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Abstract

The Indian Buffet Process is a Bayesian nonparametric approach that models ob-
jects as arising from an infinite number of latent factors. Here we extend the latent
factor model framework to two or more unbounded layers of latent factors. From a
generative perspective, each layer defines a conditional factorial prior distribution
over the binary latent variables of the layer below via a noisy-or mechanism. We
explore the properties of the model with two empirical studies, one digit recogni-
tion task and one music tag data experiment.

1 Introduction

The Indian Buffet Process (IBP) [5] is a Bayesian nonparametric approach that models objects as
arising from an unbounded number of latent features. One of the main motivations for the IBP
is the desire for a factorial representation of data, with each element of the data vector modelled
independently, i.e. as a collection of factors rather than as monolithic wholes as assumed by other
modeling paradigms such as mixture models. Consider music tag data collected through the internet
service provider Last.fm. Users of the service label songs and artists with descriptive tags that
collectively form a representation of an artist or song. These tags can then be used to organize
playlists around certain themes, such as music from the 80’s. The top 8 tags for the popular band
RADIOHEAD are: alternative, rock, alternative rock, indie, electronic, britpop, british, and indie
rock. The tags point to various facets of the band, for example that they are based in Britain, that
they make use of electronic music and that their style of music is alternative and/or rock. These
facets or features are not mutually exclusive properties but represent some set of distinct aspects of
the band.

Modeling such data with an IBP allows us to capture the latent factors that give rise to the tags,
including inferring the number of factors characterizing the data. However the IBP assumes these
latent features are independent across object instances. Yet in many situations, a more compact
and/or accurate description of the data could be obtained if we were prepared to consider dependen-
cies between latent factors. Despite there being a wealth of distinct factors that collectively describe
an artist, it is clear that the co-occurrence of some features is more likely than others. For example,
factors associated with the tag alternative are more likely to co-occur with those associated with the
tag indie than those associated with tag classical.

The main contribution of this work is to present a method for extending infinite latent factor mod-
els to two or more unbounded layers of factors, with upper-layer factors defining a factorial prior
distribution over the binary factors of the layer below. In this framework, the upper-layer factors
express correlations between lower-layer factors via a noisy-or mechanism. Thus our model may
be interpreted as a Bayesian nonparametric version of the noisy-or network [6, 8]. In specifying the
model and inference scheme, we make use of the recent stick-breaking construction of the IBP [10].
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For simplicity of presentation, we focus on a two-layer hierarchy, though the method extends readily
to higher-order cases. We show how the complete model is amenable to efficient inference via a
Gibbs sampling procedure and compare performance of our hierarchical method with the standard
IBP construction on both a digit modeling task, and a music genre-tagging task.

2 Latent Factor Modeling

Consider a set of N objects or exemplars: x1:N = [x1, x2, . . . , xN ]. We model the nth object
with the distribution xn | zn,1:K , θ ∼ F (zn,1:K , θ1:K), with model parameters θ1:K = [θk]Kk=1

(where θk ∼ H indep. ∀k) and feature variables zn,1:K = [znk]Kk=1 which we take to be binary:
znk ∈ {0, 1}. We denote the presence of feature k in example n as znk = 1 and its absence as
znk = 0. Features present in an object are said to be active while absent features are inactive.
Collectively, the features form a typically sparse binary N ×K feature matrix, which we denote as
z1:N,1:K , or simply Z. For each feature k let µk be the prior probability that the feature is active.
The collection of K probabilities: µ1:K , are assumed to be mutually independent, and distributed
according to a Beta(α/K, 1) prior. Summarizing the full model, we have (indep.∀n, k):

xn | zn,1:K , θ ∼ F (zn,1:K , θ) znk | µk ∼ Bernoulli(µk) µk | α ∼ Beta
( α

K
, 1

)

According to the standard development of the IBP, we can marginalize over variables µ1:K and
take the limit K → ∞ to recover a distribution over an unbounded binary feature matrix Z. In
the development of the inference scheme for our hierarchical model, we make use of an alternative
characterization of the IBP: the IBP stick-breaking construction [10]. As with the stick-breaking
construction of the Dirichlet process (DP), the IBP stick-breaking construction provides a direct
characterization of the random latent feature probabilities via an unbounded sequence. Consider
once again the finite latent factor model described above. Letting K → ∞, Z now possesses
an unbounded number of columns with a corresponding unbounded set of random probabilities
[µ1, µ2, . . . ]. Re-arranged in decreasing order: µ(1) > µ(2) > . . . , these factor probabilities can be

expressed recursively as: µ(k) = U(k)µ(k−1) =
∏

(l) U(l), where U(k)
i.i.d∼ Beta(α, 1).

3 A Hierarchy of Latent Features Via a Noisy-OR Mechanism

In this section we extend the infinite latent features framework to incorporate interactions between
multiple layers of unbounded features. We begin by defining a finite version of the model before
considering the limiting process. We consider here the simplest hierarchical latent factor model
consisting of two layers of binary latent features: an upper-layer binary latent feature matrix Y with
elements ynj , and a lower-layer binary latent feature matrix Z with elements znk. The probability
distribution over the elements ynj is defined as previously in the limit construction of the IBP:
ynj | µj ∼ Bernoulli(µj), with µj | αµ ∼ Beta(αµ/J, 1). The lower binary variables znk are also
defined as Bernoulli distributed random quantities:

znk | yn,:, V:,k ∼ Bernoulli(1−
∏

j

(1− ynjVjk)) indep.∀n, k. (1)

However, here the probability that znk = 1 is a function of the upper binary variables yn,: and the
kth column of the weight matrix V , with probabilities Vjk ∈ [0, 1] connecting ynj to znk. The
crux of the model is how ynj interacts with znk via a noisy-or mechanism defined in Eq. (1). The
binary ynj modulates the involvement of the Vjk terms in the product, which in turn modulates
P (znk = 1 | yn,:, V:,k). The noisy-or mechanism interacts positively in the sense that changing an
element ynj from inactive to active can only increase P (znk = 1 | yn:, V:k), or leave it unchanged
in the case where Vjk = 0. We interpret the active yn,: to be possible causes of the activation of
the individual znk,∀k. Through the weight matrix V , every element of Yn,1:J is connected to every
element of Zn,1:K , thus V is a random matrix of size J × K. In the case of finite J and K, an
obvious choice of prior for V is: Vjk

i.i.d∼ Beta(a, b), ∀j, k. However, looking ahead to the case
where J →∞ and K →∞, the prior over V will require some additional structure.

Recently, [11] introduced the Hierarchical Beta Process (HBP) and elucidated the relationship be-
tween this and the Indian Buffet Process. We use a variant of the HBP to define a prior over V :

νk ∼ Beta(αν/K, 1) Vjk | νk ∼ Beta(cνk, c(1− νk) + 1) indep.∀k, j, (2)
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Figure 1: Left: A graphical representation of the 2-layer hierarchy of infinite binary factor models. Right:
Summary of the hierarchical infinite noisy-or factor model in the stick-breaking parametrization.

where each column of V (indexed by k) is constrained to share a common prior. Structuring the
prior this way allows us to maintain a well behaved prior over the Z matrix as we let K → ∞,
grouping the values of Vjk across j while E[νk] → 0. However beyond the region of very small νk

(0 < νk << 1), we would like the weights Vjk to vary more independently. Thus we modify the
model of [11] to include the +1 term to the prior over Vjk (in Eq. (2)) and we limit c ≤ 1. Fig.
1 shows a graphical representation of the complete 2-layer hierarchical noisy-or factor model, as
J →∞ and K →∞.

Finally, we augment the model with an additional random matrix A with multinomial elements
Ank, assigning each instance of znk = 1 to an index j corresponding to the active upper-layer
unit ynj responsible for causing the event. The probability that Ank = j is defined via a famil-
iar stick-breaking scheme. By enforcing an (arbitrary) ordering over the indices j = [1, J ], we
can view the noisy-or mechanism defined in Eq. (1) as specifying, for each znk, an ordered series
of binary trials (i.e. coin flips). For each znk, we proceed through the ordered set of elements,
{Vjk, ynj}j=1,2,..., performing random trials. With probability yn,j∗Vj∗,k, trial j∗ is deemed a “suc-
cess” and we set znk = 1, Ank = j∗, and no further trials are conducted for {n, k, j > j∗}.
Conversely, with probability (1− ynj∗Vj∗k) the trial is deemed a “failure” and we move on to trial
j∗ + 1. Since all trials j associated with inactive upper-layer features are failures with probabil-
ity one (because ynj = 0), we need only consider the trials for which ynj = 1. If, for a given
znk, all trials j for which ynj = 1 (active) are failures, then we set znk = 0 with probability one.
The probability associated with the event znk = 0 is therefore given by the product of the failure
probabilities for each of the J trials: P (znk = 0 | yn,:, V:,k) =

∏J
j=1(1 − ynjVjk), and with

P (znk = 1 | yn,:, V:,k) = 1 − P (znk = 0 | yn,:, V:,k), we arrive at the noisy-or mechanism given
in Eq. (1). This process is similar to the sampling process associated with the Dirichlet process
stick-breaking construction [7]. Indeed, the process described above specifies a stick-breaking con-
struction of a generalized Dirichlet distribution [1] over the multinomial probabilities corresponding
to the Ank. The generalized Dirichlet distribution defined in this way has the important property that
it is conjugate to multinomial sampling.

With the generative process specified as above, we can define the posterior distribution over
the weights V given the assignment matrix A and the latent feature matrix Y . Let Mjk =∑N

n=1 I(Ank = j) be the number of times that the jth trial was a success for z:,k (i.e. the number of
times ynj caused the activation of znk) and let Njk =

∑N
n=1 ynjI(Ank > j), that is the number of

times that the j-th trial was a failure for znk despite ynj being active. Finally, let us also denote the
number of times y:,j is active: Nj =

∑N
n=1 ynj . Given these quantities, the posterior distributions

for the model parameters µj and Vjk are given by:

µj | Y ∼ Beta(αµ/J + Nj , 1 + N −Nj) (3)
Vjk | Y, A ∼ Beta(cνk + Mjk, c(1− νk) + Njk + 1) (4)

These conjugate relationships are exploited in the Gibbs sampling procedure described in Sect. 4.
By integrating out Vjk, we can recover (up to a constant) the posterior distribution over νk:
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p(νk | A:,k) ∝ ναν/K−1
k

J∏

j=1

Γ(cνk + Mjk)
Γ(cνk)

Γ(c(1− νk) + Njk + 1)
Γ(c(1− νk) + 1)

(5)

One property of the marginal likelihood is that wholly inactive elements of Y , which we denote
as y:,j′ = 0, do not impact the likelihood as Nj′,k = 0, Mj′,k = 0. This becomes particularly
important as we let J →∞.

Having defined the finite model, it remains to take the limit as both K → ∞ and J → ∞. Taking
the limit of J → ∞ is relatively straightforward as the upper-layer factor model naturally tends to
an IBP: Y ∼ IBP, and its involvement in the remainder of the model is limited to the set of active
elements of Y , which remains finite for finite datasets. In taking K → ∞, the distribution over
the unbounded νk converges to that of the IBP, while the conditional distribution over the noisy-or
weights Vjk remain simple beta distributions given the corresponding νk (as in Eq. (4)).

4 Inference

In this section, we describe an inference strategy to draw samples from the model posterior. The
algorithm is based jointly on the blocked Gibbs sampling strategy for truncated Dirichlet distribu-
tions [7] and on the IBP semi-ordered slice sampler [10], which we employ at each layer of the
hierarchy. Because both algorithms are based on the strategy of directly sampling an instantiation
of the model parameters, their use together permits us to define an efficient extended blocked Gibbs
sampler over the entire model without approximation.

To facilitate our description of the semi-ordered slice sampler, we separate µ1:∞ into two subsets:
µ+

1:J+ and µo
1:∞, where µ+

1:J+ are the probabilities associated with the set of J+ active upper-layer
factors Y + (those that appear at least once in the dataset, i.e. ∃i : y+

ij′ = 1, 1 ≤ j′ ≤ J+) and µo
1:∞

are associated with the unbounded set of inactive features Y o (those not appearing in the dataset).
Similarly, we separate ν1:∞ into ν+

1:K+ and νo
1:∞, and Z into corresponding active Z+ and inactive

Zo where K+ is the number of active lower-layer factors.

4.1 Semi-ordered slice sampling of the upper-layer IBP

The IBP semi-ordered slice sampler maintains an unordered set of active y+
1:N,1:J+ with correspond-

ing µ+
1:J+ and V1:J+,1:K , while exploiting the IBP stick-breaking construction to sample from the

distribution of ordered inactive features, up to an adaptively chosen truncation level controlled by
an auxiliary slice variable sy .

Sample sy . The uniformly distributed auxiliary slice variables, sy controls the truncation level of
the upper-layer IBP, where µ∗ is defined as the smallest probability µ corresponding to an active
feature:

sy | Y, µ1:∞ ∼ Uniform(0, µ∗), µ∗ = min
{

1, min
1≤j′≤J+

µ+
j′

}
. (6)

As discussed in [10], the joint distribution is given by p(sy, µ1:∞, Y ) = p(Y, µ1:∞) × p(sy |
Y, µ1:∞), where marginalizing over sy preserves the original distribution over Y and µ1:∞. How-
ever, given sy , the conditional distribution p(ynj′ = 1 | Z, sy, µ1:∞) = 0 for all n, j′ such that
µj′ < sy . This is the crux of the slice sampling approach: Each sample sy adaptively truncates the
model, with µ1:J > sy . Yet by marginalizing over sy , we can recover samples from the original
non-truncated distribution p(Y, µ1:∞) without approximation.

Sample µo
1:Jo . For the inactive features, we use adaptive rejection sampling (ARS) [4] to sequen-

tially draw an ordered set of Jo posterior feature probabilities from the distribution:

p(µo
j | µo

j−1, y
o
:,≥j = 0) ∝ exp

(
αµ

N∑

n=1

1
n

(1− µo
j)

n

)
· (µo

j)
αµ−1(1− µo

j)
N I(0 ≤ µo

j ≤ µo
j−1),

until µo
Jo+1 < sy . The above expression arises from using the IBP stick-breaking construction to

marginalize over the inactive elements of µ: [10]. For each of the Jo inactive features drawn, the
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corresponding features yo
1:N,1:Jo are initialized to zero and the corresponding weight V o

1:Jo,1:K are
sampled from their prior in Eq. (2). With the probabilities for both the active and a truncated set of
inactive features sampled, the set of features are re-integrated into a set of J = J+ + Jo features
Y = [y+

1:N,1:J+ , yo
1:N,1:Jo ] with probabilities µ1:J = [µ+

1:J+ , µo
1:Jo ], and corresponding weights

V T = [(V +
1:J+,1:K)T , (V o

1:Jo,1:K)T ].

Sample Y . Given the upper-layer feature probabilities µ1:J , weight matrix V , and the lower-layer
binary feature values znk, we update each ynj as follows:

p(ynj = 1 | µj , zn,:, µ
∗) ∝ µj

µ∗

K∏

k=1

p(znk | ynj = 1, yn,¬j , V:,k) (7)

The denominator µ∗ is subject to change if changing ynj induces a change in µ∗ (as defined in Eq.
(6)); yn,¬j represents all elements yn,1:J except ynj The conditional probability of the lower-layer
binary variables is given by: p(znk | yn,:, V:,k) = (1−

∏
j(1− ynjVjk)).

Sample µ+
1:J+ . Once again we separate Y and µ1:∞ into a set of active features: Y + with prob-

abilities µ+
1:J+ ; and a set of inactive features Y o with µo

1:∞. The inactive set is discarded while the
active set of µ+

1:J+ are resampled from the posterior distribution: µ+
j | y+

:,j ∼ Beta(Nj , 1+N−Nj).
At this point we also separate the lower-layer factors into an active set of K+ factors Z+ with cor-
responding ν+

1:K+ , V +
1:J+,1:K+ and data likelihood parameters θ+; and a discarded inactive set.

4.2 Semi-ordered slice sampling of the lower-layer factor model

Sampling the variables of the lower-layer IFM model proceeds analogously to the upper-layer IBP.
However the presence of the hierarchical relationship between the νk and the V:,k (as defined in
Eqs. (3) and (4)) does require some additional attention. We proceed by making use of the marginal
distribution over the assignment probabilities to define a second auxiliary slice variable, sz .

Sample sz . The auxiliary slice variable is sampled according to the following, where ν∗ is defined
as the smallest probability corresponding to an active feature:

sz | Z, ν1:∞ ∼ Uniform(0, ν∗), ν∗ = min
{

1, min
1≤k′≤K+

ν+
k′

}
.

Sample νo
1:Ko . Given sz and Y , the random probabilities over the inactive lower-layer binary

features, νo
1:∞, are sampled sequentially to draw a set of Ko feature probabilities, until νKo+1 < sz .

The samples are drawn according to the distribution:

p(νo
k | νo

k−1, Y
+, zo

:,≥k = 0) ∝ I (0 ≤ νo
k ≤ νo

k−1) (νo
k)αν−1

 
JY

j=1

Γ(c(1− νo
k) + Nj)

Γ(c(1− νo
k))

!
×

exp

 
αν

JY

j=1

Γ(c)
Γ(c + Nj)

N1+···+NJX

i=0

wic
i

iX

l=1

1
l
(1− νo

k)l

!
· (8)

Eq. (8) arises from the stick-breaking construction of the IBP and from the expression for
P (zo

:,>k = 0 | νo
k, Y +) derived in the supplementary material [2]. Here we simply note that the

wi are weights derived from the expansion of a product of terms involving unsigned Stirling num-
bers of the first kind. The distribution over the ordered inactive features is log-concave in log νk, and
is therefore amenable to efficient sample via adaptive rejection sampling (as was done in sampling
µo

1:Jo ). Each of the Ko inactive features are initialized to zero for every data object, Zo = 0, while
the corresponding V o and likelihood parameters θo are drawn from their priors. Once the ν1:Ko

are drawn, both the active and inactive features of the lower-layer are re-integrated into the set of
K = K+ + Ko features Z = [Z+, Zo] with probabilities ν1:K = [ν+

1:K+ , νo
1:Ko ] and corresponding

weight matrix V = [V +
1:J+,1:K+ , V o

1:J+,1:Ko ] and parameters θ = [θ+, θo].
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Sample Z. Given Y + and V we use Eq. (1) to specify the prior over z1:N,1:K∗ . Then, conditional
on this prior, the data X and parameters θ, we sample sequentially for each znk:

p(znk | y+
n,:, V:,k, zn,¬k, θ, ν∗) =

1
ν∗

0

@1−
J+Y

j=1

(1− y+
njVjk)

1

A f(xn | zn,:, θ),

where f(xn | zn,:, θ) is the likelihood function for the nth data object.

Sample A. Given znk, y+
n,: and V:,k, we draw the multinomial variable Ank to assign responsibil-

ity, in the event zik = 1, to one of the upper-layer features y+
nj ,

p(Ank = j | znk = 1, y+
n,:, V:,k) = Vjk

"
j−1Y

i=1

(1− y+
niVik)

#
, (9)

and if y+
n,j′ = 0, ∀j′ > j†, then p(Ank = j† | znk = 1, y+

n,:, V:,k) =
∏j†−1

i=1 (1− y+
niVik) to ensure

normalization of the distribution. If znk = 0, then P (Ank = ∞) = 1.

Sample V and ν+
1:K+ . Conditional on Y +, Z and A, the weights V are resampled from Eq. (4),

following the blocked Gibbs sampling procedure of [7]. Given the assignments A, the posterior of
ν+

k is given (up to a constant) by Eq. (5). This distribution is log concave in ν+
k , therefore we can

once again use ARS to draw samples of the posterior of ν+
k , 1 ≤ k ≤ K+.

5 Experiments

In this section, we present two experiments to highlight the properties and capabilities of our hier-
archical infinite factor model. Our goal is to assess, in these two cases, the impact of including an
additional modeling layer. To this end, and in each experiment, we compare our hierarchical model
to the equivalent IBP model. In each case, hyperparameters are specified with respect to the IBP (us-
ing cross-validation by evaluating the likelihood of a holdout set) and held fixed for the hierarchical
factor model. Finally all hyperparameters of the hierarchical model that were not marginalized out
were held constant over all experiments, in particular c = 1 and αν = 1.

5.1 Experiment I: Digits

In this experiment we took examples of images of hand-written digits from the MNIST dataset.
Following [10], the dataset consisted of 1000 examples of images of the digit 3 where the handwrit-
ten digit images are first preprocessed by projecting onto the first 64 PCA components. To model
MNIST digits, we augment both the IBP and the hierarchical model with a matrix G of the same
size as Z and with i.i.d. zero mean and unit variance elements. Each data object, xn is modeled
as: xn | Z,G, θ, σ2

x ∼ N ((zn,: + gn,:)θ, σ2
XI) where + is the Hadamard (element-wise) product.

The inclusion of G introduces an additional step to our Gibbs sampling procedure, however the rest
of the hierarchical infinity factor model is as described in Sect. 3. In order to assess the success
of our hierarchical IFM in capturing higher-order factors present in the MNIST data, we consider
a de-noising task. Random noise (std=0.5) was added to a post-processed test set and the models
were evaluated in its ability to recover the noise-free version of a set of 500 examples not used in
training. Fig. 2 (a) presents a comparison of the log likelihood of the (noise-free) test-set for both the
hierarchical model and the IBP model. The figure shows that the 2-layer noisy-or model gives sig-
nificantly more likelihood to the pre-corrupted data than the IBP, indicating that the noisy-or model
was able to learn useful higher-order structure from MNIST data. One of the potential benefits of
the style of model we propose here is that there is the opportunity for latent factors at one layer to
share features at a lower layer. Fig. 2 illustrates the conditional mode of the random weight matrix
V (conditional on a sample of the other variables) and shows that there is significant sharing of low-
level features by the higher-layer factors. Fig. 2 (d)-(e) compare the features (sampled rows of the
θ matrix) learned by both the IBP and by the hierarchical noisy-or factor model. Interestingly, the
sampled features learned in the hierarchical model appear to be slightly more spatially localized and
sparse. Fig. 2 (f)-(i) illustrates some of the marginals that arise from the Gibbs sampling inference
process. Interestingly, the IBP model infers a greater number of latent factors that did the 2-layer
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Figure 2: (a) The log likelihood of a de-noised testset. Corrupted (with 0.5-std Gaussian noise) versions of
test examples were provided to the factor models and the likelihood of the noise-free testset was evaluated for
both an IBP-based model as well as for the 2-layer noisy-or model. The two layer model shown substantial
improvement in log likelihood. (b) Reconstruction of noisy examples. The top row shows the original values
for a collection of digits. The second row shows their corrupted versions; while the third and fourth row show
the reconstructions for the IBP-based model and the 2 layer noisy-or respectively. (c) A subset of the V matrix.
The rows of V are indexed by j while the columns of V are indexed by k. The vertical striping pattern is
evidence of significant sharing of lower-layer features among the upper-layer factors. (d)-(e) The most frequent
64 features (rows of the θ matrix) for (d) the IBP and for (e) the 2-layer infinite noisy-or factor model. (f) A
comparison of the distributions of the number of active elements between the IBP and the noisy-or model. (g)
A comparison of the number of active (lower-layer) factors possessed by an object between the IBP and the
hierarchical model. (h) the distribution of upper-layer active factors and (i) the number of active factors found
in an object.

noisy-or model (at the first layer). However, the distribution over factors active for each data object
is nearly identical. This suggests the possibility that the IBP is maintaining specialized factors that
possibly represent a superposition of frequently co-occurring factors that the noisy-or model has
captured more compactly.

5.2 Experiment II: Music Tags

Returning to our motivating example from the introduction, we extracted tags and tag frequencies
from the social music website Last.fm using the Audioscrobbler web service. The data is in the form
of counts1 of tag assignment for each artist. Our goal in modeling this data is to reduce this often
noisy collection of tags to a sparse representation for each artist. We will adopt a different approach
to the standard Latent Dirichlet Allocation (LDA) document processing strategy of modeling the
document – or in this case tag collection – as having been generated from a mixture of tag multino-
mials. We wish to distinguish between an artist that everyone agrees is both country and rock versus
an artist that people are divided whether they are rock or country.

To this end, we can again make use of the conjugate noisy-or model to model the count data in the
form of binomial probabilities, i.e. to the model defined in Sect. 3, we add the random weights
Wkt

i.i.d∼ Beta(a, b),∀k.t connecting Z to the data X via the distribution: Xnt ∼ Binomial(1 −∏
k(1 − znkW ), C) where C is the limit on the number of possible counts achievable. This would

correspond to the number of people who ever contributed a tag to that artist. In the case of the
Last.fm data C = 100. Maintaining conjugacy over W will require us to add an assignment parameter

1The publicly available data is normalized to maximum value 100.
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Figure 3: The distribution of active features for the noisy-or model at the (a) lower-layer and (c) the upper-
layer. The distribution over active features per data object for the (b) upper-layer and (d) lower-layer.

Bnt whose role is analogous to Ank. With the model thus specified, we present a dataset of 1000
artists with a vocabulary size of 100 tags representing a total of 312134 counts. Fig. 3 shows the
result running the Gibbs sampler for 10000 iterations. As the figure shows, both layers are quite
sparse. Generally, most of the features learned in the first layer are dominated by one to three tags.
Most features at the second layer cover a broader range of tags. The two most probable factors to
emerge at the upper layer are associated with the tags (in order of probability):

1. electronic, electronica, chillout, ambient, experimental

2. pop, rock, 80s, dance, 90s

The ability of the 2-layer noisy-or model to capture higher-order structure in the tag data was again
assessed though a comparison to the standard IBP using the noisy-or observation model above. The
model was also compared against a more standard latent factor model with the latent representation
ηnk modeling the data through a generalized linear model: Xnt ∼ Binomial(Logistic(ηn,:O:,t), C),
where the function Logistic(.) is the logistic sigmoid link function and the latent representation
ηnk ∼ N (0,Ση) are normally distributed. In this case, inference is performed via a Metropolis-
Hastings MCMC method that mixes readily. The test data was missing 90% of the tags and the mod-
els were evaluated by their success in imputing the missing data from the 10% that remained. Here
again, the 2-Layer Noisy-Or model achieved superior performance, as measured by the marginal log
likelihood on a hold out set of 600 artist-tag collections. Interestingly both sparse models – the IBP
and the noisy-or model – dramatically out performed the generalized latent linear model.

Method NLL
Gen. latent linear model (Best Dim = 30) 8.7781e05 ± 0.02e05

IBP 5.638e05 ± 0.001e05
2-Layer Noisy-Or IFM 5.542e05 ± 0.001e05

6 Discussion

We have defined a noisy-or mechanism that allows one infinite factor model to act as a prior for
another infinite factor model. The model permits high-order structure to be captured in a factor
model framework while maintaining an efficient sampling algorithm. The model presented here is
similar in spirit to the hierarchical Beta process, [11] in the sense that both models define a hierarchy
of unbounded latent factor models. However, while the hierarchical Beta process can be seen as a
way to group objects in the data-set with similar features, our model provides a way to group features
that frequently co-occur in the data-set. It is perhaps more similar in spirit to the work of [9] who
also sought a means of associating latent factors in an IBP, however their work does not act directly
on the unbounded binary factors as ours does. Recently the question of how to define a hierarchical
factor model to induce correlations between lower-layer factors was addressed by [3] with their IBP-
IBP model. However, unlike our model, where the dependencies induced by the upper-layer factors
via an noisy-or mechanism, the IBP-IBP model models correlations via an AND construct through
the interaction of binary factors.
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