
Effects of Stimulus Type and of Error-Correcting
Code Design on BCI Speller Performance

Jeremy Hill1 Jason Farquhar2 Suzanne Martens1

Felix Bießmann1,3 Bernhard Schölkopf1

1Max Planck Institute for Biological Cybernetics
{firstname.lastname}@tuebingen.mpg.de
2NICI, Radboud University, Nijmegen, The Netherlands

J.Farquhar@nici.ru.nl
3Dept of Computer Science, TU Berlin, Germany

Abstract

From an information-theoretic perspective, a noisy transmission system such as a
visual Brain-Computer Interface (BCI) speller could benefit from the use of error-
correcting codes. However, optimizing the code solely according to the max-
imal minimum-Hamming-distance criterion tends to lead to an overall increase
in target frequency of target stimuli, and hence a significantly reduced average
target-to-target interval (TTI), leading to difficulties in classifying the individual
event-related potentials (ERPs) due to overlap and refractory effects. Clearly any
change to the stimulus setup must also respect the possible psychophysiologi-
cal consequences. Here we report new EEG data from experiments in which we
explore stimulus types and codebooks in a within-subject design, finding an in-
teraction between the two factors. Our data demonstrate that the traditional, row-
column code has particular spatial properties that lead to better performance than
one would expect from its TTIs and Hamming-distances alone, but nonetheless
error-correcting codes can improve performance provided the right stimulus type
is used.

1 Introduction

The Farwell-Donchin speller [4], also known as the “P300 speller,” is a Brain-Computer Interface
which enables users to spell words provided that they can see sufficiently well. This BCI determines
the intent of the user by recording and classifying his electroencephalogram (EEG) in response to
controlled stimulus presentations. Figure 1 shows a general P300 speller scheme. The stimuli are
intensifications of a number of letters which are organized in a grid and displayed on a screen. In a
standard setup, the rows and columns of the grid flash in a random order. The intensification of the
row or column containing the letter that the user wants to communicate is a target in a stimulus se-
quence and induces a different brain response than the intensification of the other rows and columns
(the non-targets). In particular, targets and non-targets are expected to elicit certain event-related
potential (ERP) components, such as the so-called P300, to different extents. By classifying the
epochs (i.e. the EEG segments following each stimulus event) into targets and non-targets, the target
row and column can be predicted, resulting in the identification of the letter of interest.

The classification process in the speller can be considered a noisy communication channel where
the sequence of EEG epochs is a modulated version of a bit string denoting the user’s desired letter.

1

Figure 1: Schematic of the visual speller system, illustrating the relationship between the spatial
pattern of flashes and one possible codebook for letter transmission (flash rows then columns).

These bit strings or codewords form the rows of a binary codebookC, a matrix in which a 1 at
position(i, j) means the letter corresponding to rowi flashed at time-stepj, and a 0 indicates that it
did not. The standard row-column code, in which exactly one row or exactly one column flashes at
any one time, will be denotedRC. It is illustrated in figure 1.

A classifier decodes the transmitted information into an output bit string. In practice, the poor
signal-to-noise ratio of the ERPs hampers accurate classification of the epochs, so the output bit
string may differ from the transmitted bit string (decoding error). Also, the transmitted string may
differ from the corresponding row in the codebook due to modulation error, for example if the user
lost his attention and missed a stimulus event. Coding theory tells us that we can detect and correct
transmission and decoding errors by adding redundancy to the transmitted bit string. The Hamming
distanced is the number of bit positions that differ between two rows in a codebook. The minimum
Hamming distancedmin of all pairs of codewords is related to the error correcting abilities of the
code bye = (dmin − 1)/2, wheree is the maximum number of errors that a code can guarantee to
correct [9]. In general, we find the mean Hamming distance within a given codebook to be a rough
predictor of that codebook’s performance.

In the standard approach, redundancy is added by repeating the flashing of all rows and columnsR
times. This leads tod = 4R between two letters not in the same row or column anddmin = 2R
between two letters in the same row or column. TheRC code is a poor code in terms of minimum
Hamming distance: to encode 36 different letters in 12 bits,dmin = 4 is possible, and the achievable
dmin increases supra-linearly with the total code lengthL (for example,dmin = 10 is possible in
L = 24 bits, the time taken forR = 2 repeats of theRC code).

However, the codes with a largerdmin are characterized by an increasedweight compared to theRC
code, i.e. the number of 1’s per bitstring is larger. As target stimulus events occur more frequently
overall, the expected target-to-target interval (TTI) decreases. One cannot approach codebook op-
timization, therefore, without asking what effect this might have on the signals we are trying to
measure and classify, namely the ERPs in response to the stimulus events.

The speller was originally derived from an “oddball” paradigm, in which subjects are presented with
a repetitive sequence of events, some of which are targets requiring a different response from the
(more frequent) non-targets. The targets are expected to evoke a larger P300 than the non-targets.
It was generally accepted that the amplitude of the target P300 decreases when the percentage of
targets increases [3, 11]. However, more recently, it was suggested that the observed tendency of
the P300 amplitude (as measured by averaging over many targets) to decrease with increased target
probability may in fact be attributed to greater prevalence of shorter target-to-target intervals (TTI)
[6] rather than an overall effect of target frequency per se. In a different type of paradigm using only
targets, it was shown that at TTIs smaller than about 1 second, the P300 amplitude is significantly
decreased due to refractory effects [15]. Typical stimulus onset asynchronies (SOAs) in the oddball
paradigm are in the order of seconds since the P300 component shows up somewhere between 200
and 800 msec[12]. In spellers, small SOAs of about 100 msec are often used [8, 13] in order to

2

achieve high information transfer rates. Consequently, onecan expect a significant ERP overlap
into the epoch following a target epoch, and since row flashes are often randomly mixed in with
column flashes, different targets may experience very different TTIs. For a6 × 6 grid, the TTI
ranges from1×SOA to20×SOA, so targets may suffer to varying degrees from any refractory and
overlap effects.

In order to quantify the detrimental effects of short TTI we examined data from the two subjects in
dataset IIa+b from the BCI Competition III[2]. Following the classification procedures described in
section 3.3, we estimated classification performance on the individual epochs of both data sets by 10-
fold cross-validation within each subject’s data set. Binary (target versus non-target) classification
results were separated according to the time since the previous target (TPT)—for the targets this
distance measure is equivalent to the TTI. The left panel of fig 4 shows the average classification
error as a function of TPT (averaged across both subjects—both subjects show the same qualitative
effect). Evidently, the target epochs with a TPT<0.5 sec display a classification accuracy that
approximates chance performance. Consequently, the target epochs with TPT<0.5 sec, constituting
about 20% of all target epochs in aRC code, do not appear to be useful for transmission [10].

Clearly, there is a potential conflict between information-theoretic factors, which favour increasing
the minimum Hamming distance and hence the overall proportion of target stimuli, and the detri-
mental psychophysiological effects of doing so.

In [7] we explored this trade-off to see whether an optimal compromise could be found. We initially
built a generative model of the BCI system, using the competition data illustrated in figure 4, and
then used this model to guide the generation and selection of speller code books. The results were
not unequivocally successful: though we were able to show effects of both TTIs and of the Hamming
distances in our codebooks, our optimized codebook performed no better than the row-column code
for the standard flash stimulus. However, our series of experiments involved another kind of stim-
ulus, and the effect of our codebook manipulation was found to interact with the kind of stimulus
used.

The purpose of the current paper is two-fold:

1. to present new data which ilustrate the stimulus/codebook interaction more clearly, and
demonstrate the advantage to be gained by the correct choice of stimulus together with an
error-correcting code.

2. to present evidence for another effect, which we had not previously considered in modelling
our subjects’ responses, which may explain why row-column codes perform better than
expected: specifically, the spatial contiguity of rows and columns.

2 Decoding Framework

2.1 Probabilistic Approach to Classification and Decoding

We assume anN -letter alphabetΓ and anN -letter byL-bit codebookC. The basic demodulation
and decoding procedure consists of finding the letterT̂ among the possible letterst ∈ Γ showing
the largest probabilityPr (t|X) of being the target letterT , givenC and the measured brain signals
X = [x1, . . . , xL], i.e.,

T̂ = argmax
t∈Γ

Pr (t|X) = argmax
t∈Γ

Pr (X|t) Pr (t)

Pr (X)
, (1)

where the second equality follows from Bayes’ rule. A simple approach to decoding is to treat the
individual binary epochs, with binary labelsc = (Ct1 . . . CtL), as independent. This allows us to
factorPr (X|t) into per-epoch probabilitiesPr (xj |c) for epoch indicesj = 1 . . . L, to give

Pr (t|X) =
Pr (t)

Pr (X)

L∏

j=1

Pr (xj |c) =
Pr (t)

Pr (X)

L∏

j=1

Pr (Ctj |xj) Pr (xj)

Pr (Ctj)
= ft(X) , (2)

where the second equality again follows from Bayes’ rule.

This form of Bayesian decoding [5] forms the basis for our decoding scheme. We train a probabilistic
discriminative classifier, in particular a linear logistic regression (LR) classifier [1, pp82-85], to

3

estimatePr (Ctj |xj) = pj in (2). As a result, we can obtain estimates of the probabilityPr (t|X)
that a particular lettert corresponds to the user-selected codeword. Note that for decoding purposes
the termsPr (X) andPr (xj) can be ignored as they are independent oft. Furthermore, the product∏

j Pr (Ctj) depends only on the positive-class prior of the binary classifier,Pr (+). In fact, it is
easy to show that during decoding this term cancels out the effect of the binary prior, which may
therefore be set arbitrarily without affecting the decisions made by our decoder. The simplest thing
to do is to train classifiers withPr (+) = 0.5, in which case the denominator term is constant for all
t.

2.1.1 Codebook Optimization

We used a simple model of subjects’ responses in each epoch in order to estimate the probability
of making a prediction error with the above decoding method. We used it to compute thecodebook
loss, which is the sum of error probabilities, weighted by the probability of transmission of each
letter. This loss function was then minimized in order to obtain an optimized codebook.

Note that this approach is not a direct attempt to tackle the tendency for the performance of the
binary target-vs-nontarget classifier to deteriorate when TTI is short (although this would surely be
a promising alternative strategy). Instead, we take a “normal” classifier, as susceptible to short-TTI
effects as classifiers in any other study, but try to estimate the negative impact of such effects, and
then find the best trade-off between avoiding short TTIs on the one hand, and having large Hamming
distances on the other hand.

Since our optimization did not result in a decisive gain in performance, we do not wish to emphasize
the details of the optimization methods here. However, for further details see the supplementary
material, or our tech report [7]. For the purposes of the current paper it is the properties of the
resulting codebooks that are important, rather than the precise criterion according to which they are
considered theoretically optimal. The codebooks themselves are described in section 3.1 and given
in full in the supplementary material.

3 EEG Experiments

We implemented a Farwell/Donchin-style speller, using a6 × 6 grid of alphanumeric characters,
presented via an LCD monitor on a desk in a quiet office. Subjects each performed a single 3-hour
session during which their EEG signals were measured using a QuickAmp system (BrainProducts
GmbH) in combination with an Electro-Cap. The equipment was set up to measure 58 channels of
EEG, one horizontal EOG at the left eye, one bipolar vertical EOG signal, and a synchronization
signal from a light sensor attached to the display, all sampled at 250 Hz. We present results from 6
healthy subjects in their 20s and 30s (5 male, 1 female).

Two factors were compared in a fully within-subject design: codebook and stimulus. These are
described in the next two subsections.

3.1 Codebook Comparison

In total, we explored 5 different stimulus codes:

1. RCmix: the 12-bit row-column code, with the 12 bits randomly permuted in time (row events
mixed up randomly between column events) as in the competition data [2].

2. RCsep: the 12-bit row-column code, where the 6 rows are intensified in random order, and
then the 6 columns in random order.

3. RC∗: this code was generated by taking codeRCsep and randomizing the assignment be-
tween codewords and letters. Thus, the TTI and Hamming-distance content of the code-
book remained identical toRCsep, but the spatial contiguity of the stimulus events was
broken: that is to say, it was no longer a coherent row or column that flashed during any
one epoch, but rather a collection of 6 apparently randomly scattered letters. However, if a
subject were to have “tunnel vision” and be unable to see any letters other than the target,
this would be exactly equivalent toRCsep. As we shall see, for the purposes of the speller,
our subjects do not have tunnel vision.

4

code L dmin E(d) E(TTI) E(#11) Pr (1) L
RCmix ×2 24 4 6.9 5.4 0.4 0.17 0.60
RCsep ×2 24 4 6.9 6.0 0.1 0.17 0.56
RC∗ ×2 24 4 6.9 6.0 0.1 0.17 0.56
D10 24 10 11.5 2.5 3.1 0.38 0.54
D8opt 24 8 10.7 3.1 0.0 0.32 0.44

Table 1: Summary statistics for the 24-bit versions of the 5 codebooks used. E(#11) means the
average number of consecutive target letters per codeword, andPr (1) the proportion of targets.L
is our estimated probability of an error, according to the model (see supplementary material or [7]).

4. D10: a 24-bit code with the largest minimum Hamming distance we could achieve
(dmin = 10). To make it, our heuristic for codeword selection was to pick the codeword
with the largest minimum distance between it and all previously selected codewords. A
large number of candidate codebooks were generated this way, and the criteria for scoring
a completed codebook were (first)dmin and (second, to select among a large number of
dmin = 10 candidates) the lowest number of consecutive targets.

5. D8opt: a 24-bit code optimized according to our model. The heuristic for greedy codeword
selection was the mean pairwise codebook loss w.r.t. previously selected codebook entries,
and the final scoring criterion was our overall codebook loss function.

3.2 Stimulus Comparison

Two stimulus conditions were compared. In both conditions, stimulus events were repeated with
a stimulus onset asynchrony (SOA) of 167 msec, which as close as our hardware could come to
recreating the 175-msec SOA of competition III dataset II.

Flashes: grey letters presented on a black background were flashed in a conventional manner, being
intensified to white for 33 msec (two video frames). An example is illustrated in the inset of the left
panel of figure 2.

Flips: each letter was superimposed on a small grey rectangle whose initial orientation was either
horizontal or vertical (randomly determined for each letter). Instead of the letter flashing, the rect-
angle flipped its orientation instantaneously by 90◦. An example is illustrated in the inset of the
right panel of figure 2. Our previous experiments had led us to conclude that many subjects perform
significantly better with this stimulus, and find it more pleasant, than the flash. As we shall see, our
results from this stimulus condition support this finding, and indicate a potentially useful interaction
between stimulus type and codebook design.

3.3 Experimental Procedure

The experiment was divided into blocks, each block containing 20 trials with short (2–4 second)
rest pauses between trials. Each trial began with a red box which indicated to the subject which
letter (randomly chosen on each trial) they should attend to—this cue came on for a second, and was
removed 1 second before the start of the stimulus sequence. Subjects were instructed to count the
stimulus events at the target location, and not to blink, move or swallow during the sequence. The
sequence consisted ofL = 72 stimulus events, their spatio-temporal arrangement being determined
by one of the five code conditions. The 12-bitRC codes were repeated six times in order to make the
length up toL = 72 (re-randomizing the row and column order on each repetition) and the 24-bit
optimized codes were repeated three times (reassigning the codewords between repetitions to ensure
maximal gap between targets at the end of one repetition and the beginning of the next) likewise to
ensure a total code length of72 bits.

Each of the 5 code conditions occurred 4 times per block, the order of their occurrence being ran-
domized. For a given block, the stimulus condition was held constant, but the stimulus type was
alternated between blocks. In total, each subject performed 16 blocks. Thus, in each of the 10
stimulus× code conditions, there were a total of 32 letter presentations or 2304 stimulus events.

5

3.3.1 Online Verification

Subjects did not receive feedback at the end of each trial. However, at the end of the experiment,
we gave the subject the opportunity to perform free-spelling in order to validate the system’s perfor-
mance: we asked each subject whether they would prefer to spell with flips or flashes, and loaded
a classifier trained on all data from their preferred stimulus type into the system. Using the 72-bit
codebooks, all subjects were able to spell 5-15 letters with online performance ranging from 90 to
100%. Our data analysis below is restricted to leave-one-letter-out offline performance, excluding
the free-spelled letters.

3.4 Data Analysis

The 60-channel data, sampled at 250 Hz, were band-pass filtered between 0.1 and 8 Hz using a
FIR filter. The data were then cut into 600-msec (150-sample) epochs time-locked to the stimulus
events, and these were downsampled to 25 Hz. The data were then whitened in 60-dimensional
sensor space (by applying a symmetric spatial filtering matrix equal to the matrix-square-root of the
data covariance matrix, computed across all training trials and time-samples). Finally a linear LR
classifier was applied [1, pp82-85]. The classifier’s regularization hyperparameterC was found by
10-fold cross-validation within the training set..

Offline letter classification performance was assessed by a leave-one-letter-out procedure: for a
given code condition, each of the 32 letters was considered in turn, and a probabilistic prediction
was made of its binary epoch labels using the above procedure trained only on epochs from the other
31 letters. These probabilities were combined using the decoding scheme described in section 2.1
and a prediction was made of the transmitted letter. We varied the number of consecutive epochs of
the test letter that the decoder was allowed to use, from the minimum (12 or 24) up to the maximum
72. For each epoch of the left-out letter, we also recorded whether the binary classifier correctly
classified the epoch as a target or non-target.

4 Results and Discussion

Estimates of 36-class letter prediction performance are shown in figures 2 (averaged across subjects,
as a function of codeword length) and 3 (for each individual subject, presenting only the results
for 24-bit codewords). The performance of the binary classifier on individual epochs is shown in
figure 4.

12 24 36 48 60 72
40

50

60

70

80

90

100

%
 le

tte
rs

 c
or

re
ct

length of code (epochs)

flashes

12 24 36 48 60 72
40

50

60

70

80

90

100

%
 le

tte
rs

 c
or

re
ct

length of code (epochs)

flips

D8
opt

D10

RC
sep

RC
mix

RC
*

D8
opt

D10

RC
sep

RC
mix

RC
*

 0 16.67 33.33 50 msec 0 16.67 33.33 50 msec

Figure 2: Offline (leave-one-letter-out) 36-class prediction performance as a function of codeword
length (i.e. the number of consecutive epochs of the left-out letter that were used to make a predic-
tion). Performance values (and standard-error bar heights) are averaged across the 6 subjects.

Our results indicated the following effects:

1. Using the Donchin flash stimulus, the deleterious effects of short TTIs were clear to see:
D10 performed far worse than the other codes despite its larger Hamming distances. In
both stimulus conditions, the averaged plots of figure 2 indicate thatRCmix may also be

6

RC* RCmix RCsep D10 D8opt
40

50

60

70

80

90

100
subject 1

%
 le

tte
rs

 c
or

re
ct

codebook

RC* RCmix RCsep D10 D8opt
40

50

60

70

80

90

100
subject 2

%
 le

tte
rs

 c
or

re
ct

codebook

RC* RCmix RCsep D10 D8opt
40

50

60

70

80

90

100
subject 3

%
 le

tte
rs

 c
or

re
ct

codebook

RC* RCmix RCsep D10 D8opt
40

50

60

70

80

90

100
subject 4

%
 le

tte
rs

 c
or

re
ct

codebook

RC* RCmix RCsep D10 D8opt
40

50

60

70

80

90

100
subject 6

%
 le

tte
rs

 c
or

re
ct

codebook

RC* RCmix RCsep D10 D8opt
40

50

60

70

80

90

100
subject 5

%
 le

tte
rs

 c
or

re
ct

codebook

flashes

flips

Figure 3: Offline (leave-one-letter-out) 36-class prediction performance when decoding codewords
of length 24, for each of the subjects in each of the code conditions.

1 2 3 4 5 6+ avg
45

50

55

60

65

70

75

80

85

90

95

100

epochs since previous target

competition III subjs IIa and IIb

%
 e

po
ch

s
cl

as
si

fie
d

co
rr

ec
tly

 (
bi

na
ry

 p
ro

bl
em

)

1 2 3 4 5 6+ avg
45

50

55

60

65

70

75

80

85

90

95

100

epochs since previous target

our 6 subjects, flashes

%
 e

po
ch

s
cl

as
si

fie
d

co
rr

ec
tly

 (
bi

na
ry

 p
ro

bl
em

)

1 2 3 4 5 6+ avg
45

50

55

60

65

70

75

80

85

90

95

100

epochs since previous target

our 6 subjects, flips
%

 e
po

ch
s

cl
as

si
fie

d
co

rr
ec

tly
 (

bi
na

ry
 p

ro
bl

em
)

targets
non−targets

targets
non−targets

targets
non−targets

Figure 4: Illustration of effect of TPT on epoch classification performance, (left) in the data from
competition III dataset II; (middle) in our experiments, averaged across all subjects and code condi-
tions for blocks in which the flash stimulus was used; (right) in our experiments, averaged across the
same subjects and code conditions, but for blocks in which the flip stimulus was used. The rightmost
column of each plot shows average classification accuracy across all epochs (remember that short
TTIs are relatively uncommon overall, and therefore downweighted in the average).

performing slightly less well thanRCsep, which has longer TTIs. However, the latter effect
is not as large or as consistent across subjects as it was in our preliminary study [7].

2. Using the Donchin flash stimulus, our optimized codeD8opt performs about as well as
traditionalRC codes, but does not outperform them.

3. Generally, performance using the flip stimulus is better than with the flash stimulus.

4. Using the flip stimulus, bothD8opt andD10 perform better than theRC codes, and they
perform roughly equally as well as each other. We interpret this interaction between stim-
ulus type and code type as an indication that the flip stimulus may generate rather different
psychophysiological responses from the flash (perhaps stronger primary visual evoked-
potentials, in addition to the P300) of a kind which is less susceptible to short TTI (the

7

curves in the right panel of figure 4 being flatter than those in the middle panel). A com-
parative analysis of the spatial locations of discriminative sources in the two stimulus con-
ditions is beyond the scope of the current short report.

5. Despite having identical TTIs and Hamming distances,RC∗ performs consistently worse
thanRCsep, in both stimulus conditions.

In summary, we have obtained empirical support for the idea that TTI (finding #1), Hamming dis-
tance (finding #4) and stimulus type (finding #3) can all be manipulated to improve performance.
However, our initial attempt to find an optimal solution by balancing these effects was not successful
(finding #2). In the flash stimulus condition, the row-column codes performed better than expected,
matching the performance of our optimized code. In the flip stimulus condition, TTI effects were
greatly reduced, making eitherD8opt or D10suitable despite the short TTIs of the latter.

It seems very likely that the unexpectedly high performance ofRCsepandRCmix can be at least partly
explained by the idea that they have particularspatial properties that enhance their performance
beyond what Hamming distances and TTIs alone would predict. This hypothesis is corroborated by
finding #5. Models of such spatial effects should clearly be taken into account in future optimization
approaches.

Overall, best performance was obtained with the flip stimulus, using either of the two error-
correcting codes,D8opt or D10: this consistently outperforms the traditional row-column flash design
and shows that error-correcting code design has an important role to play in BCI speller develop-
ment.

As a final note, one should remember that a language model can be used to improve performance in
speller systems. In this case, the codebook optimization problem becomes more complicated than
the simplified setting we examined, because the priorPr (t) in (2) is no longer flat. The nature of
the best codes, according to our optimization criterion, might change considerably: for example, a
small subset of codewords, representing the most probable letters, might be chosen to be particularly
sparse and/or to have a particularly large Hamming distance between them and between the rest of
the codebook, while within the rest of the codebook these two criteria might be considered relatively
unimportant. Ideally, the language model would be adaptive (for example, supplying a predictive
prior for each letter based on the previous three) which might mean that the codewords should be
reassigned optimally after each letter. However, such considerations must remain beyond the scope
of our study until we can either overcome the TTI-independent performance differences between
codes (perhaps, as our results suggest, by careful stimulus design), or until we can model the source
of these differences well enough to account for them in our optimization criterion.

References

[1] Bishop CM (1995) Neural Networks for Pattern Recognition.Clarendon Press, Oxford.

[2] Blankertz B,et al. (2006) IEEE Trans. Neural Systems & Rehab. Eng. 14(2): 153–159

[3] Donchin E, Coles MGH (1988)Behavioural and Brain Sciences 11: 357–374

[4] Farwell LA, Donchin E (1988)Electroencephalography and Clinical Neurophysiology 70: 510–523

[5] Gestel T,et al. (2002)Neural Processing Letters, 15: 45–48

[6] Gonsalvez CL, Polich J (2002)Psychophysiology 39(3): 388–96

[7] Hill NJ, et al (2008) Technical Report #166, Max Planck Institute for Biological Cybernetics.

[8] Krusienski DJ,et al. (2006)Journal of Neural Engineering 3(4): 299–305

[9] MacKay D (2005) Information Theory, Inference, and Learning Algorithms.Cambridge Univ. Press

[10] Martens SMM, Hill NJ, Farquhar J, Schölkopf B. (2007) Impact of Target-to-Target Interval on Classifi-
cation Performance in the P300 Speller.Applied Neuroscience Conference, Nijmegen, The Netherlands.

[11] Pritchard WS (1981)Psychological Bulletin 89: 506–540

[12] Rugg MD, Coles MGH (2002) Electrophysiology of mind.Oxford Psychology Series 25

[13] Serby H, Yom-Tov E, Inbar GF (2005)IEEE Trans. Neural Systems & Rehab. Eng. 13(1):89-98

[14] Wolpaw JR,et al. (2002)Clinical Neurophysiology 113: 767–791

[15] Woods DL, Hillyard SA, Courchesne E, Galambos R. (1980)Science, New Series207(4431): 655–657.

8

