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Abstract

This paper studies the forward greedy strategy in sparse nonparametric regres-
sion. For additive models, we propose an algorithm called additive forward re-
gression; for general multivariate models, we propose an algorithm called gen-
eralized forward regression. Both algorithms simultaneously conduct estimation
and variable selection in nonparametric settings for the high dimensional sparse
learning problem. Our main emphasis is empirical: on both simulated and real
data, these two simple greedy methods can clearly outperform several state-of-
the-art competitors, including LASSO, a nonparametric version of LASSO called
the sparse additive model (SpAM) and a recently proposed adaptive parametric
forward-backward algorithm called Foba. We also provide some theoretical justi-
fications of specific versions of the additive forward regression.

1 Introduction

The linear model is a mainstay of statistical inference. At present, there are two major approaches
to fit sparse linear models: convex regularization and greedy pursuit. The convex regularization
approach regularizes the model by adding a sparsity constraint, leading to methods like LASSO
[19, 7] or the Dantzig selector [6]. The greedy pursuit approach regularizes the model by iteratively
selecting the current optimal approximation according to some criteria, leading to methods like the
matching pursuit [14] or orthogonal matching pursuit (OMP) [20].

Substantial progress has been made recently on applying the convex regularization idea to fit sparse
additive models. For splines, Lin and Zhang [12] propose a method called COSSO, which uses
the sum of reproducing kernel Hilbert space norms as a sparsity inducing penalty, and can simul-
taneously conduct estimation and variable selection; Ravikumar et al. [17, 16] develop a method
called SpAM. The population version of SpAM can be viewed as a least squares problem penalized
by the sum of Lo (P)-norms; Meier et al. [15] develop a similar method using a different sparsity-
smoothness penalty, which guarantees the solution to be a spline. All these methods can be viewed
as different nonparametric variants of LASSO. They have similar drawbacks: (i) it is hard to extend
them to handle general multivariate regression where the mean functions are no longer additive; (ii)
due to the large bias induced by the regularization penalty, the model estimation is suboptimal. One
way to avoid this is to resort to two-stage procedures as in [13], but the method becomes less robust
due to the inclusion of an extra tuning parameter in the first stage.

In contrast to the convex regularization methods, the greedy pursuit approaches do not suffer from
such problems. Instead of trying to formulate the whole learning task to be a global convex opti-
mization, the greedy pursuit approaches adopt iterative algorithms with a local view. During each
iteration, only a small number of variables are actually involved in the model fitting so that the whole
inference only involves low dimensional models. Thus they naturally extend to the general multi-
variate regression and do not induce large estimation bias, which makes them especially suitable for
high dimensional nonparametric inference. However, the greedy pursuit approaches do not attract as



much attention as the convex regularization approaches in the nonparametric literature. For additive
models, the only work we know of are the sparse boosting [4] and multivariate adaptive regression
splines (MARS) [9]. These methods mainly target on additive models or lower-order functional
ANOVA models, but without much theoretical analysis. For general multivariate regression, the
only available method we are aware of is rodeo [11]. However, rodeo requires the total number of
variables to be no larger than a double-logarithmic of the data sample size, and does not explicitly
identify relevant variables.

In this paper, we propose two new greedy algorithms for sparse nonparametric learning in high di-
mensions. By extending the idea of the orthogonal matching pursuit to nonparametric settings, the
main contributions of our work include: (i) we formulate two greedy nonparametric algorithms:
additive forward regression (AFR) for sparse additive models and generalized forward regression
(GFR) for general multivariate regression models. Both of them can simultaneously conduct esti-
mation and variable selection in high dimensions. (ii) We present theoretical results for AFR using
specific smoothers. (iii) We report thorough numerical results on both simulated and real-world
datasets to demonstrate the superior performance of these two methods over the state-of-the-art
competitors, including LASSO, SpAM, and an adaptive parametric forward-backward algorithm
called Foba [22].

The rest of this paper is organized as follows: in the next section we review the basic problem
formulation and notations. In Section 3 we present the AFR algorithm, in section 4, we present the
GFR algorithm. Some theoretical results are given in Section 5. In Section 6 we present numerical
results on both simulated and real datasets, followed by a concluding section at the end.

2 Sparse Nonparametric Learning in High Dimensions
We begin by introducing some notations. Assuming n data points {(X LYY }:1:1 are observed from
a high dimensional regression model
Yi=m(X) +€, € ~N(0,0%) i=1,...,n, (1)
where X' = (X{,...,X/)T € R” is a p-dimensional design point, m : R? — R is an unknown
smooth mean function. Here we assume m lies in a p-dimensional second order Sobolev ball with
finite radius. In the sequel, we denote the response vector (Y!,...,Y™)T by Y and the vector
(Xj,...,X?)T by X for1 < j <p.
We assume m is functional sparse, i.e. there exists an index set S C {1, ..., p}, such that
(General) m(z) = m(zg), (2)
where |S| = r < p and xg denotes the sub-vector of = with elements indexed by S.
Sometimes, the function m can be assumed to have more structures to obtain a better estimation
result. The most popular one is additivity assumption [10]. In this case, m decomposes into the sum
of 7 univariate functions {m;},_g:
(Additive) m(z) = a + Zjes m; (), 3)
where each component function m; is assumed to lie in a second order Sobolev ball with finite
radius so that each element in the space is smooth enough. For the sake of identifiability, we also

assume Em;(X,;) = 0for j = 1,...,p, where the expectation is taken with respect to the marginal
distribution of X;.

Given the models in (2) or (3), we have two tasks: function estimation and variable selection. For
the first task, we try to find an estimate /m, such that ||m — m/|| — 0 as n goes to infinity, where || - ||

is some function norm. For the second task, we try to find an estimate .S, which is an index set of
variables, such that P (§ =S ) — 1 as n goes to infinity.

3 Additive Forward Regression

In this section, we assume the true model is additive, i.e. m(z) = a + > ;g m;(z;). In general,
if the true index set for the relevant variables is known, the backfitting algorithm can be directly



applied to estimate m [10]. It is essentially a Gauss-Seidel iteration for solving a set of normal
equations in a function space. In particular, we denote the estimates on the jth variable X; to be
mj = (m; (le)7 ce, T (Xj"))T € R™. Then m; can be estimated by regressing the partial residual
vector R; =Y —a — Zk# my, on the variable X ;. This can be calculated by m; = S;R;, where
S; : R® — R" is a smoothing matrix, which only depends on X!,..., X™ but not on Y. Once
m; is updated, the algorithm holds it fixed and repeats this process by cycling through each variable
until convergence. Under mild conditions on the smoothing matrices Sy, ..., Sy, the backfitting
algorithm is a first order algorithm that guarantees to converge [5] and achieves the minimax rate
of convergence as if only estimating a univariate function. However, for sparse learning problems,
since the true index set is unknown, the backfitting algorithm no longer works due to the uncontrolled
estimation variance.

By extending the idea of the orthogonal matching pursuit to sparse additive models, we design a
forward greedy algorithm called the additive forward regression (AFR), which only involves a few
variables in each iteration. Under this framework, we only need to conduct the backfitting algorithm
on a small set of variables. Thus the variance can be well controlled. The algorithm is described in
Figure 1, where we use (-, -),, to denote the inner product of two vectors.

n

Input: {(X*,Y")}" and7n >0
let A =0, =>"" | Y?/n and the residual R®) =Y — o
fork=1,2,3,...
for each j ¢ A*~1) estimate 7, by smoothing: m; = S;R
let j*) = argmax |(m;, RF=Y),|
jQ.A(k_l)
let AR) = A=1) (k)
estimate M (F) = {mj:je A} by the backfitting algorithm
compute the residual R*) =Y — o — 2y e M5 (X;)
if (|| RV — [|IR®3)/n <1
k=k—-1
break
end if
end for

Output: selected variables A*) and estimated component functions M (¥) = {m;:j e A(k)}

(k—1)

Figure 1: THE ADDITIVE FORWARD REGRESSION ALGORITHM

The algorithm uses an active set .A to index the variables included in the model during each iteration
and then performs a full optimization over all “active” variables via the backfitting algorithm. The
main advantage of this algorithm is that during each iteration, the model inference is conducted in
low dimensions and thus avoids the curse of dimensionality. The stopping criterion is controlled
by a predefined parameter 1 which is equivalent to the regularization tuning parameter in convex
regularization methods. Other stopping criteria, such as the maximum number of steps, can also
be adopted. In practice, we always recommend to use data-dependent technique, such as cross-
validation, to automatically tune this parameter.

Moreover, the smoothing matrix S; can be fairly general, e.g. univariate local linear smoothers as
described below, kernel smoothers or spline smoothers [21], etc.

4 Generalized Forward Regression

This section only assume m(z) to be functional sparse, i.e. m(x) = m(zg), without restricting the
model to be additive. In this case, to find a good estimate m becomes more challenging.

To estimate the general multivariate mean function m(z), one of the most popular methods is the
local linear regression: given an evaluation point * = (z1,...,,)7, the estimate 7 (x) is the



n

Input: {(X*,Y")} andn >0
(0) o i (0) n i 2
let AY =0, a=3" Y"/nand 69 =37 [ (Y'—«a)?/n
fork=1,2,3,...
let j®) = argmin 37 | (VI — S(AKk-D Uj)XiY)Q /n
jEAK=1)
let AR = A1) () ()
n ; 2
let 6F) =371 (VI — S(AW) x:Y)" /n
if (6=1 — k) <
k=k—-1
break
end if
end for
Output: selected variables A*) and local linear estimates (S(A®)x1Y, ..., S(A®)x.Y)

Figure 2: THE GENERALIZED FORWARD REGRESSION ALGORITHM

solution @, to the following locally kernel weighted least squares problem:

n p
: i i 2 i
min S AV —a, = pLX —a)} [ Kn, (X — =), (4)
=1 j=1

where K () is a one dimensional kernel function and the kernel weight function in (4) is taken as a
product kernel with the diagonal bandwidth matrix H'/? = diag{h,, ..., hp}. Such a problem can
be re-casted as a standard weighted least squares regression. Therefore a closed-form solution to the
the local linear estimate can be explicitly given by

Qr =1 (XIW,X,) ' XIW, Y =8,Y,

where e; = (1,0,...,0)7 is the first canonical vector in RP*! and
p P 1 (Xl — (E)T
W, =diag ¢ [[ Kn, (X} — ), [[ En, (X —25) ¢, Xo=| : :
j=1 j=1 1 (Xn _ JJ)T

Here, S, is the local linear smoothing matrix. Note that if we constrain (3, = 0, then the local linear
estimate reduces to the kernel estimate. The pointwise rate of convergence of such an estimate
has been characterized in [8]: |m(z) — m(z)|> = Op(n~*/(4+P)), which is extremely slow when
p > 10.

To handle the large p case, we again extend the idea of the orthogonal matching pursuit to this
setting. For an index subset A C {1,...,p} and the evaluation point x, the local linear smoother
restricted on A is denoted as S(.A) and

S(A), = el (X(A)TW(A), X (A),) " X(A)ITW(A),,

where W (A), is a diagonal matrix whose diagonal entries are the product of univariate kernels over
the set A and X (A), is a submatrix of X, that only contains the columns indexed by .A.

Given these definitions, the generalized forward regression (GFR) algorithm is described in Figure
2. Similar to AFR, GFR also uses an active set A to index the variables included in the model.
Such mechanism allows all the statistical inference to be conducted only in low-dimensional spaces.
The GFR algorithm using the multivariate local linear smoother can be computationally heavy for
very high dimensional problems. However, GFR is a generic framework and can be equipped with
arbitrary multivariate smoothers, e.g. kernel/Nearest Neighbor/spline smoothers. These smoothers
lead to much better scalability. The only reason we use the local linear smoother as an illustrative
example in this paper is due to its popularity and potential advantage on correcting the boundary
bias.



5 Theoretical Properties

In this section, we provide the theoretical properties of the additive forward regression estimates
using the spline smoother. Due to the asymptotic equivalence of the spline smoother and the local
linear smoother [18], we deduce that these results should also hold for the local linear smoother.
Our main result in Theorem 1 says when using the spline smoother with certain truncation rate
to implement AFR algorithm, the resulting estimator is consistent with a certain rate. When the
underlying true component functions do not go to zeroes too fast, we also achieve variable selection
consistency. Our analysis relies heavily on [3]. A similar analysis has also been reported in the
technical report version of [16].

Theorem 1. Assuming there exists some & > 0 which can be arbitrarily large, such that p = O(n?).
For¥j € {1,...,p}, we assume m; lies in a second-order Sobolev ball with finite radius, and
m=aq«a+ Zé’:l m. For the additive forward regression algorithm using the spline smoother with

a truncation rate at n''*, after (n/log n)l/ % steps, we obtain that

Im — @ = Op (x/l‘)g”) . )
n

1/4 .
Furthermore, if we also assume minjcg ||m;|| = Q ((lorgln) ), then P (S’ = S) — 1 asn goes

to infinity. Here, S is the index set for nonzero component functions in m.

The rate for || — m||? obtained from Theorem 1 is only O(n~'/2), which is slower than the
minimax rate O(n~%/%). This is mainly an artifact of our analysis instead of a drawback of the
additive forward regression algorithm. In fact, if we perform a basis expansion for each component
function to first cast the problem to be a finite dimensional linear model with group structure, under
some more stringent smallest eigenvalue conditions on the augmented design as in [23], we can
show that AFR using spline smoothers can actually achieves the minimax rate O(n~%/%) up to a
logarithmic factor. A detailed treatment will be reported in a follow up paper.

Sketch of Proof: We first describe an algorithm called group orthogonal greedy algorithm (GOGA),
which solves a noiseless function approximation problem in a direct-sum Hilbert space. AFR can
then be viewed as an empirical realization of such an “ideal” algorithm.

GOGA is a group extension of the orthogonal greedy algorithm (OGA) in [3]. For j = 1,...,p, let
'H; be a Hilbert space of continuous functions with a Hamel basis D;. Then for a function m in the
direct-sum Hilbert space H = H1 + H2 + ... 4+ H,, we want to approximate m using the union of
many truncated bases D = Dj U...U DI’D, where for all 7, D; C D;.

We equip an inner product (-,-) on H: Vf,g € H, (f,q) = [ f(X)g(X)dPx where Py is the
marginal distribution for X. Let || - || be the norm induced by the inner product (-, -) on H. GOGA
begins by setting m(®) = 0, and then recursively defines the approximant m*) based on m(k—1

(k=1)

and its residual r =m —m*=D, More specifically: we proceed as the following: define f;k)

to be the projection of 7(*~1) onto the truncated basis D}, ie. f;k) = arg mingeps | =1 — g]|2.

We calculate %) as j*) = arg max; | (1) f](k)>| m(*) can then be calculated by projecting m

onto the additive function space generated by A*) = Dl + -+ + Dy
m*® = argmin |m — g%
g€span(AK))

AFR using regression splines is exactly GOGA when there is no noise. For noisy samples, we
replace the unknown function m by its n-dimensional output vector Y, and replace the inner product
(-,) by {-,)n, which is defined as (f,g), = = 31", f(X")g(X"). The projection of the current
residual vector onto each dictionary D;- is replaced by the corresponding nonparametric smoothers.
Considering any function m € H, we proceed in the same way as in [3], but replacing the OGA
arguments in their analysis by those of GOGA. The desired results of the theorem follow from a
simple argument on bounding the random random covering number of spline spaces.



6 Experimental Results

In this section, we present numerical results for AFR and GFR applied to both synthetic and real
data. The main conclusion is that, in many cases, their performance on both function estimation
and variable selection can clearly outperform those of LASSO, Foba, and SpAM. For all the re-
ported experiments, we use local linear smoothers to implement AFR and GFR. The results for
other smoothers, such as smoothing splines, are similar. Note that different bandwidth parameters
will have big effects on the performances of local linear smoothers. Our experiments simply use
the plug-in bandwidths according to [8] and set the bandwidth for each variable to be the same.
For AFR, the bandwidth  is set to be 1.06n~'/® and for GFR, the bandwidth is varying over each
iteration such that h = 1.06n~/(4+IA4) where | A| is the size of the current active set.

For an estimate 7, the estimation performance for the synthetic data is measured by the mean square
error (MSE), which is defined as MSE(m) = £ 3" | (m(X?) — ﬁl(Xi))2 . For the real data, since

n
we do not know the true function m(x), we approximate the mean squared error using 5-fold cross-

validation scores.

6.1 The Synthetic Data

For the synthetic data experiments, we consider the compound symmetry covariance structure of the
design matrix X € R™*? with n = 400 and p = 20. Each dimension X; is generated according to

W; +tU
Xi=——" j=1,...
J 1 +t ) j ) » Dy
where Wy, ..., W, and U are i.i.d. sampled from Uniform(0,1). Therefore the correlation between

X; and Xy, is t2/(1 + t?) for j # k. We assume the true regression functions have 7 = 4 relevant
variables:
Y=m(X)+e=m(Xy,...,X4)+e (6)

To evaluate the variable selection performance of different methods, we generate 50 designs and 50
trials for each design. For each trial, we run the greedy forward algorithm r steps. If all the relevant
variables are included in, the variable selection task for this trial is said to be successful. We report
the mean and standard deviation of the success rate in variable selection for various correlation
between covariates by varying the values of ¢.

We adopt some synthetic examples as in [12] and define the following four functions: ¢, (z) = «,
g2(z) = (22 —1)?, g3(z) = sin(27x) /(2 —sin(27x)), and g4(z) = 0.1sin(27rx) + 0.2 cos(2mx) +
0.3sin?(2mz) + 0.4 cos® (27x) + 0.5sin®(27z).

The following four regression models are studied. The first model is linear; the second is additive;
the third and forth are more complicated nonlinear models with at least two way interactions:

)i Yi=2X]+3X:+4X: +5X; +2N(0,1), witht=1;
( )i Y =5g1(X]) + 392(X3) + 493(X3) + 694(X}) +4N(0,1), witht=1;
(Model3) :  Y*' =exp(2X1X; + X3) +2X;+ N(0,1), witht=10.5;
(Modeld) : ¥* = 370 0,(X}) + 01 (X§XD) + ga((X] + X9)/2) + 0a(X{X]) + N (0. 1)
with t = 0.5.

Compared with LASSO, Foba, and SpAM, the estimation performance using MSE as evaluation
criterion is presented in Figure 3. And Table 1 shows the rate of success for variable selection of
these models with different correlations controlled by ¢.

From Figure 3, we see that AFR and GFR methods provide very good estimates for the underlying
true regression functions as compared to others. Firstly, LASSO and SpAM perform very poorly
when the selected model is very sparse. This is because they are convex regularization based ap-
proaches: to obtain a very sparse model, they induce very large estimation bias. On the other hand,
the greedy pursuit based methods like Foba, AFR and GFR do not suffer from such a problem. Sec-
ondly, when the true model is linear, all methods perform similarly. For the nonlinear true regression



Model 1 Model 2 Model 3 Model 4

——GFR N
+—AFR y

N % SPAM 12

LN = -Foba

A s -=- LASSO

—4—GFR
+—AFR

- ® SPAM

- -Foba .
-=- LASSO o4 *

——GFR
+—AFR
% SpAM
- -Foba
-=- LASSO

MSE

3
sparsity

sparsity sparsity sparsity

Figure 3: Performance of the different algorithms on synthetic data: MSE versus sparsity level

function, AFR, GFR and SpAM outperform LASSO and Foba. It is expectable since LASSO and
Foba are based on linear assumptions. Furthermore, we notice that when the true model is addi-
tive (Model 2) or nearly additive (Model 4), AFR performs the best. However, for the non-additive
general multivariate regression function (Model 3), GFR performs the best. For all examples, when
more and more irrelevant variables are included in the model, SpAM has a better generalization

performance due to the regularization effect.

Table 1: Comparison of variable selection

Model I  LASSO(sd) Foba SpAM AFR GFR

t=0 1.000 (0.0000)  1.000 (0.0000)  0.999 (0.0028)  0.999 (0.0039)  0.990 (0.0229)
t=1 0.879 (0.0667)  0.882 (0.0557) 0.683 (0.1805) 0.879 (0.0525)  0.839 (0.0707)
t=2 0.559 (0.0913)  0.553 (0.0777)  0.190 (0.1815)  0.564 (0.0739)  0.515 (0.0869)
Model 2 LASSO(sd) Foba SpAM AFR GFR

t=0 0.062 (0.0711)  0.069 (0.0774)  0.842(0.1128)  0.998 (0.0055)  0.769 (0.1751)
t=1 0.056 (0.0551)  0.060 (0.0550) 0.118 (0.0872)  0.819 (0.1293)  0.199 (0.2102)
t=2 0.004 (0.0106)  0.029 (0.0548)  0.008 (0.0056)  0.260 (0.1439)  0.021 (0.0364)
Model 3 LASSO(sd) Foba SpAM AFR GFR

t=0 0.997 (0.0080)  0.999 (0.0039)  0.980 (0.1400)  1.000 (0.0000)  1.000 (0.0000)
t=1 0.818 (0.1137)  0.802 (0.1006)  0.934 (0.1799)  1.000 (0.0000)  0.995 (0.0103)
t=2 0.522 (0.1520)  0.391 (0.1577)  0.395(0.3107)  0.902 (0.1009)  0.845 (0.1623)
Model 4  LASSO(sd) Foba SpAM AFR GFR

t=0 0.043 (0.0482)  0.043 (0.0437)  0.553 (0.1864) 0.732(0.1234)  0.967 (0.0365)
t=0.5 0.083(0.0823) 0.049 (0.0511) 0.157(0.1232)  0.126 (0.0688)  0.708 (0.1453)
t=1 0.048 (0.0456)  0.085 (0.0690)  0.095 (0.0754)  0.192 (0.0679)  0.171 (0.1067)

The variable selection performances of different methods in Table 1 are very similar to their estima-
tion performances. We observe that, when correlation parameter ¢ becomes larger, the performances
of all methods decrease. But SpAM is most sensitive to the correlation increase. In all models, the
performance of SpAM can decrease more than 70% for the larger ¢; in contrast, AFR and GFR are
more robust to the increased correlation between different covariates. Another interesting observa-
tion is on model 4. From the previous discussion, on this model, AFR achieves a better estimation
performance. However, when comparing the variable selection performance, GFR is the best. This
suggests that for nonparametric inference, the goals of estimation consistency and variable selection
consistency might not be always coherent. Some tradeoffs might be needed to balance them.

6.2 The real data

In this subsection, we compare five methods on three real datasets: Boston Housing, AutoMPG, and
lonosphere data set 1 Boston Housing contains 556 data points, with 13 features; AutoMPG 392
data points (we delete those with missing values), with 7 features and lonosphere 351 data points,
with 34 features and the binary output. We treat lonosphere as a regression problem although the

! Available from UCI Machine Learning Database Repository: http:archive.ics.uci.edu/ml.



response is binary. We run 10 times 5-fold cross validation on each dataset and plot the mean and
standard deviation of MSE versus different sparsity levels in Figure 4.

Boston Housing AutoMPG lonosphere
90 70 0.24
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Figure 4: Performance of the different algorithms on real datasets: CV error versus sparsity level

From Figure 4, since all the error bars are tiny, we deem all the results significant. On the Boston
Housing and AutoMPG datasets, the generalization performances of AFR and GFR are clearly bet-
ter than LASSO, Foba, and SpAM. For all these datasets, if we prefer very sparse models, the
performance of the greedy methods are much better than the convex regularization methods due
to the much less bias being induced. On the Ionosphere data, we only need to run GFR up to 15
selected variables, since the generalization performance with 15 variables is already worse than the
null model due to the curse of dimensionality. Both AFR and GFR on this dataset achieve the best
performances when there are no more than 10 variables included; while SpAM achieves the best
CV score with 25 variables. However, this is not to say that the true model is not sparse. The main
reason that SpAM can achieve good generalization performance when many variables included is
due to its regularization effect. We think the true model should be sparse but not additive. Similar
trend among different methods has also appeared in Model 4 of previous synthetic datasets.

7 Conclusions and Discussions

We presented two new greedy algorithms for nonparametric regression with either additive mean
functions or general multivariate regression functions. Both methods utilize the iterative forward
stepwise strategy, which guarantees the model inference is always conducted in low dimensions in
each iteration. These algorithms are very easy to implement and have good empirical performance
on both simulated and real datasets.

One thing worthy to note is: people sometimes criticize the forward greedy algorithms since they
can never have the chance to correct the errors made in the early steps. This is especially true for
high dimensional linear models, which motivates the outcome of some adaptive forward-backward
procedures such as Foba [22]. We addressed a similar question: Whether a forward-backward pro-
cedure also helps in the nonparametric settings? AFR and GFR can be trivially extended to be
forward-backward procedures using the same way as in [22]. We conducted a comparative study to
see whether the backward steps help or not. However, the backward step happens very rarely and
the empirical performance is almost the same as the purely forward algorithm. This is very different
from the linear model cases, where the backward step can be crucial. In summary, in the nonpara-
metric settings, the backward ingredients will cost much more computational efforts with very tiny
performance improvement. We will investigate more on this phenomenon in the near future.

A very recent research strand is to learn nonlinear models by the multiple kernel learning machinery
[1, 2], another future work is to compare our methods with the multiple kernel learning approach
from both theoretical and computational perspectives.
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