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Abstract

Several key computational bottlenecks in machine learning involve pairwise dis-
tance computations, including all-nearest-neighbors (finding the nearest neigh-
bor(s) for each point, e.g. in manifold learning) and kernel summations (e.g. in
kernel density estimation or kernel machines). We consider the general, bichro-
matic case for these problems, in addition to the scientific problem of N-body
simulation. In this paper we show for the first tirf¢ V) worst case runtimes for
practical algorithms for these problems based on the cover tree data structure [1].

1 Introduction

Pairwise distance computations are fundamental to many important computations in machine learn-
ing and are some of the most expensive for large datasets. In particular, we consider the class of
all-query problems, in which the combined interactions atferencesetR of N points inR” is
computed for each pointin aquerysetQ of sizeO(N). This class of problems includes the pair-

wise kernel summation used in kernel density estimation and kernel machines and the all-nearest
neighbors computation for classification and manifold learning. All-query problems can be solved
directly by scanning over th& reference points for each of ti&(V') queries, for a total running

time of O(/V?). Since quadratic running times are too slow for even modestly-sized problems,
previous work has sought to reduce the number of distance computations needed.

We consider algorithms that emplepace-partitioning treet® improve the running time. In all the
problems considered here, the magnitude of the effect of any referamta query; is inversely
proportional to the distance metri{q, ). Therefore, the net effect on the query is dominated

by references that are “close by”. A space-partitioning tree divides the space containing the point
set in a hierarchical fashion, allowing for variable resolution to identify major contributing points
efficiently.

Single-Tree Algorithms. One approach for employing space-partitioning trees is to consider each
query point separatelyie. to consider the all-query problem as masiggle-queryproblems. This
approach lends itself tsingle-treealgorithms, in which the references are stored in a tree, and the
tree is traversed once for each query. By considering the distance between the query and a collection
of references stored in a tree node, the effect of the references can be approximated or ignored if the
distances involved are large enough, with appropriate accuracy guarantees for some methods.

Thekd-tree structure [2] was developed to obtain the nearest-neighbors of a given query in expected
logarithmic time and has also been used for efficient kernel summations [3, 4]. However, these
methods lack any guarantees on worst-case running time. A hierarchical data structure was also
developed for efficient combined potential calculation in computational physics in Barnes & Hut,
1986 [5]. This data structure provides @rlog ) bound on the potential computation for a single
query, but has no error guarantees. Under their definition of intrinsic dimension, Karger & Ruhl [6]
describe a randomized algorithm with(log V) time per query for nearest neighbor search for low-
intrinsic-dimensional data. Krauthgamer & Lee proved their navigating nets algorithm can compute



a single-query nearest-neighbor@(log ') time under a more robust notion of low intrinsic di-
mensionality. The cover tree data structure [1] improves over these two results by both guaranteeing
a worst-case runtime for nearest-neighbor and providing efficient computation in practice relative to
kd-trees. All of these data structures rely on the triangle inequality of the metric space containing
‘R in order toprunereferences that have little effect on the query.

Dual-Tree Algorithms. The approach described above can be applied to every single query to im-
prove theO(N?) running time of all-query problems © (N log N). A faster approach to all-query
problems uses an algorithmic framework inspired by efficient particle simulation [7] and general-
ized to statistical machine learning [8] which takes advantage of spatial proximity indatid

R by constructing a space-partitioning tree on each set. Both trees are descended, allowing the
contribution from a distant reference node to be pruned for an entire node of query points. These
dual-tree algorithmshave been shown to be significantly more efficient in practice than the cor-
responding single-tree algorithms for nearest neighbor search and kernel summations [9, 10, 11].
Though conjectured to ha@(N) growth, they lack rigorous, general runtime bounds.

All-query problems fall into two categoriemonochromatic, wher@ = ‘R andbichromatic, where

Qs distinct fromR. Most of the existing work has only addressed the monochromatic case. The fast
multipole method (FMM)[7] for particle simulations, considered one of the breakthrough algorithms
of the 20" century, has a non-rigorous runtime analysis based on the uniform distribution. An
improvement to the FMM for theV-body problem was suggested by Aluru,et.al. [12], but was
regarding the construction time of the tree and not the querying time. Methods based on the well-
separated pair decomposition (WSPD) [13] have been proposed for the all nearest neighbors problem
and particle simulations [14], but are inefficient in practice. These methods®g¥g runtime

bounds for the monochromatic case, but it is not clear how to extend the analysis to a bichromatic
problem. In addition to this difficulty, the WSPD-based particle simulation method is restricted to
the (1/r)-kernel. In Beygelzimer et.al., 2006 [1], the authors conjecture, but do not prove, that the
cover tree data structure using a dual-tree algorithm can compute the monochromatic all-nearest-
neighbors problem i®(N).

Our Contribution. In this paper, we prov®(N) runtime bounds for several important instances

of the dual-tree algorithms for the first time using the cover tree data structure [1]. We prove the first
worst-case bounds for any practical kernel summation algorithms. We also provide the first general
runtime proofs for dual-tree algorithms on bichromatic problems. In particular, we give the first
proofs of worst-cas® () runtimes for the following all-query problems:

o All Nearest-neighbors: For all queriesq € Q, find r*(¢q) € R such thatr*(q) =
arg min,cx d(q, 7).

e Kernel summations: For a given kernel functiord((-), compute the kernel summation
fla) =3, er K(d(g,r)) forallg € Q.

e N-body potential calculation: Compute the net electrostatic or gravitational potential
(@) =3, er ppqdla, )~ " ateachy € Q.

Outline. In the remainder of this paper, we give our linear running time proofs for dual-tree al-
gorithms. In Section 2, we review the cover tree data structure and state the lemmas necessary for
the remainder of the paper. In Section 3, we state the dual-tree all-nearest-neighbors algorithm and
prove that it require® (V) time. In Section 4, we state the absolute and relative error guaran-
tees for kernel summations and again prove the linear running time of the proposed algorithms. In
the same section, we apply the kernel summation result téVtedy simulation problem from
computational physics, and we draw some conclusions in Section 5.

2 Cover Trees

A cover tree [1]T" stores a data s& of size N in the form of a levelled tree. The structure has an
O(NV) space requirement ar@d(N log V) construction time. Each level is a “cover” for the level
beneath it and is indexed by an integer scakehich decreases as the tree is descended.Clet
denote the set of nodes at scal&or all scaleg, the following invariants hold:

e (nesting invariantl’; C C;_4

e (covering tree invariant) For evepyc C;_1, there exists g € C; satisfyingd(p, q) < 2¢,

and exactly one suchis a parent op.
e (separation invariant) For all, g € C;, d(p, q) > 2°.



Representations. The cover tree has two different representations: ifingicit representation
consists of infinitely many level€’; with the levelC, containing a single node which is the root

and the levelC'_, containing every point in the dataset as a node. &tgicit representations
required to store the tree @ (V) space. It coalesces all nodes in the tree for which the only child

is the self-child. This implies that every explicit node either has a parent other than the self-parent
or has a child other than a self-child.

Structural properties.  The intrinsic dimensionality measure considered here iss#pansion
dimensiorfrom Karger & Ruhl, 2002 [6] defined as follows:

Definition 2.1. Let Br(p,p) = {r € R C X:d(p,r) < p} denote a closed ball of radius
p around ap € R. Then, theexpansion constant of R is defined as the smallest> 2 such
|Br(p,2p)| < c¢|Br(p,p)| ¥p € R andVp > 0. The intrinsic dimensionality (or expansion
dimension) ofR is given bydx r(R) = log c.

We make use of the following lemmas from Beygelzimer et.al., 2006 [1] in our runtime proofs.
Lemma 2.1. (Width bound) The number of children of any ngde bounded by:*.

Lemma 2.2. (Growth bound) For allp € R andp > 0, if there exists a point € R such that
2p < d(p,r) < 3p, then|B(p, 4p)| > (1 + %) [B(p, p)| -

Lemma 2.3. (Depth bound) The maximum depth of any pgint the explicit representation is
O(c?log N).

Single point search: Single tree nearest neighbor. Given a cover tred” built on a setR, the
nearest neighbor of a querycan be found with thé-indNN subroutine in Algorithm 1. The
algorithm uses the triangular inequality to prune away portions of the tree that contain points distant
from ¢. The following theorem provides a runtime bound for the single point search.

Theorem 2.1. (Query time) If the datasé® U {¢} has expansion constantthe nearest neighbor
of ¢ can be found in tim®(c'? log N).

Batch Query: The dual tree algorithm for all-nearest-neighbor (FindAlINNbroutine in Algo-
rithm 1) using cover trees is provided in Beygelzimer et.al., 2006 [15] as batch-nearest-neighbor.

3 Runtime Analysis of All-Nearest-Neighbors

In the bichromatic case, the performance of BiredAlINN algorithm (or any dual-tree algorithm)

will depend on the degree of difference between the query and reference sets. If the sets are nearly
identical, then the runtime will be close to the monochromatic case. If the inter-point distances in the
guery set are very large relative to those between references, then the algorithm may have to descend
to the leaves of the query tree before making any descends in the reference tree. This case offers no
improvement over the performance of the single-tree algorithm applied to each query. In order to
quantify this difference in scale for our runtime analysis, we introducéégese of bichromaticity:

Definition 3.1. Let S and T be cover trees built on query sé& and reference sek respectively.
Consider a dual-tree algorithm with the property that the scales$ @ind 7" are kept as close as
possible -i.e.the tree with the larger scale is always descended. Themletree of bichromaticity
 of the query-reference paifQ, R) is the maximum number of descendsSibetween any two
descends iff".

In the monochromatic case, the trees are identical and the traversal alternates between them. Thus,
the degree of bichromaticity is = 1. As the difference in scales of the two data sets increases,
more descends in the query tree become necessary, giving a higher degree of bichromaticity. Using
this definition, we can prove the main result of this section.

Theorem 3.1. Given a reference s& of sizeN and expansion constank, a query se of size

O(N) and expansion constant, and bounded degree of bichromaticityof the (Q, R) pair, the
FindAIINN subroutine of Algorithm 1 computes the nearest neighbdR inf each point inQ in
O(cgcg N) time.

Proof. The computation at Line 3 is done for each of the query nodes at most once, hence takes
O(max; |R;| * N) computations.

The traversal of a reference node is duplicated over the set of queries only if the query tree is
descended just before the reference tree descend. For every query descend, there would be at most
O(c4Q) duplications (width bound) for every reference node traversal. Since the number of query



Algorithm 1 Single tree and batch query algorithm for Nearest Neighbor search and Approximate

Kernel summation

FindNN(R-Tree T', query q)
Initialize Ry = Cw.
for i = coto —oo do

3: R ={Children(r): r € R;}
Ri_1 ={reR:d(q,r) <d(q,R)+2'}
end for
6: return arg Err}lzin d(q,r) 3:

FindAIINN (Q-subtreeg;, R-cover setR;)
if i = —oo then
Vq € L(g;) return arg énRin d(q,r).
T —o0

Il L(g;) is the set of all the leaves of the subtige
3: else ifj < ithen

R = {Children(r): r € R;}

R, = {7“ €ER:

d(gj,r) < d(g;, R) + 21 +2+2} @

6: FindAIINN (qJ‘, Rifl)
else
ij_l € C’hzldren(qj) FlndAIINN(p j—1, Rz)
9: end if
KernelSum(R-tree T', query q)

Initialize Rs = Coo, f(g) =0

for i = coto —oco do 12:
3: R ={Children(r): r € R;}
R, = {7“ €ER: Kh(d(q,T‘) — 21) )
—Kp(d(g,7) +2%) > €} 15:

fo=F@+ X Kud(gr)-[L(r)
re{R—R;_1}
6: end for A 18:
retun f(q) = f(q) + E%I Kp(d(g,7))

Initialize Ay(g) < 0Vq € goo
AllKernelSum (Q-subtreeg;,

R-cover setR;)
if i = —oo then
for Vg € L(g;) do

fla) = f(q)
+ Z Kh(d(Q7r))
reR_
+A¢(g5)
end for

Ar(g;) =0
else

if 7 <ithen
R = {Children(r): r € R;}
R, = {T €R: ) )
K (d(gj,r) —2" — 2711
—Kh(d(q]‘ﬂ“) + 2t =+ 2j+1)
> €}
Ag(qj) = Ag(gj)+
Kn(d(gj,7)) - |L(r)]
re€R\R;_1
AllKernelSum(qg;, R;—1)
else
for Vp,;_1 € Children(q;) do
Ap(pj-1) = Ar(pj—1)+A(g))
AllKernelSum(p 1, R;)
end for
Ag(qj) =0
end if

end if

descends between any two reference descends is upper boundeahbythe number of explicit
reference nodes i©(N), the total number of reference node considered in Line 5 in the whole

algorithm is at mosO (¢g'N).

Since at any level of recursion, the size ®fis bounded by}, max; |R;| (width bound), and the
maximum depth of any point in the explicit tree(¥c% log N) (depth bound), the number of nodes

encountered in Line 6 i®(cx">

max; |R;|log N). Since the traversal down the query tree causes

duplication, and the duplication of any reference node is upper bound@,ljyine 6 takes at most

O(cg ¢}, max; |R;|log N) in the whole algorithm.

Line 9 is executed just once for each of the explicit nodes of the query tree and hence takes at most

O(N) time.

Considerany?;_1 = {r € R: d(q;,r) < d+2'+2772} whered = d(q;, R). GiventhatC,_, isthe
(i—1)*" level of the reference treR; 1 = B(q;, d+2'+2/72)NR C B(g;,d+2'+2"2)NC;_; C
B(gj,d+ 2" +2°71) N C;_; sinceR C C;_; andj < i in this part of the recursion. # > 2¢+2,
|B(g;,d +2° + 27F1)| < [B(q;,2d)| < ¢% |B(g;, 4)|. Nowd < d(g;,R) + 2 sinceR C C;_;
andd > 2%, d(q;, R) > 2'+1, making|B(q;, )| = [{¢;}| = 1. Hence|R;_,| < c%.

If d < 272, asin Beygelzimer et.al. [1] the number of disjoint balls of radiug that can be packed
in B(q;, d+2°+2"1) is bounded afB(q;, d+2'+21T1+212)| < |B(r,2(d+214211)+2172)| <
|B(r, 2043 4 201 4 242 4 9i=2)| < | B(r, 20+4)| < |¢% B(r, 272)| for somer € C;_;. Any such
ball B(r, 2:=2) can contain at most one pointdr_;, making|R; 1| < ¢%.

4



Thus, the algorithm take® (¢ N + ¢§'N + ¢;Zcg log N 4+ N) which isO(ciZc¢g N). O

Corollary 3.1. In the monochromatic case with a dataebf sizeN having an expansion constant
¢, theFindAIINN subroutine of Algorithm 1 has a runtime bound®fc!® V).

Proof. In the monochromatic casgl| = |R| = N, cg = c¢g = c and the degree of bichromaticity
k = 1 since the query and the reference tree are the same. Therefore, by Theorem 3.1, the result
follows. O

4 Runtime Analysis of Approximate Kernel Summations

For infinite tailed kerneld<(-), the exact computation of kernel summations is infeasible without
O(N?) operations. Hence the goal is to efficiently approximate) = > K(d(q,r)) where

K () is a monotonically decreasing non-negative kernel function. We employ the two widely used
approximating schemes listed below:

Definition 4.1. An algorithm guaranteesabsolute error bound, if for each exact valug(g;) for
g € Q,it computesf(qi) such that‘f(qi) — f(¢:)| < Ne.

Definition 4.2. An algorithm guarantees relative error bound, if for each exact valuef(g;) for
¢i € Q, it computesf(¢;) € R such that‘f(ql-) — fla)| < elf@)l.

Approximate kernel summation is more computationally intensive than nearest neighbors because
pruning is not based on the distances alone but also on the analytical properties of the kernel
(i.e.smoothness and extent). Therefore, we require a more extensive runtime analysis, especially for
kernels with an infinite extent, such as the Gaussian kernel. We first prove logarithmic running time
for the single-query kernel sum problem under an absolute error bound and then show linear running
time for the dual-tree algorithm. We then extend this analysis to include relative error bounds.

4.1 Single Tree Approximate Kernel Summations Under Absolute Error

The algorithm for computing the approximate kernel summation under absolute error is shown in the
KernelSum subroutine of Algorithm 1. The following theorem proves tKatrnelSum produces

an approximation satisfying theabsolute error.

Theorem 4.1. TheKernel Sum subroutine of Algorithm 1 outpug¢) such that f(¢)— f(¢)| < Ne.

Proof. A subtree rooted at € C;_; is pruned as per Line 5 dfernelSum since forvr’ € L(r),
K(d(q,r) +2") < K(d(q,r")) < K(d(q,r) — 2") and|K(d(q,r)) — K(d(g,7"))| < e. This
amounts to limiting the error per each kernel evaluation to be lessetlfahich also holds true

for each contribution computed exactly fore R_.., and by the triangle inequality the kernel

approximate sunf(¢) will be within Ne of the true kernel sunf(q). O

The following theorem proves the runtime of the single-query kernel summation with smooth and
monotonically decreasing kernels using a cover tree.

Theorem 4.2. Given a reference s& of sizeN and expansion constantan error valuee, and a
monotonically decreasing smooth non-negative kernel fundti¢r) concave forz € [0, k] and
convex forz € (h,o0) for someh > 0, the KernelSum subroutine of Algorithm 1 computes
the kernel summation at a quegyapproximately up t@ absolute error with a runtime bound of
O(2(Hmax{n—i+3,7-i1+4.4}) 150 V) time where

n = [log, K=Y (e)], v = [logy A, i1 = {logQ (K%Z))J andK’(-) is the derivative of< (-).
Proof. We assume that any argument#f-) is lower bounded at 0. Now define the following sets:
RL , ={reRi_i:d(qr)<h-2"}
R", ={reRi_1:h—2"<d(qr)<h+2"}
v ={re€Ri_y:d(qr)>h+2}
suchthat?;, ; = R._, UR™, U R" ,, and are pairwise disjoint. Ferc R! ,:
e <K (max(0, (d(q,7) —2%))) — K(d(q,r) + 2°)
<(K(d(g,7) +2") = 2 K" (d(q. 7) +27)) — K(d(q,7) +2') = =21 K (d(g, ) +2°)



because of the concavity of the kernel functi@i-). Now,
1(—1) —€ i ;
K[o,h,y] (W) —-2'< d(q,r) <h-2

whereK[’é_b]l) (x) is 1) the inverse function of thE” (z); 2) the output value is restricted to be in the

interval [a, b] for the given argument. Forr € R™ |,
e < K(max(0, (d(q,r) - 2'))) — K(d(q,r) +2) < ~2"H1K'(h)

which implies that
—€
;> | =
“m4mw

Similarly, forr € R® ;, e < =271 K’(d(q,r) — 2*) implying

i 1(=1) —€ i
h+2"<d(qg,r) < K(h+2i,oc) <2i+1> + 2",

Note that0 > K’(d(q,r)) > K'(h) for d(q,r) > h + 2', which implies that;=+ > K’(h) and

thusi > {logQ (K,(E}L))J = i;. Below the level;, Rl | = R , = (). In addition, below the level

i1 — 1, R =0

Case 1i > i3 _
Trivially, for r € R;_1, K(d™**—2") > e whered™** = max,cr,_, d(q,r). We can invert the ker-

nel function to obtaind™** < K((hj)z 00) (€)+2%. This implies thati(q,r) < d™** < K1 (e)+

2° We can count up the number of balls of radiis? inside B (¢, K=Y (€) + 2° + 2'2). Let
n = [logy K=V (¢)]. Then,

|B(q, 20 )NCiq| <3 np<i
max |Ri_1| S |B(q, 2n+2i+2i72)ﬂci_1| S |B(q, 2i+2) n Ci,1| S 04, n= )

|B(q, 2" N Cyq| < 1703 = en=at3 1y >
Case2i=1i; —1
Lety = [log, h]. Similar to the case above, we count the number of balls of raitsinside
B(q,27 +214+2072).

|B(q,2i+1) N Oi_1| < CS,’}/ <1
max |R;_1| < |B(q,2"+2"+2""HNCi_1| < |B(q,27)NCi 4| <ty =i

|B(q, 22t NCi_q| < 73 = y—iitd 1y 5
From the runtime proof of the single-tree nearest neighbor algorithm using cover tree in Beygelzimer
et.al., 2006, the running time is bounded by:

O(kmax |R;_1|? + kmax |R;_;|c*) < O(2Hmax{n—i43y—i1+44}) 154 )

4.2 Dual Tree Approximate Kernel Summations Under Absolute Error =

An algorithm for the computation of kernel sums for multiple queries is shown iAltKernelSum
subroutine of Algorithm 1, analogousfndAIINN for batch nearest-neighbor query. The dual-tree
version of the algorithm requires a stricter pruning rule to ensure correctness for all the queries in a
query subtree. Additionally, every query nogiehas an associatdd(1) storageA ;(g;) that accu-
mulates thgpostponedkernel contribution for all query points under the subtgeeThe following
theorem proves the correctness of &lKernelSum subroutine of Algorithm 1.

Theorem 4.3. For all ¢ in the in the query se®, the AllKernelSum subroutine of Algorithm 1
computes approximation&q) such that f(¢) — f(¢)| < Ne.
Proof. Line 9 of the algorithm guarantees that € R\ R;_; at a given level,

K (d(gj,r)) — K(d(g,r)| < [K(d(gj,r) — 2 = 27F1) = K(d(gj,r) + 2"+ 277)| < e
for all ¢ € L(g;). Basically, the minimum distance is decreased and the maximum distance is
increased by’ *!, which denotes the maximum possible distance fggro any of its descendants.

Trivially, contributions added in Line 3 (the base case) satisfycthbsolute error for each kernel
value and the result follows by the triangle inequality. O



Based on the runtime analysis of the batch nearest neighbor, the runtime b&ll¢eaielSum is
given by the following theorem:

Theorem 4.4. Let R be a reference set of siz€ and expansion constanrt;, and letQ be a
query set of siz&(N) and expansion constang. Let the(Q,R) pair have a bounded degree of
bichromaticity. LetK (-) be a monotonically-decreasing smooth non-negative kernel function that is
concave forr € [0, h] and convex for: € (h, co) for someh > 0. Then, given an error tolerance

the AllKernel Sum subroutine of Algorithm 1 computes an approximatﬁéq) Vq € Q that satisfies
thee absolute error bound in tim@(N).

Proof. We first boundnax |R;_;|. Note that in Line 9 to Line 13 of thallKernelSum, j <i+1,
and thu2? + 27+1 < 2¢ 4 2¢ = 2¢+1_ Similar to the proof for the single-tree case, we define:
RL  ={reRi_i:d(qr) <h—2""1}
mo={re€Ri_y:h—2" <d(q,r) <h+21
Ry, ={reR;_y:d(qr)>h+2""}
suchthat?; _; = R._, UR™, URY ,, and pairwise disjoint. From here, we can follow the tech-
niques shown for the single-tree case to showithat | R; ;| is constant dependent enTherefore,

the methodology of the runtime analysis of batch nearest neighbor give fii¢runtime for batch
approximate kernel summation. O

4.3 Approximations Under Relative Error

We now extend the analysis for absolute error bounds to cover approximations under the relative
error criterion given in Definition 4.2.

Single-tree caseFor a query poing, the goal is computg(q) satisfying Definition 4.2. An approx-
imation algorithm for a relative error bound is similar to ternelSum subroutine of Algorithm 1
except that the definition ok, _; (i.e. the set of reference points that are not pruned at the given
level i) needs to be changed to satisfy the relative error constraint as follows:

Ri_1={reR:K(d(qr)—2") — K(d(q,r)+2") > #}
wheref(q) is the unknown query sum. Hence, #t** = max d(gq,r), and expand the sét;_; to:
re
Rio1 C{re R: K(d(g.r) — 2) - K(d(g,r) +2') > eK(d"")} &)

Note thatd™2* can be trivially upper bounded b¥™%* < d(q, rroot) + 2PT1 = d™®% wherep is
the scale of the root of the reference cover tree in the explicit representation.

Theorem 4.5. Let the conditions of Thm. 4.2 hold. Then, Kenel Sum subroutine of Algorithm 1

with Line 5 redefined as Eqn. 1 computes the kernel summﬁ(ig)hat a queryq with e relative
error in O(log V) time.

Proof. A noder € C;_; can be pruned by the above pruning rule since-fag L(r), K(d(q,7) +
24 < K(d(q,r")) < K(d(g,7)—2%) and|K (d(q,7)) — K(d(gq,7"))| < eK(d™*%). This amounts
to limiting the error per each kernel evaluation to be less #fa™***) (which also holds true
for each contribution computed exactly fore R_.,, and by the triangle inequality the kernel
approximate sunf (¢) will be within e N K (d™e#%) < ¢f(q) of the true kernel sunfi(¢). Since the
relative error is an instance of the absolute error, the algorithm also rédag V). O

Dual-tree case.In this case, for each query poipte 9, an approximatiorf(q) is to be computed

as per Definition 4.2. As in the absolute error case, we must satisfy a more difficult condition.
Therefore d™**>* is larger, taking into account both the maximum possible distance from the root

of the query tree to its descendants and the maximum possible distance from the root of the reference
tree to its descendants. HenRBe_; is defined as follows:

Rioi={reR:K(d(qr)—2"—27"") — K(d(q,r) +2' + 2/T1) > eK(d™**")}  (2)

whered(qroot; Troot) + 2P + 2P+ — gmazu andpg, pr are the scales of the roots of the
guery and reference cover trees respectively in the explicit representations. The correctness of the
algorithm follows naturally from Theorems 4.4 and 4.5.



Corollary 4.1. Let the conditions of Thm. 4.4 hold. Then, given an error valube AllKernel-
Sum subroutine of Algorithm 1 with Line 11 redefined as Eq. 2 computes an approximate kernel

summationf (¢) Vg € Q that satisfies am relative error bound with a runtime bound 6(IV).

Note that for the single-tree and dual-tree algorithms under the relative error criterion, the pruning
rules that generat®;_; shown above are sub-optimal in practice, because they require every pair-
wise kernel value that is pruned to be witkimelative error. There is a more sophisticated way of
accelerating this using an alternative method [9, 10, 11] that is preferable in practice.

4.4 N-body Simulation

N-body potential summation is an instance of the kernel summation problem that arises in com-
putational physics and chemistry. These computations use the Coulombic k&el= 1/d,

which describes gravitational and electrostatic interactions. This kernel is infinite at zero distance
and has no inflection point (i.&.is convex ford € (0, c0)). Nevertheless, it is possible to obtain

the runtime behavior using the results shown in the previous sections. The single query problem
flg) =3, ﬁ is considered first under the assumption that, ¢ 4, d(g,7) > 0.

Corollary 4.2. Given a reference sé® of size N and expansion constant an error valueec and
the kernelK(d) = 1/d(q,r), the KernelSum subroutine of Algorithm 1 computes the potential
summation at a query with e error in O(log N) time.

Proof. Letd™™" = %in;‘ﬁ d(g,r). Let K¢(d) be theC? continuous construction [16] such that:
reER,q#T

2 4 i
Ke(d):{tf”%m(?m;i(dgm> + 3 (gem) )7d<dm L
Ld>d

The effective kernelK.(d) can be constructed i (log N) time using the single-tree algorithm for
nearest neighbor described in Beygelzimer et.al., 2006 [1]. Note that the second derivative of the

effective kernel isk” (d) = Q(d;?n)g + Q(d?ffn)s for d < d™"™. Thus it is concave fod < ?dmm
and convex otherwise, so the second derivative agreés-at/™*". Note thatK.(d) agrees with
K (d) for d > d™™. Hence, by considering™™ equivalent to the bandwidthin Theorem 4.2 and

applying the same theorem on ternelSum subroutine of Algorithm 1 with the aforementioned
kernel, we prove th€ (log V) runtime bound. O

The runtime analysis for the batch case of the algorithm follows naturally.

Corollary 4.3. Given a reference s&® of sizeN and expansion constank and a query se@ of
sizeO(N) and expansion constant, with a bounded degree of bichromaticity for th@, R) pair,
an error valuee and the kernelK (d) = 1/d(q,r), the AllKernelSum subroutine of Algorithm 1
approximates the potential summatidn € Q up toe error with a runtime bound 0O (V).
Proof. The same effective kernel as Corollary 4.2 is used, exceptlttiat = mig %ir; d(g,r).

qge re’R,q#r
The result follows from applying Theorem 4.4, and noting that running the dual-tree computation
with K (d(g,r)) = 1/d(q,r) is equivalent to running the algorithm witk. (d(g, r)). O

5 Conclusions

Extensive work has attempted to reduce the quadratic scaling of the all-query problems in statistical
machine learning. So far, the improvements in runtimes have only been empirical with no rigorous
runtime bounds [2, 8, 9, 17, 18]. Previous work has provided algorithms with rough linear runtime
arguments for certain instances of these problems [14, 5, 13], but these results only apply to the
monochromatic case. In this paper, we extend the existing work [6, 1, 19, 20] to provide algorithms
for two important instances of the all-query problem (namely all-nearest-neighbor and all-kernel-
summation) and obtain for the first time a linear runtime bound for dual-tree algorithms for the more
general bichromatic case of the all-query problems.

These results provide an answer to the long-standing question of the level of improvement possible
over the quadratic scaling of the all-query problems. The techniques used here finally point the way
to analyzing a host of other tree-based algorithms used in machine learning, including those that
involve n-tuples, such as the-point correlation (which riaely requireO(N™) computations).
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