike data for ganglion cells in the salamander retina. We first describe the method of hierarchically
constructing simplified decoders by using the maximum entropy principle [12]. We then compute the
information obtained with the simplified decoders. We find that more than 90% of the information
can be extracted from the population activities of ganglion cells even if all orders of correlations
are ignored in decoding. We also describe the problem of previous studies [10, 12] in which the
stationarity of stimuli is assumed for a duration that is too long. Using a toy model, we demonstrate
that pseudo correlations seem to carry a large portion of the information because of the stationarity
assumption.

2 Information for mismatched decoders

Let us consider how much information about stimuli can be extracted from neural responses. We
assume that we experimentally obtain the conditional probability distributionp(r|s) that neural re-
sponsesr are evoked by stimuluss. We can say that the stimulus is encoded by neural responser,
which obeys the distributionp(r|s). We callp(r|s) the “encoding model”. The maximal amount of
information obtained with the optimal decoder can be evaluated by using the mutual information:

I = −

∫

drp(r) log2 p(r) +

∫

dr
∑

s

p(s)p(r|s) log2 p(r|s), (1)

wherep(r) =
∑

s p(r|s)p(s) andp(s) is the prior probability of stimuli. In the optimal decoder, the
probability distributionq(r|s) that exactly matches the encoding modelp(r|s) is used for decoding;
that is,q(r|s) = p(r|s). We callq(r|s) the “decoding model”. We can also compute the maximal
amount of information obtained by a decoder using a decoding modelq(r|s) that does not match the
encoding modelp(r|s) by using an equation derived by Merhavet al. [8]:

I∗(β) = −

∫

drp(r) log2

∑

s

p(s)q(r|s)β +

∫

dr
∑

s

p(s)p(r|s) log2 q(r|s)β , (2)

whereβ takes the value that maximizesI∗(β). Thus,β is the value that satisfies∂I∗/∂β = 0. We
call a decoder using the mismatched decoding model a “mismatched decoder”.
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Figure 1: Comparison between correct informationI∗ derived by Merhavet al. and Nirenberg-
Latham informationINL. A: Difference betweenI∗/I (solid line) andINL/I (dotted line) in
Gaussian model where correlations and derivatives of mean firing rates are uniform. Correlation
parameterc = 0.01. B: Difference betweenI∗1/I (solid line) andINL

1 /I (dotted line) when spike
data in Figure 3A are used. For this spike data and other spike data analyzed, Nirenberg-Latham
information provides a tight lower bound on the correct information, possibly because the number
of cells is small.

Previously, Nirenberg and Latham proposed that the information obtained by mismatched decoders
can be evaluated by using [11]

INL = −

∫

drp(r) log2

∑

s

p(s)q(r|s) +

∫

dr
∑

s

p(s)p(r|s) log2 q(r|s). (3)

We call their proposed information “Nirenberg-Latham information”. If we setβ = 1 in Eq. 2,
we obtain Nirenberg-Latham information,I∗(1) = INL. Thus, Nirenberg-Latham information
does not give correct information; instead, it simply provides the lower bound on the correct infor-
mation,I∗(β), which is the maximum value with respect toβ [5, 8]. The lower bound provided
by Nirenberg-Latham information can be very loose and the Nirenberg-Latham information can be
negative when many cells are analyzed.

Theoretical evaluation of information I, I∗, and INL

We consider the problem where mutual information is computed when stimuluss, which is a single
variable, and slightly different stimuluss + ∆s are presented. We assume the prior probability of
stimuli, p(s) andp(s + ∆s), are equal:p(s) = p(s + ∆s) = 1/2. Neural responses evoked by the
stimuli are denoted byr, which is considered here to be the neuron firing rate. When the difference
between two stimuli is small, the conditional probabilityp(r|s + ∆s) can be expanded with respect
to ∆s asp(r|s+∆s) = p(r|s)+p′(r|s)∆s+ 1

2p′′(r|s)(∆s)2+ ..., where′ represents differentiation
with respect tos. Using the expansion, to leading order of∆s, we can write mutual informationI
as

I =
∆s2

8

∫

dr
(p′(r|s))2

p(r|s)
, (4)

where
∫

drp′(r|s)2

p(r|s) is the Fisher information. Thus, we can see that the mutual information is pro-
portional to the Fisher information when∆s is small. Similarly, the correct informationI∗ for the
mismatched decoders and the Nirenberg-Latham informationINL can be written as

I∗ =
∆s2

8

(
∫

dr
p′(r|s)q′(r|s)

q(r|s)

)2 (
∫

dr
p(r|s)(q′(r|s))2

q(r|s)2

)−1

, (5)

INL =
∆s2

8

(

−

∫

drp(r|s)

(

q′(r|s)

q(r|s)

)2

+ 2

∫

dr
p′(r|s)q(r|s)

q(r|s)

)

. (6)

Taking into consideration the proportionality of the mutual information to the Fisher information, we

can interpret that
(

∫

drp′(r|s)q′(r|s)
q(r|s)

)2 (

∫

drp(r|s)(q′(r|s))2

q(r|s)2

)−1

in Eq. 5 is a Fisher information-like

quantity for mismatched decoders.
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Let us consider the case in which the encoding modelp(r|s) obeys the Gaussian distribution

p(r|s) =
1

Z
exp

(

−
1

2
(r − f(s))T

C
−1(r − f(s))

)

, (7)

whereT stands for the transpose operation,f(s) is the mean firing rates given stimuluss, andC is
the covariance matrix. We consider an independent decoding modelq(r|s) that ignores correlations:

q(r|s) =
1

ZD

exp

(

−
1

2
(r − f(s))T

C
−1
D (r − f(s))

)

, (8)

whereCD is the diagonal covariance matrix obtained by setting the off-diagonal elements ofC to
0. If the Gaussian integral is performed for Eqs. 4-5,I, I∗, andINL can be written as

I =
∆s2

8
f
′T (s)C−1

f
′(s), (9)

I∗ =
∆s2

8

(f ′T (s)C−1
D f

′(s))2

f ′T (s)C−1
D CC

−1
D f ′(s)

, (10)

INL =
∆s2

8

(

−f
′T (s)C−1

D CC
−1
D f

′(s) + 2f ′T (s)C−1
D f

′(s)
)

. (11)

The correct information obtained by the independent decoder for the Gaussian model (Eq. 10) is
inversely proportional to the decoding error ofs when the independent decoder is applied, which
was computed from the generalized Cramér Rao bound by Wuet al. [14].

As a simple example, we consider a uniform correlation model [1, 14] in which covariance matrixC

is given byCij = σ2[δij + c(1− δij)] and assume that the derivatives of the firing rates are uniform:
that isf ′

i = f ′. In this case,I, I∗, andINL can be computed using

I =
∆s2

8

Nf ′2

σ2(Nc + 1 − c)
, (12)

I∗ =
∆s2

8

Nf ′2

σ2(Nc + 1 − c)
, (13)

INL =
∆s2

8

(−c(N − 1) + 1)Nf ′2

σ2
, (14)

whereN is the number of cells. We can see thatI∗ is equal toI, which means that information is
not lost even if correlation is ignored in the decoding process. Figure 1A showsINL/I andI∗/I
when the degree of correlationc is 0.01. As shown in Figure 1A, the difference between the correct
informationI∗ and Nirenberg-Latham informationINL is very large when the number of cellsN is
large. WhenN > c+1

c
, INL is negative. Analysis showed that using Nirenberg-Latham information

INL as a lower bound on the correct informationI∗ can lead to wrong conclusions, especially when
many cells are analyzed.

3 Analysis of information in population activities of ganglion cells

3.1 Methods

We analyzed the data obtained whenN = 7 retinal ganglion cells were simultaneously recorded
using a multielectrode array. The stimulus was a natural movie, which was 200 s long and repeated
45 times. We divided the movie into many short natural movies and considered them as stimuli over
which information contained in neural activities is computed. For instance, when it was divided into
10-s-long natural movies, there were 20 stimuli. Figure 2A shows the response of the seven retinal
ganglion cells to natural movies from 0 to 10 s in length. To apply information theoretic techniques,
we first discretized the time into small time bins∆τ and indicated whether a spike was emitted or
not in each time bin with a binary variable:σi = 1 means that the celli spiked andσi = 0 means that
it did not spike. We set the length of the time,∆τ , to 5 ms so that it was short enough to avoid two
spikes falling into the same bin. In this way, the spike pattern of ganglion cells was transformed into
anN -letter binary word,σ = {σ1, σ2, ..., σN}, as shown in Figure 2B. Then, we determined the
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Figure 2: A: Raster plot of seven retinal ganglion cells responding to a natural movie. B: Transfor-
mation of spike trains into binary words.

frequency with which a particular spike pattern,σ, was observed during each stimulus and estimated
the conditional probability distributionpdata(σ|s) from experimental data. Using these conditional
probabilities, we evaluated the information contained inN -letter binary wordsσ.

Generally, the joint probability ofN binary variables can be written as [9]

pN (σ) =
1

Z
exp





∑

i

θiσi +
∑

i<j

θijσiσj + · · · + θ12...Nσ1σ2...σN



 . (15)

This type of probability distribution is called a log-linear model. Because the number of parameters
in a log-linear model is equal to the number of all possible configurations of anN -letter binary word
σ, we can determine the values of parameters so that the log-linear modelpN (σ) exactly matches
empirical probability distributionpdata(σ): that is,pN (σ) = pdata(σ).

To compute the information for mismatched decoders, we construct simplified models of neural
responses that partially match the empirical distribution,pdata(σ). The simplest model is an “inde-
pendent model”p1(σ), where only the average of eachσi agrees with the experimental data: that is,
〈σi〉p1(σ) = 〈σi〉pdata(σ). There are many possible probability distributions that satisfy these con-
straints. In accordance with the maximum entropy principle [12], we choose the one that maximizes
entropyH, H = −

∑

σ
p1(σ) log p1(σ). The resulting maximum entropy distribution is

p1(σ) =
1

Z1
exp

[

∑

i

θ
(1)
i σi

]

. (16)

in which model parametersθ(1) are determined so that the constraints are satisfied. This model
corresponds to a log-linear model in which all orders of correlation parameters{θij , θijk, ..., θ12...N}

are omitted. If we perform maximum likelihood estimation of model parametersθ
(1) in the log-

linear model, the result is that the averageσi under the log-linear model equals the averageσi

found in the data: that is,〈σi〉p1(σ) = 〈σi〉pdata(σ). This result is identical to the constraints of
the maximum entropy model. Generally, the maximum entropy method is equivalent to maximum
likelihood fitting of a log-linear model [6].

Similarly, we can consider a “second-order correlation model”p2(σ), which is consistent with not
only the averages ofσi but also the averages of all productsσiσj found in the data. Maximizing the
entropy with constraints〈σi〉p2(σ) = 〈σi〉pdata(σ) and〈σiσj〉p2(σ) = 〈σiσj〉pdata(σ), we obtain

p2(σ) =
1

Z2
exp





∑

i

θ
(2)
i σi +

∑

i,j

θ
(2)
ij σiσj



 , (17)

in which model parametersθ(2) are determined so that the constraints are satisfied. The procedure
described above can also be used to construct a “Kth-order correlation model”pK(σ). If we substi-
tute the simplified models of neural responsespK(σ|s) into mismatched decoding modelsq(σ|s) in
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Figure 3: Dependence of amount of information obtained by simplified decoders on number of
ganglion cells analyzed. Same spike data obtained from retinal ganglion cells responding to a natural
movie were used to obtain analysis results shown in panels A and B. A:10-s-long natural movie B:
100-ms-long natural movie

Eq. 2, we can compute the amount of information that can be obtained when more thanKth-order
correlations are ignored in the decoding,

I∗K(β) = −
∑

σ

pN (σ) log2

∑

s

p(s)pK(σ|s)β +
∑

s

p(s)
∑

σ

pN (σ|s) log2 pK(σ|s)β . (18)

By evaluating the ratio of information,I∗K/I, we can infer how many orders of correlation should
be taken into account to extract enough information.

3.2 Results

First, we investigated how the ratio of information obtained by an independent model,I∗1/I, and that
obtained by a second-order correlation model,I∗2/I, changed when the number of cells analyzed was
changed. We set the length of the stimulus to 10 s. We could obtain 20 kinds of stimuli from a 200-s-
long natural movie (see Methods). In previous studies, comparable length stimuli (7 s for Nirenberg
et al.’s study [10] and 20 s for Schneidmanet al.’s study [12]) were used. When two neurons were
analyzed, there were 21 possible combinations for choosing 2 cells out of 7 cells, which is the total
number of cells simultaneously recorded. We computed the average value ofI∗K/I for K = 1, 2 over
all possible combinations of cells. Figure 3A shows thatI∗1/I andI∗2/I monotonically decreased
when the number of cells was increased. A comparison between the correct information,I∗1/I, and
Nirenberg-Latham information,INL

1 /I whereINL
1 = I∗1 (β = 1), is shown in Figure 1B. When

only two cells were considered,I∗1/I exceeded 90%, which means that ignoring correlation leads
to only a small loss of information. This is consistent with the result obtained by Nirenberget al.
[10]. However, when all cells (N= 7) were used in the analysis,I∗1/I becomes only about 60%.
Thus, correlation seems to be much more important for decoding when population activities are
considered than when only two cells are considered. At least, we can say that qualitatively different
things occur when large populations of cells are analyzed, as Schneidmanet al. pointed out [12].

We should be careful about concluding from the results shown in Figure 3A that correlation is
important for decoding. In this analysis, we considered a 10-s-long stimuli and assumed stationarity
during each stimulus. By stationarity we mean that we assumed spikes are generated by a single
process that can be described by a single conditional distributionp(σ|s). Because the natural movies
change much more rapidly and our visual system has much higher time resolution than 10 s [13],
we also considered shorter stimuli. In Figure 3B, we computedI∗1/I andI∗2/I over 100-ms-long
natural movies. In this case, we could obtain 2000 stimuli from the 200-s-long natural movie. When
the length of each stimulus was 100 ms, no spikes occurred while some stimuli were presented. We
removed those stimuli and used the remaining stimuli for the analysis. In this case, the amount of
information obtained by independent modelI∗1 was more than 90% even when all cells (N= 7)
were considered. Although 100 ms may still be too long to be considered as a single process, the
result shown in Figure 3B reflects a situation that our brain has to deal with, that is more realistic than
that reflected in Figure 3A. Figure 4A shows the dependence of information obtained by simplified
decoders on the length of stimulus. In this analysis, we changed the length of the stimulus from 100
ms to 10 s and computedI∗1/I andI∗2/I for activities ofN = 7 cells. We also analyzed additional
experimental data obtained whenN = 6 retinal ganglion cells were simultaneously recorded from
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Figure 4: Dependence of amount of information obtained by simplified decoders on length of stim-
uli. Stimulus was same natural movie for both panels, but spike data obtained from retinas of
different salamander were used in panels A and B. A: Seven simultaneously recorded ganglion cells
B: Six simultaneously recorded ganglion cells C: Artificial spike data generated according to the
firing rates shown in Figure 5A

Figure 5: Firing rates of two model cells. Rate of cell #1 shownin top panel; rate of cell #2 is shown
in bottom panel. A: Firing rates from 0 to 2 s. B: Firing rates (solid line) and mean firing rates
(dashed line) when stimulus was 1 s long. C: Firing rates (solid line) and mean firing rates (dashed
line) when stimulus was 500 ms long.

another salamander retina. The same 200-s-long natural movie was used as a stimulus for Figure 4B
as for Figure 4A, and the activities ofN = 6 cells were analyzed. Figure 4B shows the result. We
can clearly see the same tendency as shown in Figures 4A and B: the amount of information decoded
by the simplified decoders monotonically increased as the length of the stimulus was shortened.

To clarify the reason the correlation becomes less important as the stimulus is shortened, we used
the toy model shown in Figure 5. We considered the case in which two cells fire independently
in accordance with a Poisson process and performed an analysis similar to the one we did for the
actual spike data. We used simulated spike data for the two cells generated in accordance with the
firing rates shown in Figure 5A. The firing rates with a 2-s stimulus sinusoidally change with time.
We divided the 2-s-long stimulus into two 1-s-long stimulus,s1 ands2, as shown in Figure 5B.
Then, we computed mutual informationI and the information obtained by independent modelI∗1
overs1 ands2. Because the two cells fired independently, there were no correlations between two
cells essentially. However, there was pseudo correlation due to the assumption of stationarity for the
dynamically changing stimulus. The pseudo correlation was high fors1 and low fors2. This means
that “correlation” plays an important role in discriminating two stimuli,s1 ands2. In contrast, the
mean firing rates of the two cells during each stimulus were equal fors1 ands2. Therefore, if the
stimulus is 1 s long, we cannot discriminate two stimuli by using the independent model, that is,
I∗1 = 0. We also considered the case in which the stimulus was 0.5 s long, as shown in Figure
5C. In this case, pseudo correlations again appeared but there was a significant difference in the
mean firing rates between the stimuli. Thus, the independent model can be used to extract almost all
the information. The dependence ofI∗1/I on the stimulus length is shown in Figure 4C. Behaviors
similar to those represented in Figure 4C were also observed in the analysis of the actual spike data
for retinal ganglion cells (Figure 4A and 4B). Even if we observe that correlation carries a significant
large portion of information for longer stimuli compared with the speed of change in the firing rates,
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it may simply be caused by meaningless pseudo correlation. Toassess the role of correlation in
information processing, the stimuli used should be short enough to think neural responses to these
stimuli generated by a single process.

4 Summary and Discussion

We described a general framework for investigating how far the decoding process in the brain can
be simplified. We computed the amount of information that can be extracted by using simplified
decoders constructed using a maximum entropy model, i.e., mismatched decoders. We showed
that more than 90% of the information encoded in retinal ganglion cells activities can be decoded
by using an independent model that ignores correlation. Our results imply that the brain uses a
simplified decoding strategy in which correlation is ignored.

When we computed the information obtained by the independent model, we regarded a 100-ms-long
natural movie as one stimulus. However, when we considered stimuli that were long compared with
the speed of the change in the firing rates as one stimulus, correlation carried a large portion of
information. This is due to pseudo correlation, which is observed if stationarity is assumed for long
durations. The human visual system can process visual information in less than 150 ms [13]. We
should set the length of the stimulus appropriately by taking the time resolution of our visual system
into account.

Our results do not imply that any kind of correlation does not carry much information because we
dealt only with correlated spikes within a 5-ms time bin. In our analysis, we did not analyze the
correlation on a longer time scale, which can be observed in the activities of retinal ganglion cells
[7]. We also did not investigate the information carried by the relative timing of spikes [3]. Further
investigations are needed for these types of correlation. Our approach of comparing the mutual
information with the information obtained by simplified decoders can also be used for studying
other types of correlations.
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