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Abstract

We apply robust Bayesian decision theory to improve both generative and discrim-
inative learners under bias in class proportions in labeled training data, when the
true class proportions are unknown. For the generative case, we derive an entropy-
based weighting that maximizes expected log likelihood under the worst-case true
class proportions. For the discriminative case, we derive a multinomial logistic
model that minimizes worst-case conditional log loss. We apply our theory to the
modeling of species geographic distributions from presence data, an extreme case
of labeling bias since there is no absence data. On a benchmark dataset, we find
that entropy-based weighting offers an improvement over constant estimates of
class proportions, consistently reducing log loss on unbiased test data.

1 Introduction

In many real-world classification problems, it is not equally easy or affordable to verify membership

in different classes. Thus, class proportions in labeled data may significantly differ from true class
proportions. In an extreme case, labeled data for an entire class might be missing (for example,
negative experimental results are typically not published). A naively trained learner may perform
poorly on test data that is not similarly afflicted by labeling bias. Several techniques address labeling
bias in the context of cost-sensitive learning and learning from imbalanced data [5, 11, 2]. If the
labeling bias is known or can be estimated, and all classes appear in the training set, a model trained
on biased data can be corrected by reweighting [5]. When the labeling bias is unknown, a model is
often selected using threshold-independent analysis such as ROC curves [11]. A good ROC curve,
however, does not guarantee a low loss on test data. Here, we are concerned with situations when
the labeling bias is unknown and some classes may be missing, but we have access to unlabeled
data. We want to construct models that in addition to good ROC-based performance, also yield
low test loss. We will be concerned with minimizing joint and conditional log loss, or equivalently,
maximizing joint and conditional log likelihood.

Our work is motivated by the application of modeling species’ geographic distributions from occur-
rence data. The data consists of a set of locations within some region (for example, the Australian
wet tropics) where a species (such as the golden bowerbird) was observed, and a set of features such
as precipitation and temperature, describing environmental conditions at each location. Species dis-
tribution modeling suffers from extreme imbalance in training data: we often only have information
about species presence (positive examples), but no information about species absence (negative ex-
amples). We do, however, have unlabeled data, obtained either by randomly sampling locations
from the region [4], or pooling presence data for several species collected with similar methods to
yield a representative sample of locations which biologists have surveyed [13].

Previous statistical methods for species distribution modeling can be divided into three main ap-
proaches. The first interprets all unlabeled data as examples of species absence and learns a rule



to discriminate them from presences [19, 4]. The second embatiscriminative learner in the

EM algorithm in order to infer presences and absences in unlabeled data; this explicitly requires
knowledge of true class probabilities [17]. The third models the presences alone, which is known in
machine learning as one-class estimation [14, 7]. When using the first approach, the training data is
commonly reweighted so that positive and negative examples have the same weight [4]; this models
a quantity monotonically related to conditional probability of presence [13], with the relationship
depending on true class probabilities. If we ys® denote the binary variable indicating presence
andx to denote a location on the map, then the first two approaches yield models of conditional
probability p(y = 1|x), given estimates of true class probabilities. On the other hand, the main in-
stantiation of the third approach, maximum entropy density estimation (maxent) [14] yields a model
of the distributionp(z|y = 1). To convert this to an estimate pfy = 1|x) (as is usually required,

and necessary for measuring conditional log loss on which we focus here) again requires knowledge
of the class probabilities(y = 1) andp(y = 0). Thus, existing discriminative approaches (the first

and second) as well as generative approaches (the third) require estimates of true class probabilities.

We apply robust Bayesian decision theory, which is closely related to the maximum entropy prin-
ciple [6], to derive conditional probability estimate§y | z) that perform well under a wide range

of test distributions. Our approach can be used to derive robust estimates of class probgilities
which are then used to reweight discriminative models or to convert generative models into discrimi-
native ones. We present a treatment for the general multiclass problem, but our experiments focus on
one-class estimation and species distribution modeling in particular. Using an extensive evaluation
on real-world data, we show improvement in both generative and discriminative techniques.

Throughout this paper we assume that the difficulty of uncovering the true class label depends on the
class label; alone, but is independent of the exampleEven though this assumption is simplistic,

we will see that our approach yields significant improvements. A related set of techniques estimates
and corrects for the bias in sample selection, also known as covariate shift [9, 16, 18, 1, 13]. When

the bias can be decomposed into an estimable and inestimable part, the right approach might be to
use a combination of techniques presented in this paper and those for sample-selection bias.

2 Robust Bayesian Estimation with Unknown Class Probabilities

Our goal is to estimate an unknown conditional distributidly | ), wherez € X is an example
andy € Y is a label. The input consists of labeled examgles 1), .. ., (€m, ¥ ) and unlabeled
examplesr,,+1,...,zm. Each example is described by a set of featurgs : X — R, indexed

by j € J. For simplicity, we assume that sets Y, andJ are finite, but we would like to allow the
spaceX and the set of featureksto be very large.

In species distribution modeling from occurrence data, the sfam@responds to locations on the

map, features are various functions derived from the environmental variables, and4tfe®stins

two classes: presencg & 1) and absence (i 0) for a particular species. Labeled examples are
presences of the species, e.g., recorded presence locations of the golden bowerbird, while unlabeled
examples are locations that have been surveyed by biologists, but neither presence nor absence was
recorded. The unlabeled examples can be obtained as presence locations of species observed by a
similar protocol, for example other birds [13].

We posit a joint densityr(z, y) and assume that examples are generated by the following process.
First, a pair(z, y) is chosen according te. We always get to see the examplebut the label is
revealed with an unknown probability that dependsyand is independent af. This means that

we have access to independent samples frgm and fromr(z | ), but no information about(y).

In our example, species presence is revealed with an unknown fixed probability whereas absence is
revealed with probability zero (i.e., never revealed).

2.1 Robust Bayesian Estimation, Maximum Entropy, and Logistic Regression

Robust Bayesian decision theory formulates an estimation problem as a zero-sum game between a
decision maker and nature [6]. In our case, the decision maker chooses an egtimajewhile

nature selects a joint densityz, y). Using the available data, the decision maker forms &3at

which he believes nature’s choice lies, and tries to minimize worst-case loss under nature’s choice.
In this paper we are interested in minimizing the worst-case log loss relative to a fixed default



estimater (equivalently, maximizing the worst-case log likelihood ratio)

i B i (U 5)| @

Here, A is the simplex of joint densities arld, is a shorthand foEx y ... The default density
represents any prior information we have abovif we have no prior informationy is typically the
uniform density.

Grunwald and Dawid [6] show that the robust Bayesian problem (Eg. 1) is often equivalent to the
minimum relative entropy problem

mijr)l RE(p|v) , ()

pe

where REp|| ¢) = E,[In(p(X,Y)/q(X,Y)] is relative entropy or Kullback-Leibler divergence

and measures discrepancy between distributipasdq. The formulation intuitively says that we
should choose the densjbywhich is closest te while respecting constrainf® Whenw is uniform,
minimizing relative entropy is equivalent to maximizing entropfpH= E, [— In p(X, Y)]. Hence,

the approach is mainly referred to as maximum entropy [10] or maxent for short. The next theorem
outlines the equivalence of robust Bayes and maxent for the case considered in this paper. Itis a
special case of Theorem 6.4 of [6].

Theorem 1 (Equivalence of maxent and robust Bayekpt X x Y be a finite sample space,
a density onX x Y and P C A a closed convex set containing at least one density absolutely
continuous w.r.tv . Then Eqs(1) and (2) have the same optimizers.

For the case without labeling bias, the Seis usually described in terms of equality constraints

on moments of the joint distribution (feature expectations). Specifically, feature expectations with
respect tg are required to equal their empirical averages. When features are functionisustthe

goal is to discriminate among classgst is natural to consider a derived set of features which are
versions off; () active solely in individual classeg(see for instance [8]). If we were to estimate the
distribution of the golden bowerbird from presence-absence data then moment equality constraints
require that the joint model(x, y) match the average altitude of presence locations as well as the
average altitude of absence locations (both weighted by their respective training proportions).

When the number of samples is too small or the number of features too large then equality con-
straints lead to overfitting because the true distribution does not match empirical averages exactly.
Overfitting is alleviated by relaxing the constraints so that feature expectations are only required to
lie within a certain distance of sample averages [3].

The solution of Eq. (2) with equality or relaxed constraints can be shown to lie in an exponential
family parameterized by = (AY),cy, AY € R?, and containing densities

ax(z,y) o< v(a, y)er F@)

The optimizer of Eq. (2) is the unique density which minimizes the empirical log loss
1
— > Inga(wi, vi) €)
m i<m

possibly with an additional; -regularization term accounting for slacks in equality constraints. (See
[3] for a proof.)

In addition to constraints on moments of the joint distribution, it is possible to introduce constraints
on marginals ofp. The most common implementations of maxent impose marginal constraints
p(z) = 7'3(z) where7'3 is the empirical distribution over labeled examples. The solution then
takes formg (z,y) = 72°(x)gx (v | ) wheregx (y | ) is the multinomial logistic model

oAyl @) o v(y|z)er 7).
As before, the maxent solution is the unique density of this form which minimizes the empirical log
loss (Eq. 3). The minimization of Eq. (3) is equivalent to the minimization of conditional log loss

1
— -1 i | i) -
mE ngx(yi | i)

i<m



Hence, this approach corresponds to logistic regressiarceSi only models the labeling process
m(y | ), but not the sample generatiafx), it is known as discriminative training.

The case with equality constraintgy) = 7'2°(y) has been analyzed for example by [8]. The
solution has the formy (z,y) = 72°(y)ga (z | y) with

ax(x|y) o v(z|y)er @
Log loss can be minimized for each class separately, i.e., ¥a¢hthe maximum likelihood esti-
mate (possibly with regularization) ef(x | ). The joint estimate (x, y) can be used to derive the
conditional distributionyx (y | z). Since this approach estimates the sample generating distributions
of individual classes, it is known as generative training. Naive Bayes is a special case of generative
training whenv(z | y) = [, v;(f;(2) |y).

The two approaches presented in this paper can be viewed as generalizations of generative and
discriminative training with two additional components: availability of unlabeled examples and lack

of information about class probabilities. The former will influence the choice of the defatlile

latter the form of constraint®.

2.2 Generative Training: Entropy-weighted Maxent

When the number of labeled and unlabeled examples is sufficiently large, it is reasonable to assume
that the empirical distributiorr () over all examples (labeled and unlabeled) is a faithful repre-
sentation ofr(x). Thus, we consider defaults withz) = 7(x), shown to work well in species
distribution modeling [13]. For simplicity, we assume thdy | =) does not depend anand focus
onv(xz,y) = 7(x)v(y). Other options are possible. For example, when the number of examples is
small,7(z) might be replaced by an estimatemd(fr). The distributionv(y) can be chosen uniform
acrossy, but if some classes are known to be rarer than others then a non-uniform estimate will
perform better. In Section 3, we analyze the impact of this choice.

Constraints on moments of the joint distribution, such as those in the previous section, will misspec-
ify true moments in the presence of labeling bias. However, as discussed earlier, labeled examples
from each clasg approximate conditional distributiongx | ). Thus, instead of constraining joint
expectations, we constrain conditional expectatiBpgf; (X) | y]. In general, we consider robust
Bayes and maxent problems with the 3aif the form? = {p € A : p € P4} wherep). denotes

the |X|-dimensional vector of conditional probabilitip&z | y) andP¥. expresses the constraints on

p%. For example, relaxed constraints for clgsare expressed as

Vi |Bplf;(X) 9] — | < BY 4)
whereﬂg is the empirical average of, among labeled examples in clasands? are estimates of
deviations of averages from true expectations. Similar to [14], we use standard-error-like deviation
estimates?j.’ = ﬁ&;’ﬂ /m,, where( is a single tuning constan};’ is the empirical standard devia-

tion of f; among labeled examples in clagsandm, is the number of labeled examples in clgss
Whenm, equals 0, we choosg = oo and thus leave feature expectations unconstrained.

The next theorem and the following corollary show that robust Bayes (and also maxent) with the
constraint sef of the form above yield estimators similar to generative training. In addition to the
notationp¥. for conditional densities, we use the notatignandp to denote vectors of marginal
probabilitiesp(y) andp(z), respectively. For example, the empirical distribution over examples is
denotedr.

Theorem 2. LetP%, y € Y be closed convex sets of densities &Wend? = {p € A : p} € P}

If P contains at least one density absolutely continuous w.then robust Bayes and maxent over

P are equivalent. The solutiop has the formp(y)p(x | y) where class-conditional densitig§.
minimizeRE(p. || 7x) amongp%. € P% and

P(y) oc v(y)e REPR 7). (5)

Proof. It is not too difficult to verify that the sef is a closed convex set of joint densities, so
the equivalence of robust Bayes and maxent follows from Theorem 1. To prove the remainder, we
rewrite the maxent objective as

RE(p||v) = RE(py || vy) + Y _ p(y)RE(@Y || 7x) -



Maxent problem is then equivalent to

ng;n{RE(py lvy) + > ply) min RE(pY IIﬁx)}

y y
pleP
y X X

= ngiyn[(z:p(y) ln<ly)$>> + (Zp(y)RE(ﬁ%’c | ﬁx))]
= min [Zy: p(y) In (V(y)e_];(éj(zag( 7x) )]

= const.+ min RE(py || py) -
Py

Since REp || ¢) is minimized forp = ¢, we indeed obtain that for the minimizingpy = py. O

Theorem 2 generalizes to the case when in addition to contegi’. to lie in P%., we also constrain

py to lie in a closed convex sé&y. The solution then takes form(y)p(z | y) with p(z|y) as

in the theorem, but withp(y) minimizing REpy || py) subject topy € Py. Unlike generative
training without labeling bias, the class-conditional densities in the theorem above influence class
probabilities. When set8%. are specified using constraints of Eq. (4) thidras a form derived from
regularized maximum likelihood estimates in an exponential family (see, e.g., [3]):

Corollary 3. If setsP. are specified by inequality constraints of H¢) then robust Bayes and
maxent are equivalent. The class-conditional densji{eq y) of the solution take form

ax(x|y) oc w(x)eX I ©)
and solve single-class regularized maximum likelihood problems
n}l\iyn{lz [~ Inga(zi |y)] +my;5j|Ag} . @)
vYi=Y JjE

One-class Estimation. In one-class estimation problems, there are two classaad1), but we

only have access to labeled examples from one class (e.g.1Eldsspecies distribution modeling,

we only have access to presence records of the species. Based on labeled examples, we derive a set
of constraints orp(x |y = 1), but leavep(x | y = 0) unconstrained. By Theorem 2(z |y = 1)

then solves the single-class maximum entropy problem, we wifitey = 1) = pve(z), and

p(z |y = 0) = 7(x). Assume without loss of generality that examplgs. . ., z, are distinct (but

allow them to have identical feature vectors). Thaig;) = 1/M on examples and zero elsewhere,

and REpwe || 7x) = —H(pme) + In M. Plugging these into Theorem 2, we can derive the condi-
tional estimatei(y = 1| z) across all unlabeled examples

v(y = 0) + v(y = 1)pme(z)eHPue)
If constraints orp(« | y = 1) are chosen as in Corollary 3 thépe is exponential and Eq. (8) thus
describes a logistic model. This model has the same coefficieptgeasvith the intercept chosen

so that “typical” examples: underpye (examples with log probability close to the expected log
probability) yield predictions close to the default.

ply=1[z)=

2.3 Discriminative Training: Class-robust Logistic Regression

Similar to the previous section, we considér,y) = 7(z)v(y). The set of constraint® will

now also include equality constraints efiz). Since#'2®(x) misspecifies the marginal, we use
p(xz) = 7(x). Next theorem is an analog of Corollary 3 for discriminative training. It follows from
a combination of Theorem 1 and duality of maxent with maximum likelihood [3]. A complete proof
will appear in the extended version of this paper.

Theorem 4. Assume that setB). are specified by inequality constraints of §4). Let? = {p €
Az pY € P4 andpy = 7y }. If the setP is non-empty then robust Bayes and maxent 6vare
equivalent. For the solutiof), p(z) = 7(x) andp(y | ) takes form

AV f(x)=AY- Y YIAY
(Y| z) o wy)e TEN L BN ©)



and solves the regularized “logistic regression” problem

mln{ ZZ[ (ylzi) Inga(y| =) ] +> 7y Z[ﬂjﬂ/\ﬂﬂﬂgﬁﬁ,\ﬂ} . (10)

'L<]\1 yey yeY JEJ

wherer is an arbitrary feasible pointr € P, and its class-conditional feature expectations.

We put logistic regression in quotes, because the model described by Eq. (9) is not the usual logistic
model; however, once the parametatsare fixed, Eq. (9) simply determines a logistic model with a
special form of the intercept. Note that the second term of Eq. (10) is indeed a regularization, albeit
possibly an asymmetric one, since any feastbleill have |i% — Y| < B7. Sincen(z) = 7 (),

7 is specified solely byr(y | ) and thus can be viewed as a tentative imputation of labels across
all examples. We remark that the value of the objective of Eq. (10) does not depend on the choice
of 7, because a different choice #f(influencing the first term) yields a different set of me@rys
(influencing the second term) and these differences cancel out. To provide a more concrete example
and some intuition about Eq. (10), we now consider one-class estimation.

One-class estimation. A natural choice ofr is the “pseudo-empirical” distribution which views
all unlabeled examples as negatives. Pseudo-empirical means of oiassh empirical averages of
classl exactly, whereas pseudo-empirical means of dlasan be arbitrary because they are uncon-
strained. The lack of constraints on claderces the corresponding’ to equal zero. The objective
can thus be formulated solely usid for the classl; therefore, we will omit the superscript

Eq. (10) after multiplying byV/ then becomes

mAin{Z[—lnqA(yzllxi)]wL > [—lnqx(y:Oxi)]erZﬂjMﬂ}.

i<m m<i<M Jj€J

Thus the objective of class-robust logistic regression is the same as of regularized logistic regression
discriminating positives from unlabeled examples.

3 Experiments

We evaluate our techniques using a large real-world dataset containing 226 species from 6 regions
of the world, produced by the “Testing alternative methodologies for modeling species’ ecological
niches and predicting geographic distributions” Working Group at the National Center for Ecological
Analysis and Synthesis (NCEAS). The training set contains presence-only data from unplanned
surveys or incidental records, including those from museums and herbariums. The test set contains
presence-absence data from rigorously planned independent surveys (i.e., without labeling bias).
The regions are described by 11-13 environmental variables, with 20-54 species per region, 2-5822
training presences per species (median of 57), and 102-19120 test points (presences and absences);
for details see [4]. As unlabeled examples we use presences of species captured by similar methods,
known as “target group”, with the groups as in [13].

We evaluate both entropy-weighted maxent and class-robust logistic regression while varying the
default estimate(y = 1), referred to aslefault species prevalenbg analogy withp(y = 1), which

is calledspecies prevalence. Entropy-weighted maxent solutions for different default prevalences are
derived by Eq. (8) from the same one-class estinigie Class-robust logistic regression requires
separate optimization for each default prevalence.

We calculateye using theMaxentpackage [15] with features spanning the space of piecewise linear
splines (of each environmental variable separately) and a tuned valiéset [12] for the details

on features and tuning). Class-robust logistic models are calculated by a boosting-like algorithm
SUMMET [3] with the same set of features and the same valas the maxent runs.

For comparison, we also evaluate default-weighted maxent, using class probafiities v(y)

instead of Eg. (5), and two “oracle” methods based on class probabilities in the test data: constant
Bernoulli predictionp(y | z) = 7 (y), and oracle-weighted maxent, usipy) = 7 (y) instead of

Eq. (5). Note that the constant Bernoulli prediction has no discrimination power (its AUC is 0.5)
even though it matches class probabilities perfectly.
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Figure 1: Comparison of reweighting schem@&sp: Test log loss averaged over species with given
values of test prevalence, for varying default prevalemmdtom: For each value of test log loss, we
determine the range of default prevalence values that achieve it.

To test entropy-weighting as a general method for estimating class probabilities, we also evalu-
ate boosted regression trees (BRT), which have the highest predictive accuracy along with maxent
among species distribution modeling techniques [4]. In this application, BRT is used to construct a
logistic model discriminating positive examples from unlabeled examples. Recent work [17] uses a
more principled approach where unknown labels are fitted by an EM algorithm, but our preliminary
runs had too low AUC values, so they are excluded from our comparison. We train BRT using the
R packaggbmon datasets weighted so that the total weight of positives is equal to the total weight
of unlabeled examples, and then apply Elkan’s reweighting scheme [5]. Specifically, the BRT result
pert(y | 2) is transformed to

p(y = V)perr(y = 1]x)
p(y = D)perr(y = 1]z) + p(y = 0)perr(y = 0] 2)
for two choices of(y): default,p(y) = v(y), and entropy-based (usifge).

ply=1]z) =

All three techniques yield state-of-the-art discrimination (see [13]) measured by the average AUC:
maxent achieves AUC of 0.7583; class-robust logistic regression 0.7451-0.7568; BRT 0.7545. Un-
like maxent and BRT estimates, class-robust logistic estimates are not monotonically related, so they
yield different AUC for different default prevalence. However, log loss performance varies broadly
according to the reweighting scheme. In the top portion of Fig. 1, we focus on maxent. Naive
weighting by default prevalence yields sharp peaks in performance around the best default preva-
lence. Entropy-based weighting yields broader peaks, so it is less sensitive to the default prevalence.
The improvement diminishes as the true prevalence increases, but entropy-based weighting is never
more sensitive. Thanks to smaller sensitivity, entropy-based weighting outperforms naive weight-
ing when a single default needs to be chosen for all species (the rightmost plot). Note that the
optimal default values are higher for entropy-based weighting, because in one-class estimation the
entropy-based prevalence is always smaller than default (unless the egijmatainiform).

Improved sensitivity is demonstrated more clearly in the bottom portion of Fig. 1, now also including
BRT and class-robust logistic regression. We see that BRT and maxent results are fairly similar, with
BRT performing overall slightly better than maxent. Note that entropy-reweighted BRT relies both
on BRT and maxent for its performance. A striking observation is the poor performance of class-
robust logistic regression for species with larger prevalence values; it merits further investigation.



4 Conclusion and Discussion

To correct for unknown labeling bias in training data, we used robust Bayesian decision theory and
developed generative and discriminative approaches that optimize log loss under worst-case true
class proportions. We found that our approaches improve test performance on a benchmark dataset
for species distribution modeling, a one-class application with extreme labeling bias.
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