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A Exact Formulation of the Sufficient Conditions

In this section, we give a mathematically rigorous formulation of the sufficient conditions discussed
in the main paper. For that we will need some additional notation.

First of all, it will be convenient to define a scaled version of our distance measure
dp(Ax(S1), Ax(S2)) between clusterings. Formally, define the random variable

A5 (Aa(S1), Ax(52)) = Vi (A (51), Ax(S2)) = Vi Pr (argrinaxf@,i(X) - argrinaxf@ﬁ(x)) ,

wheref, ¢’ € O are the solutions returned Ry(S,), Ax(S2), andSy, S, are random samples, each

of sizem, drawn i.i.d from the underlying distributio. The scaling by the square root of the
sample size will allow us to analyze the non-trivial asymptotic behavior of these distance measures,
which without scaling simply converge to zero in probabilitynas— co.

For some: > 0 and a sef5 C R”, let B.(.S) be thee-neighborhood of5, namely

B.(S) := {x eX:inf |x—yl2 < 6}.
y€es

In this paper, when we talk about neighborhoods in general, we will always assume they are uniform
(namely, contain ag-neighborhood for some positivg.

We will also need to define the following variant @ (Ax(S1), Ax(S2)), where we restrict our-
selves to the mass in some subseR8f Formally, we define the restricted distance between two
clusterings, with respect to a sBte R, as

dp (Ax(S1), Ax(S2), B) := v/m Pr_(argmaxfp ;(x) # argmaxfy ;(x) Ax € B). (1)

In particular,d; (Ax(S1), Ax(S2), B,/ m (Ui ; Fo, i) refers to the mass which switches clusters,

and is also inside an//m-neighborhood of the limit cluster boundaries (where the boundaries are
defined with respect t¢p, (-)). Once again, whef, S» are random samples, we can think of it as
a random variable with respect to drawing and clustefingss.

Conditions. The following conditions shall be assumed to hold:

1. Consistency Conditionf converges in probability (over drawing and clustering a sample
of sizem, m — o) to somef, € ©. Furthermore, the association of clusters to indices
{1,...,k} is constant in some neighborhood@y.

2. Central Limit Condition: /m(8 — 6,) converges in distribution to a multivariate zero
mean Gaussian random variahle



3. Regularity Conditions:

(@) fo(x) is Sufficiently Smooth:For any @ in some neighborhood @f,, and anyx in
some neighborhood of the cluster boundatigs F, ; ;, fo(x) is twice continuously
differentiable with respect t8, with a non-zero first derivative and uniformly bounded
second derivative for any. Both fp,(x) and(9/08) fe,(x) are twice differentiable
with respect to anx € X, with a uniformly bounded second derivative.

(b) Limit Cluster Boundaries are Reasonably Nicéor any two clusters, j, Fy, ; ; iS
either empty, or a compact, non-self-intersecting, orientablel dimensional hyper-
surface inR™ with finite positive volume, a boundary (edge), and with a neighborhood
contained int” in which the underlying density functigi-) is continuous. Moreover,
the gradientV(fg,.:(-) — fo,,;(-)) has positive magnitude everywhere &4} ; ;.

(c) Intersections of Cluster Boundaries are Relatively NegligiblEor any two distinct
non-empty cluster boundarié$, ; ;, Fo,.i,;-, We have that
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/ ldx , 7/ ldx
€ JB(Foy,i,;UFe,,ir j/)NBs(Foy,:,;)NBs(Fay i/ /) € JB.(9Faq,i,5)

converge td ase, § — 0 (in any manner), wheréFy, ; is the edge ofp, ; ;.
(d) Minimal Parametric Stability: It holds for som& > 0 that

Pr (5 (Ax(S1), Ax(S2)) # dB (Ax(S1), Ak(S2), B,y (Ui Fog.is))) = O(r™*"°) + (1),
whereo(1) — 0 asm — oo. Namely, the mass @ which switches between clusters

is with high probability inside thin strips around the limit cluster boundaries, and this
high probability increases at least polynomially as the width of the strips increase (see
below for a further discussion of this).

The regularity assumptions are relatively mild, and can usually be inferred based on the consistency
and central limit conditions, as well as the the specific clustering framework that we are considering.
For example, conditioBc and the assumptions dry,, ; ; in condition3b are fulfilled in a cluster-

ing framework where the clusters are separated by hyperplanes. As to colditisnppose our
clustering framework is such that the cluster boundaries depeédma smooth manner. Then the
asymptotic normality of, with varianceO(1/m), and the compactness af, will generally imply

that the cluster boundaries obtained from clustering a sample are contained with high probability
inside strips of widttO(1/y/m) around the limit cluster boundaries. More specifically, the asymp-
totic probability of this happening for strips of widtty/m will be exponentially high in-, due

to the asymptotic normality . As a result, the mass which switches between clusters, when we
compare two independent clusterings, will be in those strips with probability exponentially high in
r. Therefore, conditio®d will hold by a large margin, since only polynomially high pediility is
required there.

B Proofs - General Remarks

The proofs will use the additional notation and the sufficient conditions, as presented /i Sec.

Throughout the proofs, we will sometimes use the stochastic order notagion ando,(-) (cf.

[8]). defined as follows. LefX,,, } and{Y;,} be sequences of random vectors, defined on the same
probability space. We writ&’,,, = O,(Y,,,) to mean that for each > 0 there exists a real number

M such thalPr(|| X, || > M||Y,,]||) < eif mis large enough. We writ&,,, = 0,(Y,,,) to mean that
Pr(|| X || > €]|Yim|l) — 0 for eache > 0. Notice that{Y,,, } may also be non-random. For example,
Xm = 0p(1) means thafX,,, — 0 in probability. When we write for exampl&,,, = Y,,, + 0,(1),

we mean thaik’,,, — Y,,, = 0,(1).

C Proof of Proposition 1

By condition3a, fo(x) has a first order Taylor expansion with respect to érgjose enough t6y,
with a remainder term uniformly bounded for axy

]
Folo) = fou() + (5 f0u(x)) (8~ 60) + 0(16 ~ 6o @
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By the asymptotic normality assumptiop7n||@ — 6|l = O, (1), hence||@ — 8|| = O,(1//m).
Therefore, we get from Eq2] that

) ’ A
Vil (15030 = fou30) = g fan(30) (V6 60) + 0,(1), @

where the remainder term,(1) does not depend at By regularity conditiorBaand compactness

of X, (0/00) fe,(+) is a uniformly bounded vector-valued function frothto the Euclidean space

in which © resides. As a result, the mappifig— ((9/98) fe,(-))T 8 is a mapping fron®, with

the metric induced by the Euclidean space in which it resides, to the space of all uniformly bounded
Rk-valued functions or¥. We can turn the latter space into a metric space by equipping it with
the obvious extension of the supremum norm (namely, for any two funcfionsy(-), || f — ¢ :=
SUPyex || f(x) — g(x)]|, Where]| - ||« is the infinity norm in Euclidean space). With this norm, the

mapping above is a continuous mapping between two metric spaces. We also knpwiiltat 6,)
converges in distribution to a multivariate Gaussian random varigby the continuous mapping
theorem §] and Eq. (3), this implies thagm(f(-) — fe,(-)) converges in distribution to a Gaussian
proces<=(-), where

G() = ((%f%())T z. @)

D Proofof Thm. 1

D.1 A High Level Description of the Proof

The full proof of Thm. 1 is rather long and technical, mostly due to the many technical subtleties
that need to be taken care of. Since these might obscure the main ideas, we present here separately
a general overview of the proof, without the finer details.

The purpose of the stability estimatgf, ,, scaled by,/m, boils down to trying to assess the
"expected” value of the random variabt (Ax(S1), Ax(S2)): we estimateg instantiations of

d’5 (Ax(S1), Ax(S2)), and take their average. Our goal is to show that this average, takirgoo,

is likely to be close to the valuﬁab@k, D) as defined in the theorem. The most straightforward
way to go about it is to prove th@b@k,l)) actually equaldim,, ..o Ed% (Ax(S1), Ax(S2)),

and then use some large deviation bound to prove @Yﬁtﬁg)q is indeed close to it with high
probability, if ¢ is large enough. Unfortunately, computiigy,,, ..o Ed} (Ax(S1), Ax(S2)) is prob-
lematic. The reason is that the convergence tools at our disposal deals with convergence in dis-
tribution of random variables, but convergence in distribution does not necessarily imply conver-
gence of expectations. In other words, we can try and analyze the asymptotic distribution of
dh (A (S1), Ax(S2)), but the expected value of this asymptotic distribution is not necessarily the
same asim,, ... Edf (Ac(S1), Ax(S2)). As a result, we will have to take a more indirect route.

Here is the basic idea: instead of analyzing the asymptotic expectatitifi(af (S1), Ax(S2)), we
analyze the asymptotic expectation of a different random varialéa, (S1), Ax(S2), B), which

was formally defined in Eq.1{). Informally, recall that!5 (Ax(S1), Ax(S2)) is the mass of the un-
derlying distributionD which switches between clusters, when we draw and cluster two indepen-
dent samples of sizex. Thend}(A«(S1), Ax(S2), B) measures the subset of this mass, which
lies inside some&B C R™. In particular, following the notation of Seé,, we will pick B to be

A5 (A (S1), Ax(S2), Br/ﬁ(ui’ngo,iﬂj)) for somer > 0. In words, this constitutes strips of width
r/+/m around the limit cluster boundaries. Writing the above expressiofas B, ;. ;, we have

that if r be large enough, thed (Ax(S1), Ax(S2), B,/ /m) is equal tody (Ax(S1), Ax(S2)) with

very high probability over drawing and clustering a pair of samples, for any large enough sample
sizem. Basically, this is because the fluctuations of the cluster boundaries, based on drawing and
clustering a random sample of sizg cannot be too large, and therefore the mass which switches
clusters is concentrated around the limit cluster boundariesjsflarge enough.

The advantage of the 'surrogate’ random variatfi A (S1), Ax(S2), B,/ /) is that it isbounded

for any finite r, unlike d5(Ax(S1),Ax(S2)). With bounded random variables, convergence in
distribution does imply convergence of expectations, and as a result we are able to calcu-
late lim,;, oo Edp (Ax(S1), Ax(S2), B,/ /m) explicitly.  This will turn out to be very close to
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@b@k, D) as it appears in the theorem (in fact, we can make it arbitrarily clcfeﬁb@k, D) by
makingr large enough). Using the fact thélp (Ax(S1), Ax(S2), B,/ /) and d (Ak(S1), Ax(S2))

are equal with very high probability, we show that conditioned on a highly probable event,
Vvm ik, . is an unbiased estimator af} (Ax(S1), A (S2), B, ), based ony instantiations, for

any sample sizen. As a result, using large deviation bounds, we get {{fat ﬁfn’q is close to

dp (Ax(S1), Ax(S2), B,/ /m), with a high probability which does not depend on Therefore, as

m — oo, /m i}, . will be close tolim,, . Edf (A(S1), Ax(S2), B, /mw) with high probability.

By picking r to scale appropriately witl, our theorem follows.

For convenience, the proof is divided into two parts: in SubsBc2, we calculate
limy, 00 Ed (Ak(S1), Ak (S2), BT/m) explicitly, while SubsecD.3 executes the general plan out-
lined above to prove our theorem.

A few more words are in order about the calculationliaf,, .. Edf (Ax(S1), Ax(S2), B, /m)

in SubsecD.2, since it is rather long and involved in itself. Our goal is &fprm this calcu-
lation without going through an intermediate step of explicitly characterizing the distribution of
dp (A (S1), A (S2), B, /). This is because the distribution might be highly dependent on the spe-
cific clustering framework, and thus it is unsuitable for the level of generality which we aim at (in
other words, we do not wish to assume a specific clustering framework). The idea is as follows:
recall thatd (Ax(S1), Ax(S2), B, /) is the mass of the underlying distributidn inside strips of

width r//m around the limit cluster boundaries, which switches clusters when we draw and cluster
two independent samples of size For anyx € X, let A, be the event that switched clusters.
Then we can writel’ (Ax(S1), Ax(S2), B, /m), by Fubini’s theorem, as:

Ed’an(Ak(Sl),Ak(Sg),Br/\/m) = \/%]E/

1(Ax)p(x)dx = / Vm Pr(Ax)p(x)dx.
Br/vm Bry

®)

The heart of the proof is Lemmnia.5, which considers what happens to the integral above inside a
single strip near one of the limit cluster boundarigs ; ;. The main body of the proof then shows
how the result of Lemm®.5 can be combined to give the asymptotic value of Eq. (5) when we
take the integral over all oBr/\/m. The bottom line is that we can simply sum the contributions
from each strip, because the intersection of these different strips is asymptotically negligible. All
the other lemmas in Subsdg.2 develop technical results needed for our proof.

Finally, let us describe the proof of Lemnia5 in a bit more detail. It starts with an expression
equivalent to the one in Egq5f, and transforms it to an expression composed of a constarg,va

and a remainder term which convergedtasm — oo. The development can be divided into a
number of steps. The first step is rewriting everything using the asymptotic Gaussian distribution
of the cluster association functigfy (x) for eachx, plus remainder terms (EdLg)). Since we are
integrating ovei, special care is given to show that the convergence to the asymptotic distribution
is uniform for allx in the domain of integration. The second step is to rewrite the integral (which is
over a strip around the cluster boundary) as a double integral along the cluster boundary itself, and
along a normal segment at any point on the cluster boundary {EJ). (Since the strips become
arbitrarily small asm — oo, the third step consists of rewriting everything in terms of a Taylor
expansion around each point on the cluster boundary (), Eq. (17) and Eq. (18)). The fourth

and final step is a change of variables, and after a few more manipulations we get the required result.

D.2 Part 1: Auxiliary Result
As described in the previous subsection, we will need an auxiliary result (Propdsitidrelow),
characterizing the asymptotic expected valuéBtAx(S1), Ax(S2), B,/ /m (Ui, Fo,.ii))-

Proposition D.1. Let » > 0. Assuming the set of conditions from Sek. holds,
limy,— 0 B (Ak(S1), Ax(S2), B,/ m (Ui, Fo,.i.5)) is equal to

1 P00 VRIG )~ Gy )
27 -10) Zk/F [V o008 — fong G

whereh(r) = O(exp(—r?)).




To prove this result, we will need several technical lemmas.
LemmaD.1. LetS be a hypersurface iiR"™ which fulfill the regularity condition8band3cfor any
Fo,.i.;, and letg(-) be a continuous real function oki. Then for any > 0,

1 1 €
G/BG(S)g(X)dX E/Sleg(x+ynx)dydx+o(l), (6)

wheren, is a unit normal vector t& at x, ando(1) — 0 ase — 0.

Proof. Let B/(.S) be a strip around, composed of all points which are on some norma$ tand

close enough t&":
BI(S):={y eR" : 3x € S,y € [—€,¢|,y = x + yny}.

Since S is orientable, then for small enough> 0, B.(S) is diffeomorphic toS x [—¢,¢]. In

particular, the mag : S x [—¢, €] — B.(S), defined by

(%, y) = x + yny

will be a diffeomorphism. LeD¢(x, y) be the Jacobian af at the point(x,y) € S x [—e, €]. Note
that Dg(x,0) = 1 for everyx € S.

We now wish to claim that as— 0,

! 1
E/Be(S) g(x)dx = 6/13;(3)g(x)dx+0(1)' @

To see this, we begin by noting thB{(S) C B.(S). Moreover, any pointirB.(S) \ B.(S) has the
property that its projection to the closest pointdris not a normal ta5, and thus must be-close
to the edge of5. As a result of regularity conditiofic for S, and the fact thag(-) is continuous
and hence uniformly bounded in the volume of integration, we get that the integratidn afver
B, \ B! is asymptotically negligible (as— 0), and hence Eq7] is justified.

By the change of variables theorem from multivariate calculus, followed by Fubini’'s theorem, and
using the fact thaD¢ is continuous and equalson S x {0},

1 1
f/ g(x)dx = */ 9(x + ynx) Do (x, y)dxdy
€ JBI(s) € JSx[—ee
1 €
= E/ (/Sg(Xernx)DMX’ y)dX) dy
1 €
= g/ (/ g(x + ynx)dx> dy + o(1),
—€ S
whereo(1) — 0 ase — 0. Combining this with Eq.%) yields the required result. O

Lemma D.2. Let (g, : X — R)$°_, be a sequence of integrable functions, such thatx) — 0
uniformly for allx asm — oo. Then foranyi,j € {1,...,k},i # 7,

/ Vg (X)p(x)dx — 0
By, ym(Feg.i,5)

asm — 00

Proof. By the assumptions oy, (-))5°_,, there exists a sequence of positive constang>_,,
converging td), such that

Vg (x)p(x)dx

/ <t Vimp(x)dx.
B, m(Foy,i,5) B, m(Foy,i,5)



For large enoughn, p(x) is bounded and continuous in the volume of integration. Applying
LemmaD.1 with e = r//m, we have that as» — oo,

v/
bm\/ﬁ/ p(x)dx = byuvm / p(x + yny )dydx + o(1)
B, m(Fey,i,j) —r//m

Foyq.ij

C
<, — 1) = 1
= bmmm +o(1) bmC +o(1)
for some constant’ dependant om and the upper bound gf(-). Sinceb,,, converge td, we have
that the expression in the lemma converges &s well. O

Lemma D.3. Let (X,,) and (Y;,,) be a sequence of real random variables, such tdat Y,,, are
defined on the same probability space, aag — Y,,, converges td in probability. Assume that,,
converges in distribution to a continuous random variableThen| Pr(X,, < ¢) — Pr(Y,, < ¢)|
converges t® uniformly for allc € R.

Proof. We will use the following standard fact (see for example section 7.2]iffor any two real
random variables!, B, anyc € R and anye > 0, it holds that

Pr(A<c¢) <Pr(B<c+e)+Pr(|A—B|>e¢).

From this inequality, it follows that for any € R and anye > 0,
|Pr(X,, <c¢)—Pr(V,, <¢)| < (Pr(Ym <c+e)—Pr(Y,, < c))
n (Pr(Ym <¢) = Pr(Yp, <c— e)) £ Pr(| Xy — Y| > ). (8)

We claim that the r.h.s of Eq8] converges t0 uniformly for all ¢, from which the lemma follows.
To see this, we begin by noticing that (| X,,, — Y;,,| > ¢) converges t® for anye by definition of
convergence in probability. Nex®r(Y;, < ¢’) converges t@r(Y < ¢’) uniformly for all ¢’ € R,
sinceY is continuous (see section 1 @f]]. Moreover, sinc&” is a continuous random variable, we
have that its distribution function is uniformly continuous, heRe€Y” < ¢ +¢) — Pr(Y < ¢) and
Pr(Y < ¢) —Pr(Y < ¢ —¢) converges td ase — 0, uniformly for all c. Therefore, by letting
m — 0o, ande — 0 at an appropriate rate comparechtpwe have that the I.h.s of EqB)converges
to 0 uniformly for all c. O

Lemma D.4. Pr({a, /m(f3(x) — fo,(x))) < b) converges td®r({a, G(x)) < b) uniformly for
anyx € X, anya # 0 in some bounded subset®f, and anyb € R.

Proof. By Eq. (3),
] i ,
Vil (1530 = fou(00) = (s (30)  (ViT(B — 80) + 0,(1)

Where the remainder term does not depenetofihus, for anya in a bounded subset &*,

) ! .
<av \/% (fé(x) - f@o (X))> = <a <80f90 (X)) ) \/TTL(H - 00)> + Op(]-); (9)

Where the convergence in probability is uniform for all boundexhdx € X'.

We now need to use a result which tells us when is a convergence in distribution uniform. Using thm.
4.2 in [6], we have that if a sequence of random vectdfs,)>°_, in Euclidean space converge to a
random variableX in distribution, therPr({y, X,,) < b) converges t@r({y, X) < b) uniformly

for any vectory andb € R. We note that a stronger result (Thm. 6 ij)[apparently allows us to
extend this to cases wher€,, and X reside in some infinite dimensional, separable Hilbert space
(for example, if© is a subset of an infinite dimensional reproducing kernel Hilbert space in kernel
clustering). Therefore, recalling thgtm (6 — 6,) converges in distribution to a random normal
vectorZ, we have that uniformly for alk, a, b,



Pr <<a (a{;feo (X))T V/m(6 — 00)> < b)

Here we think ofa((9/90) fe,(x)) " as the vectoy to which we apply the theorem. By regularity
condition3a, and assuming # 0, we have thata((9/00) fo,(x)) ", Z) is a continuous real ran-
dom variable for anyk, unlessZ = 0 in which case the lemma is trivial. Therefore, the conditions
of LemmaD.3 apply: the two sides of Eq. (9) give us two sequences of random variables which
converge in probability to each other, and by Efp)we have convergence in distribution of one of
the sequences to a fixed continuous random variable. Therefore, using L2i3nee have that

I%<<a<§2hJXOT,Z><b)+OQ)

Pr({a, G(x)) < b) +0o(1) (10)

Pr ((a, v/m (f5(x) — fo,(x))) < b) = Pr <<a (g)fen(x)) (6 - 00)> < b) +o(1),

(11)
where the convergence is uniform for any bounded 0, b andx € X'.

Combining Eq. (10) and Eq. (11) gives us the required result. O

Lemma D.5. Fix some two clusters j. Assuming the expression below is integrable, we have that
2 | VI PE(f300) = fp 4 (6) < 0) Pr(fy ,(3) = fo; > O)p(x)ix
B, m(Fog,i,5)

ol P00 VEG )~ )
‘2<ﬁ il >) /F 19 00a () — oy el o)

whereo(1) — 0 asm — oo andh(r) = O(exp(—r?)).

Proof. Definea € R* asa; = 1, a; = —1, and0 for any other entry. Applying Lemm@.4, witha
as above, we have that uniformly for allin some small enough neighborhood aroufa ;. ;-

Pr(fp (%) = fo;(x) <0)
—Pr (\/ﬁ(fg,i(x) — fo0.,i(x)) = Vm(fy ;(x) = fo,.;(X)) < V/m(fe,,j(x) — f90,i(x)))
= Pr(Gi(x) — Gj(x) < vVm(fa,,j(x) — fo,.i(x))) + o(1).

whereo(1) converges uniformly t6 asm — cc.

SinceG;(x) — Gj(x) has a zero mean normal distribution, we can rewrite the above (i(/ax) —
Gj(x)) > 0)as

Pr( Gi(x) — G (%) \/ﬁ(feo,j(X)—feo,i(X))>+O(1)

VVar(Gi(x) - Gj(x)) ) VVar(Gi(x) - Gj(x))

o (VU0 o)
_q)( JVar(Gi(x) - G, () >+ @), (12)

where®(-) is the cumulative standard normal distribution function. Notice that by some abuse of
notation, the expression is also valid in the case whereGfgx) — G,(x)) = 0. In that case,
Gi(x) — G;(x) is equal to0 with probability 1, and thusPr(G;(x) — G;(x) < vm(fe,,;(x) —
foo,i(x))) is 1if fo,;(x) — fo,,i(x)) > 0and0 if fg, ;(x) — fo,,:(x)) < 0. This is equal to

Eq. (12) if we are willing to assume thdt(co) = 1, ®(0/0) = 1, (—o0) = 0.



Therefore, we can rewrite the |.h.s of the equation in the laratatement as

o ((V00i(X) — fo,5(0)
Q/BTWFQU,Lﬁm( VVar(Gix) — G, () )

vm(fe,.i(%) = fo,.;(%))
(1 - ( NarGi(x) = G, () )) + v/mo(1)p(x)dx.

The integration of the remainder term can be rewritten(a$ by Lemmab.2, and we get that the
expression can be rewritten as:

) / S (ﬂ(feo,xx) - feo,j(X))>
B,y (Foy.i.;) VVar(Gi(x) — G;(x))
Lo [ YUa(x) ~ fo,5(x))
VVar(Gi(x) — Gj(x))
One can verify that the expression inside the integral is a continuous functigrbgfthe regularity
conditions and the expression 16X ) as proven in SecC (namely Eq. (4)). We can therefore apply

LemmaD.1, and again take all the remainder terms outside of the idtbgreemmaD.2, to get
that the above can be rewritten as

) ) p(x)dx +o(1). (13)

v V(o0 (% +ynx) — fo, 5 (x +ynx))
? /Feo,i)j —r/m vyme ( VVar(G;(x + ynx) — Gj(x + yny))

<1 - <m(feo,i(x +ynx) — fo,(x + ynx))
VVar(Gi(x + yny) — G (x + yny))

)) p(x)dydx + o(1), (14)

whereny is a unit normal taky, ; ; atx.

Inspecting Eq.14), we see thaj ranges over an arbitrarily small domainias— oo. This suggests
that we can rewrite the above using Taylor expansions, which is what we shall do next.

Let us assume for a minute that V& (x) — G;(x)) > 0 for some pointx € Fg, ; ;. One can
verify that by the regularity conditions and the expressiord6r) in Eq. (@), the expression

feo,i(') - feo,j ()
VVar(Gi() — G;(1))
is twice differentiable, with a uniformly bounded second derivative. Therefore, we can rewrite the

expression in Eq.1() as its first-order Taylor expansion around each Fy, ; ;, plus a remainder
term which is uniform for alk:

f007i(x + ynx) - f@o,j(x + ynx)
\/Var(Gi (x 4+ ynyx) — G, (x + yny))
_Joui) —fos¥) ( fo0:(%) — fou.5(x)
\/V&I'(Gi(x) — GJ (X)) \/Val’(Gi<X) — Gj (X))

Sincefy, i(x) — fo,,;(x) = 0 foranyx € Fy, ; ;, the expression reduces after a simple calculation
to
V(foo,i(x) — foo,i(x))
VVar(Gi(x) — G;(x))

Notice thatV( fg,.i(x) — fe,.;(x)) (the gradient offe, ;(x) — fo,,;(x)) has the same direction as
n, (the normal to the cluster boundary). Therefore, the expression above can be rewritten, up to a
sign, as

(15)

) yny + O(y?).

yny + O(y2).

V(fo,i(%) — fo,,j(x))

e oo O

Y
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As aresult, denoting(x) := V(fo,.i(x) — fa,,;(x))//Var(Gi(x) — G;(x)), we have that

o (ﬂfeo A+ yms) — oo (x + ynx») (1 o <ﬂfeo (% yns) — oo (x + ynx»))
\/Var X + ynx) - Gj (X + ynx)) \/Var X + ynx) - Gj (X + ynx))

(16)
= o (Vm(lsx)lly + 0?) ) (1 — o (Vin(llslly + ouﬁ»))
= o(vm(Is)lly) ) (1 - <I>(\/%(Ils(x)lly))> +O(Vimy?). (17)
In the preceding development, we have assumed thatVax) — G;(x)) > 0. However, notice

that the expressions in Eq. (16) and Eq. (17), without the remalnder term, are both equal (to zero)
even if Var(G;(x) — G,(x)) = 0 (with our previous abuse of notation thf—oc) = 0, &(c0) =

1). Moreover, sincey takes values if—r//m,r//m], the remainder tern®(,/my?) is at most
O(y/mr/m) = O(r/+/m), so it can be rewritten ag1) which converges t6 asm — occ.

In conclusion, and again using Lemrda2 to take the remainder terms outside of the integral, we
can rewrite Eq. {4) as

r//m
2 | Vi (vVils(olly) (1 - @ (Vinls(oly))) peodydx +o1).  (18)
Fﬂo i, *"’/\/E

We now perform a change of variables, letting= /m||s(x)||y in the inner integral, and get

r||s(x)||
2/ B (22) (1 — B () p(x)dzxdx + o(1),
Fog.i.; J —rls()ll H

which is equal by the mean value theorem to

p(x) rlls(xo)l e
’ </Feo; Hs(x)”dx> (/r|s(xo)| P (2x0) (1 = @ (2x,)) x0> +o(1) (19)

for somexg € Fy, i ;-

By regularity condition3b, it can be verified thdls(x)|| is positive or infinite for ank € Fy,, ; ;.
As aresult, ag — oo, we have that

rls(xo)l 1
/ e (ZXU)( (Zxo deO - / Zxo (Zxo))dzxo = ﬁ

—rlls(xo)ll

and the convergence to//r is at a rate of)(exp(—r?)). Combining this with Eq. (19) gives us
the required result.

O

Proof of PropositiorD.1. We can now turn to prove Propositiéhl itself. For anyx € X, let A
be the event (over drawing and clustering a sample pair)x{tsatitched clusters. For ankp,, ; ;
and sample size:, defineFy ; . to be the subset dfy, ; ;, which is at a distance of at least /4
from any other cluster boundary (with respectty). Formally,

Py = {% € Fooiy sV (051} # iadh Fogiry 20),_jnf  x =]z m 1}

0¢,i’ .45’



Letting S1, S2 be two independent samples of sizewe have by Fubini’s theorem that
Edp (Ax(S1), Ac(S2), B,/ /m (Ui i Foy.i5))

— ViEs,s, [ L Ap(x)dx = Vi Pr(A)p(x)dx

J B,/ m(YijFoqg.ij) B, m(Ui,jFeq,ij)

Vm Pr(Ay)p(x)dx —|—/ Vm Pr(Ay)p(x)dx.

/Br/m(Ui,jFéz,i,j) By (Vi Fog i, i \Fgy i ;)

As to the first integral, notice that each point#i; ; ; is separated from any point in any other

Fg. i by a distance of at leagtm—'/%. Therefore, for large enough, B, m(Fg, ; ;) are
disjoint for eachi, j, and we can rewrite the above as:

/Br/m(Fé”’

o,m)

VmPr(Ax)p(x)dx + / Vm Pr(Ax)p(x)dx.

1<i<j<k By ym(ViiFey.ii\Fep i 5)

As to the second integral, notice that the integration is over points which are at a distance of at most
r/+/m from someFy, ; ;, and also at a distance of at mest */# from some otheiy, i ;;. By

regularity conditior3c, and the fact that,~'/* — 0, it follows that this integral converges toas
m — oo, and we can rewrite the above as:

/ vVm Pr(Ayx)p(x)dx + o(1) (20)
BT/ﬁ(FG

5 i j)
1<i<j<k 6.0

If there were only two clusters j, then
Pr(Ax) = 2Pr(fé7i(x) - f@},j(x) <0) Pr(f&i(x) - fé,j > 0).

This is simply by definition ofA,: the probability that under one clustering, based on a random
sample,x is more associated with clustgrand that under a second clustering, based on another
independent random sampieijs more associated with clustgr

In general, we will have more than two clusters. However, notice that any@inB, , . (Fg. ; ;)
(for somed, j) is much closer taFy, ; ; than to any other cluster boundary. This is because its
distance taFy, ; ; is on the order of /\/m, while its distance to any other boundary is on the order

of m~1/4. Therefore, it does switch clusters, then itis highly likely to switch between clusied
clusterj. Formally, by regularity conditiod (which ensure that the cluster boundaries experience
at mostO(1/+/m) fluctuations), we have that uniformly for ary

Pr(Ax) = 2Pr(f3 ,(x) — fo,(x) < 0)Pr(f3 ,(x) — fo, > 0) + o(1),
whereo(1) converges t® asm — occ.

Substituting this back to Eg20), using Lemmd.2 to take the remainder term outside the integral,
and using the regularity conditiofic in the reverse direction to transform integrals ovgf ;

back into Fy, ; ; with asymptotically negligible remainder terms, we get that the quantity we are
interested in can be written as

2 | VI PE(fy () — fp,(%) < 0)Pr(fp (%) = fy, > O)p(x)dx + o(1).
1<i<j<k Y Br/vm(Fog.i)

Now we can apply LemmB.5 to each summand, and get the required result.

D.3 Part 2: Proof of Thm. 1

For notational convenience, we will denote
dp (r) := dp (A(51), A(S2), B,/ (Ui, Fog.i,5)

10



whenever the omitted terms are obvious from context.mb@k,D) = 0, the proof of the
theorem is straightforward. In this special case, by definitiomb@k,l)) in Thm. 1 and
PropositionD.1, we have thatl’; () converges in probability t® for anyr. By regularity con-
dition 3d, for any fixedg, ¢ >°7_, 75 (A(S}), Ax(S7)) converges in probability t® (because
A7 (A (S}), Ak (S7)) = d5(Ak(S}), Ax(S?), B,/ (Ui, Fa,.i.5)) With arbitrarily high probabil-
ity asr increases). Thereforg/m ﬁ’,j%q, which is a plug-in estimator of the expected value of

o 2oy dB (A(S]), Ax(S7)), converges in probability t6 for any fixedg asm — oo, and the the-

orem follows for this special case. Therefore, we will assume from now orir/itralb@k, D) > 0.
We need the following variant of Hoeffding’s bound, adapted to conditional probabilities.

Lemma D.6. Fix somer > 0. Let X;,..., X, be real, nonnegative, independent and identically
distributed random variables, such thBi(X; € [0,7]) > 0. For any X;, letY; be a random
variable on the same probability space, such tRatY; = X;|X; € [0,r]) = 1. Then for any

v >0,

lixi —E[Y1]X, € [0,7]]

Pr
773

Proof. Define an auxiliary set of random variablés, . . ., Z,, such thaPr(Z; < a) = Pr(X; <
a|X; € [0,7]) for anyi, a. In words,X; andZ; have the same distribution conditioned on the event
X, € [0,7]. Also, we have thaY; has the same distribution conditioned &n < [0, r]. Therefore,
E[Y1]|X; € [0,7]] = E[X;]|X; € [0,r]], and as a result[Y;|X; € [0,r]] = E[Z;]. Therefore, the
probability in the lemma above can be written as

)

.

whereZ, are bounded iff0, r] with probability 1. Applying the regular Hoeffding’s bound gives us
the required result. O

2 2
>y ’ Vi, X € [0,@) < 2exp < i )
T

1 q
=Y 7 - E|Z)]
q 1=1

We now turn to the proof of the theorem. L&f* be the event that for all subsample pais, 57},

A (Ac(S}), 8e(S7), Br) (s Fog o)) = A5 (Ax(S]), Ax(S7)). Namely, this is the event that for

all subsample pairs, the mass which switches clusters when we compare the two resulting clusterings
is always in an//m-neighborhood of the limit cluster boundaries.

Sincep(-) is bounded, we have thalt};(r) is deterministically bounded bg(r), with implicit
constants depending only @and@,. Using the law of total expectation, this implies that

]E[d;;w] Rl (r)| AT

= ‘ Pr(ATE[dp (r)[A7] + (1 = Pr(A7))Eldp (r)[~A7"] — Eldp (1) A)]

= (1 Pream) (Elapoy1-ar) - Bl )17
< (1 - Pe(AT))O(). (21)

For any two events!, B, we have by the law of total probability thBt(A) = Pr(B) Pr(A|B) +
Pr(B¢) Pr(A|B°¢). From this it follows thatPr(A) < Pr(B) + Pr(A|B¢). As a result, for any

11



€ >0,

Pr (‘\/%nf;q - @b@k,p)’ > e)
q
<Pr (’1 S (A(S}), Ak(S?)) — instaby, D)
4q =1

>e
2

Pr(H\/%nj; — instaby, D ‘ HH de A (S}), A (S2)) — instablay, D)| <

We will assume w.l.o.g that/2 < @b@k,D). Otherwise, we can upper bound
Pr ( — ﬁsﬁb@k, D)‘ > e) in the equation above by replaciagvith some smaller quan-

tity ¢’ for which €’ /2 < instab(, D).

We start by analyzing the conditional probability, forming the second summand i2Bqg.Recall
that#%, ,, after clustering the subsample pair$S}, 57}7_,, uses an additional i.i.d sampl¢’

of sizem to empirically estimate)_, dn (Ax(S}), Ax(S?))/v/mg € [0,1]. This is achieved by
calculating the average percentage of instances’imhich switches between clusterings. Thus,
conditioned on the event appearing in the second summand otE)qﬁjﬁlyq is simply an empirical

average ofn i.i.d random variables if0, 1], whose expected value, denoted ais a strictly positive

number in the range c(fn/sabq\k, D) +€/2)/y/m. Thus, the second summand of Eq. (22) refers to
an event where this empirical average is at a distance of atdééxs{/m) from its expected value.
We can therefore apply a large deviation result to bound this probability. Since the expectation itself
is a (generally decreasing) function of the sample sizave will need something a bit stronger than
the regular Hoeffding’s bound. Using a relative entropy version of Hoeffding’s bouingvg have
that the second summand in EQ2] is upper bounded by:
v+e€/2 ’

2] o (ool ] e

whereDy[pl|q] := —plog(p/q) — (1—p)log((1—p)/(1—q)) foranyq € (0,1) and any € [0, 1].
Using the fact thaDy[p||q] > (p — ¢)? /2 max{p, ¢}, we get that Eq.43) can be upper bounded by
aquantity which converges tbasm — oco. As a result, the second summand in E2f)(converges
to0 asm — oo.

exp (—kal {

As to the first summand in Eq. (22), using the triangle inequality and switching sides akotws u
upper bound it by:

P (]; S (A(S), Ae(52) — E[d5 ()] AT

i=1

> 5 — |Eldp ()| A7) — Eldp (r)]

- ’Ed%”(r) - @b@k,p)’) (24)

[\D\m

By the definition oﬁ@b@k, D) as appearing in Thm. 1, and Propositior,

lim Edf(r) — instab@y, D) = O(h(r)) = O(exp(—r?)). (25)

m—0o0

Using Eq. (25) and Eq. (21), we can upper bound Eq. (24) by
1 q
= dB(A(S}), A (S7)) — E[d (r)| AT]

Pr
qzl

— (1= Pr(47))0(r) = Ofexp(=1%) = o(1) ) . (26)

l\D\m
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whereo(1) — 0 asm — oco. Moreover, by using the law of total probability and Lemia, we
have that for any > 0,
> 1/)

Py < LS (51, m5)) ~ Bl )17

i=1

A;n)

< (1= Pr(A7) + 1+ Pr(A7) Pr ( =3 (D). u(52) ~ BIB ()| A7) > v
< (1= Pr(A™)) + 2Pr(A™) exp < Qi’f) . @7)

LemmaD.6 can be applied becaud (A(S}), Ax(S?)) = di5(r) for anyi, if A™ occurs.
If m,r are such that

5 — (L= Pr(47))O(r) = O(exp(—r?)) = o(1) > 0, (28)

we can substitute this expression instead of Eq. (27), and get that Eq. (26) is upper bounded by

2 (5 — (1 = Pr(A7"))O(r) — O(exp(—r?))) — o(1))

2

(1—-Pr(A")) +2Pr(A") exp <—
(29)

Let

gn(r) = Pr (@B(r) # dB(e(S1), Ac(2)) , g(r) = lim_giu(r)
By regularity condition3d, g(r) = O(r=37%) for somes > 0. Also, we have thaPr(A™) =
(1 — gm(r))%, and therefor@im,, .., Pr(A”) = (1 — g(r))? for any fixedq. In consequence, as
m — oo, EQ. 29) converges to

r2

(1 (1 ()" + 200~ g(r))"exp <—2q L N O Dt 20 ) |

(30)

Now we use the fact thatcan be chosen arbitrarily. In particular, tet= ¢'/(>+9/2) wheres > 0
is the same quantity appearing in conditigah It follows that

1—(1-g(r)? < qg(r) = O(g/r***) = O (q1_2+5/2)
(1= (1= g(r))Ow) = ag(rO(r) = O (¢~ ) = O(g~)

q/r? = q' " T

exp(—12) = exp(—¢ 7).

It can be verified that the equations above imply the validness of2B) f¢r large enouglw and ¢
(and hence). Substituting these equations into E8Q), we get an upper bound

. 2
(0] (ql_%) + exp (—2q1_1+g/4 (% -0 (q_ﬁ) -0 (exp(—qﬁ))) ) .
Sinced > 0, it can be verified that the first summand asymptotically dominates the second summand

(asq — oc), and can be bounded in turn byg—1/2).

Summarizing, we have that the first summand in B8) converges to(q—'/?) asm — oo, and the
second summand in Eqg. (22) converg@ 88 m — oo, for any fixede > 0, and thu?r(\ﬁﬁfnyq—

instaby, D)| > €) converges ta(g—/2).
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E Proof of Thm. 2 and Thm. 3

The tool we shall use for proving Thm. 2 and Thm. 3 is the following general central limit the-
orem for Z-estimators (Thm. 3.3.1 in [8]). We will first quote the theorem and then explain the
terminology used.

Theorem E.1(Van der Vaart).Let ¥,, and ¥ be random maps and a fixed map, respectively, from
a subset of some Banach space into another Banach space such that-asco,

[V (Vm — W)(6) = v/m(¥m — ¥)(0o)|
L+ v/m|6 — 8|l
in probability, and such that the sequengen(¥,, — ¥)(8,) converges in distribution to a tight
random elemenZ. Let® — W(0) be Fréechet-differentiable af, with an invertible derivative
W, which is assumed to be a continuous linear operatdf ¥(6,) = 0 and ¥,,,(8)//m — 0
in probability, andd converges in probability t6,, then\/ﬁ(@) — 60y) converges in distribution to
~U,'Z.

~0 (31)

A Banach space is any complete normed vector space (possible infinite dimensional). A tight ran-
dom element essentially means that an arbitrarily large portion of its distribution lies in compact
sets. This condition is trivial whe® is a subset of Euclidean space é€het-differentiability of a
functionf : U — V atx € U, whereU, V are Banach spaces, means that there exists a bounded
linear operato : U — V such that

L IS B) = ) — A

=0.
h—0 (e

This is equivalent to regular differentiability in finite dimensional settings.

Itis important to note that the theorem is stronger than what we actually need, since we only consider
finite dimensional Euclidean spaces, while the theorem deals with possibly infinite dimensional

Banach spaces. In principle, it is possible to use this theorem to prove central limit theorems in

infinite dimensional settings, for example in kernel clustering where the associated reproducing
kernel Hilbert space is infinite dimensional. However, the required conditions become much less
trivial, and actually fail to hold in some cases (see below for further details).

We now turn to the proofs themselves. Since the proofs of Thm. 2 and Thm. 3 are almost identical,
we will prove them together, marking differences between them as needed. In order to allow uniform
notation in both cases, we shall assume th@} is the identity mapping in Bregman divergence
clustering, and the feature map frothto H in kernel clustering.

With the assumptions that we made in the theorems, the only thing really left to show before applying
Thm.E.lis that Eq. (31) holds. Notice that it is enough to show that

VW, = ¥)(0) — V(¥s, - W)l
1+ Vinllf — 0ol

foranyi € {1,...,k}. We will prove this in a slightly more complicated way than necessary, which
also treats the case of kernel clustering wherés infinite-dimensional. By Lemma 3.3.5 in [8],
since X' is bounded, it is sufficient to show that for afythere is somé > 0 such that

{w;ii,,h() ~ Voo.n()} 600 <o mex

is aDonsker class, where

i B <0z — (Z)(X), ¢(h)> X € Cgﬁi
Von(x) = {0 otherwise.

Intuitively, a set of real function§f(-)} from X (with any probability distributiorD) to R is called
Donsker if it satisfies a uniform central limit theorem. Without getting too much into the details,

A linear operator is automatically continuous in finite dimensional spaces, not necessarily in infinite di-
mensional spaces.

14



this means that if we sample i.iid elements fronD, then(f(x1) + ... + f(xm))/+/m converges
in distribution (asn — oc) to a Gaussian random variable, and the convergence is uniform over all
f(-) inthe set, in an appropriately defined sense.

We use the fact that i andG are Donsker classes, then so d&fet G and F - G (see examples
2.10.7 and 2.10.8 irg])). This allows us to reduce the problem to showing that thieiohg three
function classes, fro®’ to R, are Donsker:

{0560} jo_ou<omex » L6 oMDnex + {les. (D jo_ayjcs  (32)

Notice that the first class is a set of bounded constant functions, while the third class is a set of
indicator functions for all possible clusters. One can now use several tools to show that each class
in Eq. 32) is Donsker. For example, consider a class of real functiorslmunded subset of some
Euclidean space. By Thm. 8.2.1 if][(and its preceding discussion), the class is Donsker if any
function in the class is differentiable to a sufficiently high order. This ensures that the first class in
Eq. 32) is Donsker, because it is composed of constant functionto the second class in Eq. (32),

the same holds in the case of Bregman divergence clustering (wleris the identity function),
because it is then just a set of linear functions. For finite dimensional kernel clustering, it is enough
to show that{{-, ¢(h)) }ncx is Donsker (namely, the same class of functions after performing the
transformation fromt' to ¢(X)). This is again a set of linear functions #t*, a subset of some

finite dimensional Euclidean space, and so it is Donsker. In infinite dimensional kernel clustering,
our class of functions can be written 8&(-, h) },cx, wherek(-, ) is the kernel function, so it is
Donsker if the kernel function is differentiable to a sufficiently high order.

The third class in Eq.32) is more problematic. By Theorem 8.2.15 in [3] (and its preceding discus-
sion), it suffices that the boundary of each possible cluster is composed of a finite number of smooth
surfaces (differentiable to a high enough order) in some Euclidean space. In Bregman divergence
clustering, the clusters are separated by hyperplanes, which are linear functions (see appendix A in
[1]), and thus the class is Donsker. The same holds for finite mémaal kernel clustering. This

will still be true for infinite dimensional kernel clustering, if we can guarantee that any cluster in
any solution close enough tg in © will have smooth boundaries. Unfortunately, this does not hold

in some important cases. For example, universal kernels (such as the Gaussian kernel) are capable
of inducing cluster boundaries arbitrarily close in form to any continuous function, and thus our
line of attack will not work in such cases. In a sense, this is not too surprising, since these kernels
correspond to very 'rich’ hypothesis classes, and it is not clear if a precise characterization of their
stability properties, via central limit theorems, is at all possible.

Summarizing the above discussion, we have shown that for the settings assumed in our theorem, all
three classes in Eq32) are Donsker and hence Eq. (31) holds. We now return to deal with the other
ingredients required to apply ThiA.1.

As to the asymptotic distribution af'm(¥,, — ¥)(8,), since¥(6,) = 0 by assumption, we have
that foranyi € {1,...,k},

7 7 1 -
V(¥ = )(8) = ; Ai(B0,%))- (33)
wherexy, . .., x,, is the sample by whicky,, is defined. The r.h.s of Eq38) is a sum of identically

distributed, independent random variables with zero mean, normalizedbyAs a result, by the
standard central limit theorenym (0!, —¥")(6,) converges in distribution to a zero mean Gaussian
random vectoly’, with covariance matrix

Vi= / P(x)((x) — 60,:)(d(x) — 00,:) " dx.

0%

Moreover, it is easily verified that COk;(0y,x), Ay (09,x)) = 0 for anyi # i’. Therefore,
vm(¥,, — ¥)(0y) converges in distribution to a zero mean Gaussian random vector, whose co-
variance matrixi/ is composed of: diagonal blockg V7, ..., V}), all other elements oF being

zero.

Thus, we can use Thri. 1to get that,/m (6 —6,) converges in distribution to a zero mean Gaussian
random vector of the formtllgolY, which is a Gaussian random vector with a covariance matrix of

the form ¥, ' V¥ 1.
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F Proof of Thm. 4

Since our algorithm returns a locally optimal solution with respect to the differentiable log-
likelihood function, we can frame it as a Z-estimator of the derivative of the log-likelihood function
with respect to the parameters, namely the score function

(@)= =3 S og(a(xl6)).

This is a random mapping based on the sample. ., x,,.

Similarly, we can definel(-) as the 'asymptotic’ score function with respect to the underlying
distributionD:

W) = [ g loxlatxiB)px)ax.

Under the assumptions we have made, the médeturned by the algorithm satisfidsn(é) =0,
and @ converges in probability to som#, for which ¥(6,) = 0. The asymptotic normality of

V/m(6 — 8,) is now an immediate consequence of central limit theorems for 'maximum likelihood’
Z-estimators, such as Thm. 5.21 i [
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