Efficient Exact Inference in Planar Ising Models

Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)

Bibtex Metadata Paper

Authors

Nicol N. Schraudolph, Dmitry Kamenetsky

Abstract

We present polynomial-time algorithms for the exact computation of lowest- energy states, worst margin violators, partition functions, and marginals in binary undirected graphical models. Our approach provides an interesting alternative to the well-known graph cut paradigm in that it does not impose any submodularity constraints; instead we require planarity to establish a correspondence with perfect matchings in an expanded dual graph. Maximum-margin parameter estimation for a boundary detection task shows our approach to be efficient and effective.