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Abstract

The essence of exploration is acting to try to decrease uncertainty. We propose
a new methodology for representing uncertainty in continuous-state control prob-
lems. Our approach, multi-resolution exploration (MRE), uses a hierarchical map-
ping to identify regions of the state space that would benefit from additional sam-
ples. We demonstrate MRE’s broad utility by using it to speed up learning in a pro-
totypical model-based and value-based reinforcement-learning method. Empirical
results show that MRE improves upon state-of-the-art exploration approaches.

1 Introduction

Exploration, in reinforcement learning, refers to the strategy an agent uses to discover new informa-
tion about the environment. A rich set of exploration techniques, some ad hoc and some not, have
been developed in the RL literature for finite MDPs (Kaelbling et al., 1996). Using optimism in the
face of uncertainty in combination with explicit model representation, some of these methods have
led to the derivation of polynomial sample bounds on convergence to near-optimal policies (Kearns
& Singh, 2002; Brafman & Tennenholtz, 2002). But, because they treat each state independently,
these techniques are not directly applicable to continuous-space problems, where some form of gen-
eralization must be used.

Some attempts have been made to improve the exploration effectiveness of algorithms in continuous-
state spaces. Kakade et al. (2003) extended previous work of Kearns and Singh (2002) to metric
spaces and provided a conceptual approach for creating general provably convergent model-based
learning methods. Jong and Stone (2007) proposed a method that can be interpreted as a practical
implementation of this work, and Strehl and Littman (2007) improved its complexity in the case that
the model can be captured by a linear function.

The performance metric used in these works demands near-optimal behavior after a polynomial
number of timesteps with high probability, but does not insist on performance improvements be-
fore or after convergence. Such “anytime” behavior is encouraged by algorithms with regret
bounds (Auer & Ortner, 2006), although regret-type algorithms have not yet been explored in
continuous-state space problems to our knowledge.

As a motivating example for the work we present here, consider how a discrete state-space algorithm
might be adapted to work for a continuous state-space problem. The practitioner must decide how
to discretize the state space. While finer discretizations allow the learning algorithm to learn more
accurate policies, they require much more experience to learn well. The dilemma of picking fine
or coarse resolution has to be resolved in advance using estimates of the available resources, the
dynamics and reward structure of the environment, and a desired level of optimality. Performance
depends critically on these a priori choices instead of responding dynamically to the available re-
sources.



We propose using multi-resolution exploration (MRE) to create algorithms that explore continuous
state spaces in an anytime manner without the need for a priori discretization. The key to this ideal
is to be able to dynamically adjust the level of generalization the agent uses during the learning
process. MRE sports a knownness criterion for states that allows the agent to reliably apply function
approximation with different degrees of generalization to different regions of the state space.

One of the main contributions of this work is to provide a general exploration framework that can be
used in both model-based and value-based algorithms. While model-based techniques are known for
their small sample complexities, thanks to their smart exploration, they haven’t been as successful
as value-based methods in continuous spaces because of their expensive planning part. Value-based
methods, on the other hand, have been less fortunate in terms of intelligent exploration, and some
of the very powerful RL techniques in continuous spaces, such as LSPI (Lagoudakis & Parr, 2003)
and fitted Q-iteration (Ernst et al., 2005) are in the form of offline batch learning and completely
ignore the problem of exploration. In practice, an exploration strategy is usually incorporated with
these algorithms to create online versions. Here, we examine fitted Q-iteration and show how MRE
can be used to improve its performance over conventional exploration schemes by systematically
collecting better samples.

2 Background

We consider environments that are modeled as Markov decision processes (MDPs) with continuous
state spaces (Puterman, 1994). An MDPM in our setting can be described as a tuple 〈S,A, T,R, γ〉,
where S is a bounded measurable subspace of <k; we say the problem is k-dimensional as one can
represent a state by a vector of size k and we use s(i) to denote the i-th component of this vector.
A = {a1, ..., am} is the discrete set of actions. T is the transition function that determines the next
state given the current state and action. It can be written in the form of st+1 = T (xt, at) + ωt,
where xt and at are the state and action at time t and ωt is a white noise drawn i.i.d. from a known
distribution. R : S → < is the bounded reward function, whose maximum we denote by Rmax, and
γ is the discount factor.

Other concepts are similar to that of a general finite MDP (Puterman, 1994). In particular, a policy
π is a mapping from states to actions that prescribes what action to take from each state. Given a
policy π and a starting state s, the value of s under π, denoted by V π(s), is the expected discounted
sum of rewards the agent will collect by starting from s and following policy π. Under mild condi-
tions (Puterman, 1994), at least one policy exists that maximizes this value function over all states,
which we refer to as the optimal policy or π∗. The value of states under this policy is called the
optimal value function V ∗(·) = V π

∗
(·).

The learning agent has prior knowledge of S, γ, ω and Rmax, but not T and R, and has to find a
near-optimal policy solely through direct interaction with the environment.

3 Multi-resolution Exploration

We’d like to build upon the previous work of Kakade et al. (2003). One of the key concepts to this
method and many other similar algorithms is the notion of known state. Conceptually, it refers to the
portion of the state space in which the agent can reliably predict the behavior of the environment.
Imagine how the agent would decide whether a state is known or unknown as described in (Kakade
et al., 2003). Based on the prior information about the smoothness of the environment and the level
of desired optimality, we can form a hyper sphere around each query point and check if enough data
points exist inside it to support the prediction.

In this method, we use the same hyper-sphere size across the entire space, no matter how the sample
points are distributed, and we keep this size fixed during the entire learning process. In another
words, the degree of generalization is fixed both in time and space.

To support “anytime” behavior, we need to make the degree of generalization variable both in time
and space. MRE partitions the state space into a variable resolution discretization that dynamically
forms smaller cells for regions with denser sample sets. Generalization happens inside the cells (sim-
ilar to the hyper sphere example), therefore it allows for wider but less accurate generalization in



parts of the state space that have fewer sample points, and narrow but more accurate ones for denser
parts.

To effectively use this mechanism, we need to change the notion of known states, as its common
definition is no longer applicable. Let’s define a new knownness criterion that maps S into [0, 1] and
quantifies how much we should trust the function approximation. The two extreme values, 0 and
1, are the two degenerate cases equal to unknown and known conditions in the previous definitions.
In the remainder of this section, we first show how to form the variable resolution structure and
compute the knownness, and then we demonstrate how to use this structure in a prototypical model-
based and value-based algorithm.

3.1 Regression Trees and Knownness

Regression trees are function approximators that partition the input space into non-overlapping re-
gions and use the training samples of each region for prediction of query points inside it. Their ability
to maintain a non-uniform discretization of high-dimensional spaces with relatively fast query time
has proven to be very useful in various RL algorithms (Ernst et al., 2005; Munos & Moore, 2002).
For the purpose of our discussion, we use a variation of the kd-tree structure (Preparata & Shamos,
1985) to maintain our variable-resolution partitioning and produce knownness values. We call this
structure the knownness-tree. As this structure is not used in a conventional supervised-learning
setting, we next describe some of the details.

A knownness-tree τ with dimension k accepts points s ∈ <k satisfying ||s||∞ ≤ 1 1, and answers
queries of the form 0 ≤ knownness(s) ≤ 1. Each node ς of the tree covers a bounded region and
keeps track of the points inside that region, with the root covering the whole space. Let Rς be the
region of ς .

Each internal node splits its region into two half-regions along one of the dimensions to create two
child nodes. Parameter ν determines the maximum allowed number of points in each leaf. For a
node l, l.size is the inf-norm of the size of the region it covers and l.count is the number of points
inside it. Given n points, the normalizing size of the resulting tree, denoted by µ, is the region size of
a hypothetical uniform discretization of the space that puts ν/k points inside each cell, if the points
were uniformly distributed in the space; that is µ = 1

b k
√
nk/νc

.

Upon receiving a new point, the traversal algorithm starts at the root and travels down the tree,
guided by the splitting dimension and value of each internal node. Once inside a leaf l, it adds the
point to its list of points; if l.count is more than ν, the node splits and creates two new half-regions2.
Splitting is performed by selecting a dimension j ∈ [1..k] and splitting the region into two equal
half-regions along the j-th dimension.

The points inside the list are added to each of the children according to what half-region they fall
into. Similar to regular regression trees, several different criteria could be used to select j. Here, we
assume a round-robin method just like kd-tree.

To answer a query knownness(s), the lookup algorithm first finds the corresponding leaf that con-
tains s, denoted l(s), then computes knownness based on l(s).size, l(s).count and µ:

knownness(s) = min(1,
l(s).count

ν
.

µ

l(s).size
) (1)

The normalizing size of the tree is bigger when the total number of data points is small. This creates
higher knownness values for a fixed cell at the beginning of the learning. As more experience is
collected, µ becomes smaller and encourages finer discretization. This process creates a variable
degree of generalization over time.

1In practice, scaling can be used to satisfy this property.
2For the sake of practicality, we can assign a maximum depth to avoid indefinite growth of the tree



3.2 Application to Model-based RL

The model-based algorithm we describe here uses function approximation to estimate T and R,
which are the two unknown parameters of the environment. Let Θ be the set of function approx-
imators for estimating the transition function, with each θji ∈ Θ : <k → < predicting the i-th
component of T (., aj). Accordingly, let τ ji be a knownness-tree for θji . Let φ : <k → < be the
function approximator for the reward function. The estimated transition function, T̂ (s, a), is there-
fore formed by concatenating all the θai (s). Let knownness(s, a) = mini{τai .knownness(s)}.

Construct the augmented MDP M ′ =
〈
S + sf , A, T̂ ′, φ, γ

〉
by adding a new state, sf , with a

reward of Rmax and only self-loop transitions. The augmented transition function T̂ ′ is a stochastic
function defined as:

T̂ ′(s, a) =

{
sf , with probability 1− knownness(s, a)
T̂ (s, a) + ω , otherwise

(2)

Algorithm 1 constructs and solves M ′ and always acts greedily with respect to this internal model.
DPlan is a continuous MDP planner that supports two operations: solveModel, which solves a given
MDP and getBestAction, which returns the greedy action for a given state.

Algorithm 1 A model-based algorithm using MRE for exploration
1: Variables: DPlan, Θ, φ and solving period planFreq
2: Observe a transition of the form (st, at, rt, st+1)
3: Add (st, rt) as a training sample to φ.
4: Add (st, st+1(i)) as a training sample to θat

i .
5: Add (st) to τat

i .
6: if t mod planFreq = 0 then
7: Construct the Augmented MDP M ′ as defined earlier.
8: DPlan.solveModel(M ′)
9: end if

10: Execute action DPlan.getBestAction(st+1)

While we leave a rigorous theoretical analysis of Algorithm 1 to another paper, we’d like to discuss
some of its properties. The core of the algorithm is the way knownness is computed and how it’s
used to make the estimated transition function optimistic. In particular, if we use a uniform fixed
grid instead of the knownness-tree, the algorithm starts to act similar to MBIE (Strehl & Littman,
2005). That is, like MBIE, the value of a state becomes gradually less optimistic as more data is
available. Because of their similarity, we hypothesize that similar PAC-bounds could be proved for
MRE in this configuration.

If we further change knownness(s, a) to be bknownness(s.a)c, the algorithm reduces to an in-
stance of metric E3 (Kakade et al., 2003), which can also be used to derive finite sample bounds.

But, Algorithm1 also has “anytime” behavior. Let’s assume the transition and reward functions are
Lipschitz smooth with Lipschitz constants CT and CR respectively. Let ρt be the maximum size of
the cells and `t be the minimum knownness of all of the trees τ ji at time t. The following establishes
performance guarantee of the algorithm at time t.

Theorem 1 If learning is frozen at time t, Algorithm 1 achieves ε-optimal behavior, with ε being:

ε = O
(ρt(CR + CT

√
k) + 2(1− `t)

(1− γ)2
)

Proof 1 (sketch) This follows as an application of the simulation lemma (Kearns & Singh, 2002).
We can use the smoothness assumptions to compute the closeness of T̂ ′ to the original transition
function based on the shape of the trees and the knownness they output. �



Of course, this theorem doesn’t provide a bound for ρt and `t based on t, as used in common
“anytime” analyses, but gives us some insight on how the algorithm would behave. For example,
the incremental refinement of model estimation assures a certain global accuracy before forcing the
algorithm to collect denser sampling locally. As a result, MRE encourages more versatile sampling
at the early stages of learning. As time goes by and size of the cells gets smaller, the algorithm
gets closer to the optimal policy. In fact, we hypothesize that with some caveats concerning the
computation of µ, it can be proved that Algorithm 1 converges to the optimal policy in the limit,
given that an oracle planner is available.

The bound in Theorem 1 is loose because it involves only the biggest cell size, as opposed to indi-
vidual cell sizes. Alternatively, one might be able to achieve better bounds, similar to those in the
work of Munos and Moore (2000), by taking the variable resolution of the tree into account.

3.3 Application to Value-based RL

Here, we show how to use MRE in fitted Q-iteration, which is a value-based batch learner for
continuous spaces. A similar approach can be used to apply MRE to other types of value-based
methods, such as LSPI, as an alternative to random sampling or ε-greedy exploration, which are
widely used in practice.

The fitted Q-iteration algorithm accepts a set of four-tuple samples S = {(sl, al, rl, s′l), l = 1 . . . n}
and uses regression trees to iteratively compute more accurate Q̂-functions. In particular, let Q̂ji be
the regression tree used to approximateQ(·, j) in the i-th iteration. Let Sj ⊂ S be the set of samples
with action equal to j. The training samples for Q̂j0 are Sj0 = {(sl, rl)|(sl, al, rl, s′l) ∈ Sj}. Q̂ji+1

is constructed based on Q̂i in the following way:

xl = {sl|(sl, al, rl, s′l) ∈ Sj} (3)

yl = {rl + γmax
a∈A

Q̂ai (s′l)|(sl, al, rl, s′l) ∈ Sj} (4)

Sji+1 = {(xl, yl)}. (5)

Random sampling is usually used to collect S for fitted Q-iteration when used as an offline algorithm.
In online settings, ε-greedy can be used as the exploration scheme to collect samples. The batch
portion of the algorithm is applied periodically to incorporate the new collected samples.

Combining MRE with fitted Q-iteration is very simple. Let τ j correspond to Q̂ji for all i’s, and be
trained on the same samples. The only change in the algorithm is the computation of Equation 4. In
order to use optimistic values, we elevate Q̂-functions according to their knownness:

yl = τ j .knownness(sl)
(
rl + γmax

a∈A
Qai (s′l)

)
+(

1− τ j .knownness
(
sl
)) (Rmax

1− γ

)
.

4 Experimental Results

To empirically evaluate the performance of MRE, we consider a well-studied environment called
“Mountain Car” (Sutton & Barto, 1998). In this domain, an underpowered car tries to climb up
to the right of a valley, but has to increase its velocity via several back and forth trips across the
valley. The state space is 2-dimensional and consists of the horizontal position of the car in the
range of [−1.2, 0.6], and its velocity in [−0.07, 0.07]. The action set is forward, backward, and
neutral, which correspond to accelerating in the intended direction. Agent receives a −1 penalty in
each timestep except for when it escapes the valley and receives a reward of 0 that ends the episode.
Each episode has a cap of 300 steps, and γ = 0.95 is used for all the experiments. A small amount
of gaussian noise ω ∼ N(0, 0.01) is added to the position component of the deterministic transition
function used in the original definition, and the starting position of the car is chosen very close to



the bottom of the hill with a random velocity very close to 0 (achieved by drawing samples from a
normal distribution with the mean on the bottom of the hill and variance of 1/15 of the state space.

This set of parameters makes this environment especially interesting for the purpose of comparing
exploration strategies, because it is unlikely for random exploration to guide the car to the top of the
hill. Similar scenarios occur in almost all of the complex real-life domains, where a long trajectory
is needed to reach the goal.

Three versions of Algorithm 1 are compared in Figure 1(a): the first two implementations use fixed
discretizations instead of the knownness-tree, with different normalized resolutions of 0.05 and 0.3.
The third one uses variable discretization using the knownness-tree as defined in Section 3.1. All
the instances use the same Θ and φ, which are regular kd-tree structures (Ernst et al., 2005) with
maximum allowed points of 10 in each cell. All of the algorithms use fitted value-iteration (Gordon,
1999) as their DPlan, and their planFreq is set to 100. Furthermore, the known threshold parameter
of the first two instances was hand-tuned to 4 and 30 respectively.

The learning curve in Figure 1(a) is averaged over 20 runs with different random seeds and smoothed
over a window of size 5 to avoid a cluttered graph. The finer fixed-discretization converges to a
very good policy, but takes a long time to do so, because it trusts only very accurate estimations
throughout the learning. The coarse discretization on the other hand, converges very fast, but not
to a very good policy; it constructs rough estimations and doesn’t compensate as more samples are
gathered. MRE refines the notion of knownness to make use of rough estimations at the beginning
and accurate ones later, and therefore converges to a good policy fast.
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Figure 1: (a) The learning curve of Algorithm 1 in Mountain Car with three different exploration
strategies. (b) Average performance of Algorithm 1 in Mountain Car with three exploration strate-
gies. Performance is evaluated at three different stages of learning.

A more detailed comparison of this result is shown in Figure 1(b), where the average time-per-
episode is provided for three different phases: At the early stages of learning (episode 1-100), at
the middle of learning (episode 100-200), and during the late stages (episode 200-300). Standard
deviation is used as the error bar.

To have a better look at why MRE provides better results than the fixed 0.05 at the early stages of
learning (note that both of them achieve the same performance level at the end), value functions of
the two algorithms at timestep = 1500 are shown in Figure 2. Most of the samples at this stage
have very small knownness in the fixed version, due to the very fine discretization, and therefore have
very little effect on the estimation of the transition function. This situation results in a too optimistic
value function (the flat part of the function). The variable discretization however, achieves a more
realistic and smooth value function by allowing coarser generalizations in parts of the state space
with fewer samples.

The same type of learning curve is shown for the fitted Q-iteration algorithm in Figure 3. Here,
we compare ε-greedy to two versions of variable-resolution MRE; in the first version, although a
knownness-tree is chosen for partitioning the state space, knownness is computed as a Boolean value
using the bc operator. The second version uses continuous knownness. For ε-greedy, ε is set to 0.3
at the beginning and is decayed linearly to 0.03 as t = 10000, and is kept constant afterward. This
parameter setting is the result of a rough optimization through a few trial and errors. As expected,
ε-greedy performs poorly, because it cannot collect good samples to feed the batch learner. Both of
the versions of MRE converge to the same policy, although the one that uses continuous knownness
does so faster.
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Figure 2: Snapshot of the value function at timestep 1500 in Algorithm 1 with two configuration:
(a) fixed discretization with resolution= 0.05, and (b) variable resolution.
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Figure 3: The learning curve for fitted Q-iteration in Mountain Car. ε-greedy is compared to two
versions of MRE: one that uses Boolean knownness, and one that uses continuous knownness.

To have a better understanding of why the continuous knownness helps fitted Q-iteration during the
early stages of learning, snapshots of knownness from the two versions are depicted in Figure 6,
along with the set of visited states at timestep 1500. Black indicates a completely unknown region,
while white means completely known; gray is used for intermediate values. The continuous notion
of knownness helps fitted Q-iteration in this case to collect better-covering samples at the beginning
of learning.

5 Conclusion

In this paper, we introduced multi-resolution exploration for reinforcement learning in continuous
spaces and demonstrated how to use it in two algorithms from the model-based and value-based
paradigms. The combination of two key features distinguish MRE from previous smart exploration
schemes in continuous spaces: The first is that MRE uses a variable-resolution structure to identify
known vs. unknown regions, and the second is that it successively refines the notion of knownness
during learning, which allows it to assign continuous, instead of Boolean, knownness. The appli-
cability of MRE to value-based methods allows us to benefit from smart exploration ideas from the
model-based setting in powerful value-based batch learners that usually use naive approaches like
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Figure 4: Knownness computed in two versions of MRE for fitted Q-iteration: One that has Boolean
values, and one that uses continuous ones. Black indicates completely unknown and white means
completely known. Collected samples are also shown for the same two versions at timestep 1500.

random sampling to collect data. Experimental results confirm that MRE holds significant advantage
over some other exploration techniques widely used in practice.
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