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Abstract
A goal of central importance in the study of hierarchical models for object recogni-
tion – and indeed the mammalian visual cortex – is that of understanding quantita-
tively the trade-off between invariance and selectivity, and how invariance and dis-
crimination properties contribute towards providing an improved representation
useful for learning from data. In this work we provide a general group-theoretic
framework for characterizing and understanding invariance in a family of hierar-
chical models. We show that by taking an algebraic perspective, one can provide
a concise set of conditions which must be met to establish invariance, as well
as a constructive prescription for meeting those conditions. Analyses in specific
cases of particular relevance to computer vision and text processing are given,
yielding insight into how and when invariance can be achieved. We find that the
minimal intrinsic properties of a hierarchical model needed to support a particular
invariance can be clearly described, thereby encouraging efficient computational
implementations.

1 Introduction
Several models of object recognition drawing inspiration from visual cortex have been developed
over the past few decades [3, 8, 6, 12, 10, 9, 7], and have enjoyed substantial empirical success. A
central theme found in this family of models is the use of Hubel and Wiesel’s simple and complex
cell ideas [5]. In the primary visual cortex, simple units compute features by looking for the occur-
rence of a preferred stimulus in a region of the input (“receptive field”). Translation invariance is
then explicitly built into the processing pathway by way of complex units which pool locally over
simple units. The alternating simple-complex filtering/pooling process is repeated, building increas-
ingly invariant representations which are simultaneously selective for increasingly complex stimuli.
In a computer implementation, the final representation can then be presented to a supervised learning
algorithm.
Following the flow of processing in a hierarchy from the bottom upwards, the layerwise representa-
tions gain invariance while simultaneously becoming selective for more complex patterns. A goal of
central importance in the study of such hierarchical architectures and the visual cortex alike is that of
understanding quantitatively this invariance-selectivity tradeoff, and how invariance and selectivity
contribute towards providing an improved representation useful for learning from examples. In this
paper, we focus on hierarchical models incorporating an explicit attempt to impose transformation
invariance, and do not directly address the case of deep layered models without local transformation
or pooling operations (e.g. [4]).
In a recent effort, Smale et al. [11] have established a framework which makes possible a more pre-
cise characterization of the operation of hierarchical models via the study of invariance and discrim-
ination properties. However, Smale et al. study invariance in an implicit, rather than constructive,
fashion. In their work, two cases are studied: invariance with respect to image rotations and string
reversals, and the analysis is tailored to the particular setting. In this paper, we reinterpret and ex-
tend the invariance analysis of Smale et al. using a group-theoretic language towards clarifying and
unifying the general properties necessary for invariance in a family of hierarchical models. We show
that by systematically applying algebraic tools, one can provide a concise set of conditions which
must be met to establish invariance, as well as a constructive prescription for meeting those condi-
tions. We additionally find that when one imposes the mild requirement that the transformations of
interest have group structure, a broad class of hierarchical models can only be invariant to orthog-
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onal transformations. This result suggests that common architectures found in the literature might
need to be rethought and modified so as to allow for broader invariance possibilities. Finally, we
show that our framework automatically points the way to efficient computational implementations
of invariant models.
The paper is organized as follows. We first recall important definitions from Smale et al. Next, we
extend the machinery of Smale et al. to a more general setting allowing for general pooling func-
tions, and give a proof for invariance of the corresponding family of hierarchical feature maps. This
contribution is key because it shows that several results in [11] do not depend on the particular choice
of pooling function. We then establish a group-theoretic framework for characterizing invariance in
hierarchical models expressed in terms of the objects defined here. Within this framework, we turn
to the problem of invariance in two specific domains of practical relevance: images and text strings.
Finally, we conclude with a few remarks summarizing the contributions and relevance of our work.
All proofs are omitted here, but can be found in the online supplementary material [2]. The reader
is assumed to be familiar with introductory concepts in group theory. An excellent reference is [1].

2 Invariance of a Hierarchical Feature Map
We first review important definitions and concepts concerning the neural response feature map pre-
sented in Smale et al. The reader is encouraged to consult [11] for a more detailed discussion. We
will draw attention to the conditions needed for the neural response to be invariant with respect
to a family of arbitrary transformations, and then generalize the neural response map to allow for
arbitrary pooling functions. The proof of invariance given in [11] is extended to this generalized
setting. The proof presented here (and in [11]) hinges on a technical “Assumption” which must be
verified to hold true, given the model and the transformations to which we would like to be invariant.
Therefore the key step to establishing invariance is verification of this Assumption. After stating the
Assumption and how it figures into the overall picture, we explore its verification in Section 3. There
we are able to describe, for a broad range of hierarchical models (including a class of convolutional
neural networks [6]), the necessary conditions for invariance to a set of transformations.

2.1 Definition of the Feature Map and Invariance
First consider a system of patches of increasing size associated to successive layers of the hierarchy,
v1 ⊂ v2 ⊂ · · · ⊂ vn ⊆ S, with vn taken to be the size of the full input. Here layer n is the
top-most layer, and the patches are pieces of the domain on which the input data are defined. The
set S could contain, for example, points in R2 (in the case of 2D graphics) or integer indices (the
case of strings). Until Section 4, the data are seen as general functions, however it is intuitively
helpful to think of the special case of images, and we will use a notation that is suggestive of this
particular case. Next, we’ll need spaces of functions on the patches, Im(vi). In many cases it will
only be necessary to work with arbitrary successive pairs of patches (layers), in which case we will
denote by u the smaller patch, and v the next larger patch. We next introduce the transformation
sets Hi, i = 1, . . . , n intrinsic to the model. These are abstract sets in general, however here we
will take them to be comprised of translations with h ∈ Hi defined by h : vi → vi+1. Note that by
construction, the functions h ∈ Hi implicitly involve restriction. For example, if f ∈ Im(v2) is an
image of size v2 and h ∈ H1, then f ◦ h is a piece of the image of size v1. The particular piece is
determined by h. Finally, to each layer we also associate a dictionary of templates, Qi ⊆ Im(vi).
The templates could be randomly sampled from Im(vi), for example.

Given the ingredients above, the neural response Nm(f) and associated derived kernel K̂m are
defined as follows.
Definition 1 (Neural Response). Given a non-negative valued, normalized, initial reproducing ker-
nel K̂1, the m-th derived kernel K̂m, for m = 2, . . . , n, is obtained by normalizing Km(f, g) =
〈Nm(f), Nm(g)〉L2(Qm−1) where Nm(f)(q) = maxh∈H K̂m−1(f ◦ h, q), q ∈ Qm−1 with
H = Hm−1.
Here a kernel is normalized by taking K̂(f, g) = K(f, g)/

√
K(f, f)K(g, g). Note that the neural

response decomposes the input into a hierarchy of parts, analyzing sub-regions at different scales.
The neural response and derived kernels describe in compact, abstract terms the core operations built
into the many related hierarchical models of object recognition cited above.
We next define a set of transformations, distinct from the Hi above, to which we would like to be
invariant. Let r ∈ Ri, i ∈ {1, . . . , n − 1}, be transformations that can be viewed as mapping
either vi to itself or vi+1 to itself (depending on the context in which it is applied). We rule out the
degenerate translations and transformations, h or r mapping their entire domain to a single point.
When it is necessary to identify transformations defined on a specific domain v, we will use the
notation rv : v → v. Invariance of the neural response feature map can now be defined.
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Definition 2 (Invariance). The feature map Nm is invariant to the domain transformation r ∈ R if
Nm(f) = Nm(f ◦ r), for all f ∈ Im(vm), or equivalently, K̂m(f ◦ r, f) = 1, for all f ∈ Im(vm).
In order to state the invariance properties of a given feature map, a technical assumption is needed.
Assumption 1 (from [11]). Fix any r ∈ R. There exists a surjective map π : H → H satisfying

rv ◦ h = π(h) ◦ ru (1)
for all h ∈ H .
This technical assumption is best described by way of an example. Consider images and rotations:
the assumption stipulates that rotating an image and then taking a restriction must be equivalent to
first taking a (different) restriction and then rotating the resulting image patch. As we will describe
below, establishing invariance will boil down to verifying Assumption 1.

2.2 Invariance and Generalized Pooling
We next provide a generalized proof of invariance of a family of hierarchical feature maps, where
the properties we derive do not depend on the choice of the pooling function. Given the above
assumption, invariance can be established for general pooling functions of which the max is only
one particular choice. We will first define such general pooling functions, and then describe the
corresponding generalized feature maps. The final step will then be to state an invariance result for
the generalized feature map, given that Assumption 1 holds.
Let H = Hi, with i ∈ {1, . . . , n− 1}, and let B(R) denote the Borel algebra of R. As in Assump-
tion 1, we define π : H → H to be a surjection, and let Ψ : B(R++)→ R++ be a bounded pooling
function defined for Borel sets B ∈ B(R) consisting of only positive elements. Here R++ denotes
the set of strictly positive reals. Given a positive functional F acting on elements of H , we define
the set F (H) ∈ B(R) as

F (H) = {F [h] | h ∈ H}.
Note that since π is surjective, π(H) = H , and therefore (F ◦ π)(H) = F (H).
With these definitions in hand, we can define a more general neural response as follows. For H =
Hm−1 and all q ∈ Q = Qm−1, let the neural response be given by

Nm(f)(q) = (Ψ ◦ F )(H)

where
F [h] = K̂m−1(f ◦ h, q).

Given Assumption 1, we can now prove invariance of a neural response feature map built from the
general pooling function Ψ.

Theorem 1. Given any function Ψ : B(R++)→ R++, if the initial kernel satisfies K̂1(f, f ◦r) = 1
for all r ∈ R, f ∈ Im(v1), then

Nm(f) = Nm(f ◦ r),
for all r ∈ R, f ∈ Im(vm) and m ≤ n.
We give a few practical examples of the pooling function Ψ.
Maximum: The original neural response is recovered setting Ψ(B) = supB .
Averaging: We can consider average pooling by setting Ψ(B) =

∫
x∈B xdµ . If H has a measure

ρH , then a natural choice for µ is the induced push-forward measure ρH ◦ F−1. The measure ρH
may be simply uniform, or in the case of a finite set H , discrete. Similarly, we may consider more
general weighted averages.

3 A Group-Theoretic Invariance Framework
This section establishes general definitions and conditions needed to formalize a group-theoretic
concept of invariance. When Assumption 1 holds, then the neural response map can be made in-
variant to the given set of transformations. Proving invariance thus reduces to verifying that the
Assumption actually holds, and is valid. A primary goal of this paper is to place this task within
an algebraic framework so that the question of verifying the Assumption can be formalized and
explored in full generality with respect to model architecture, and the possible transformations. For-
malization of Assumption 1 culminates in Definition 3 below, where purely algebraic conditions
are separated from conditions stemming from the mechanics of the hierarchy. This separation re-
sults in a simplified problem because one can then tackle the algebraic questions independent of and
untangled from the model architecture.
Our general approach is as follows. We will require that R is a subset of a group and then use
algebraic tools to understand when and how Assumption 1 can be satisfied given different instances
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ofR. IfR is fixed, then the assumption can only be satisfied by placing requirements on the sets of
built-in translations Hi, i = 1, . . . , n. Therefore, we will make quantitative, constructive statements
about the minimal sets of translations associated to a layer required to support invariance to a set of
transformations. Conversely, one can fix Hi and then ask whether the resulting feature map will be
invariant to any transformations. We explore this perspective as well, particularly in the examples
of Section 4, where specific problem domains are considered.

3.1 Formulating Conditions for Invariance
Recall that vi ⊂ S. Because it will be necessary to translate in S, it is assumed that an appropriate
notion of addition between the elements of S is given. If G is a group, we denote the (left) action of
G on S byA : G×S → S. Given an element g ∈ G, the notationAg : S → S will be utilized. Since
A is a group action, it satisfies (Ag ◦ Ag′)(x) = Agg′(x) for all x ∈ S and all g, g′ ∈ G. Consider
an arbitrary pair of successive layers with associated patch sizes u and v, with u ⊂ v ⊂ S. Recall
that the definition of the neural response involves the “built-in” translation functions h : u → v,
for h ∈ H = Hu. Since S has an addition operation, we may parameterize h ∈ H explicitly as
ha(x) = x + a for x ∈ u and parameter a ∈ v such that (u + a) ⊂ v. The restriction behavior
of the translations in H prevents us from simply generating a group out of the elements of H . To
get around this difficulty, we will decompose the h ∈ H into a composition of two functions: a
translation group action and an inclusion.
Let S generate a group of translations T by defining the injective map

S → T

a 7→ ta.
(2)

That is, to every element of a ∈ S we associate a member of the group T whose action corresponds
to translation in S by a: Ata(x) = x + a for x, a ∈ S. (Although we assume the specific case of
translations throughout, the sets of intrinsic operations Hi may more generally contain other kinds
of transformations. We assume, however, that T is abelian.) Furthermore, because the translations
H can be parameterized by an element of S, one can apply Equation (2) to define an injective map
τ : H → T by ha 7→ ta. Finally, we define ιu : u ↪→ S to be the canonical inclusion of u into S.
We can now rewrite ha : u→ v as

ha = Ata ◦ ιu
Note that because a satisfies (u+ a) ⊂ v by definition, im(Ata ◦ ιu) ⊂ v automatically.
In the statement of Assumption 1, the transformations r ∈ R can be seen as maps from u to itself,
or from v to itself, depending on which side of Equation (1) they are applied. To avoid confusion
we denoted the former case by ru and the latter by rv . Although ru and rv are the same “kind”
of transformation, one cannot in general associate to each “kind” of transformation r ∈ R a single
element of some group as we did in the case of translations above. The group action could very
well be different depending on the context. We will therefore consider ru and rv to be distinct
transformations, loosely associated to r. In our development, we will make the important assumption
that the transformations ru, rv ∈ R can be expressed as actions of elements of some group, and
denote this group by R. More precisely, for every ru ∈ R, there is assumed to be a corresponding
element ρu ∈ R whose action satisfies Aρu

(x) = ru(x) for all x ∈ u, and similarly, for every rv ∈
R, there is assumed to be a corresponding element ρv ∈ R whose action satisfies Aρv

(x) = rv(x)
for all x ∈ v. The distinction between ρu and ρv will become clear in the case of feature maps
defined on functions whose domain is a finite set (such as strings). In the case of images, we will
see that ρu = ρv .
Assumption 1 requires that rv ◦ h = h′ ◦ ru for h, h′ ∈ H , with the map π : h 7→ h′ onto. We
now restate this condition in group-theoretic terms. Define T̃ = τ(Hu) ⊆ T to be the set of group
elements corresponding to Hu. Set h = ha, h

′ = hb, and denote also by ru, rv the elements of
the group R corresponding to the given transformation r ∈ R. The Assumption says in part that
rv ◦ h = h′ ◦ ru for some h′ ∈ H . This can now be expressed as

Arv
◦Ata ◦ ιu = Atb ◦ ιu ◦Aru

◦ ιu (3)

for some tb ∈ T̃ . In order to arrive at a purely algebraic condition for invariance, we will need
to understand and manipulate compositions of group actions. However on the right-hand side of
Equation (3) the translation Atb is separated from the transformation Aru by the inclusion ιu. We
will therefore need to introduce an additional constraint on R. This constraint leads to our first
condition for invariance: If x ∈ u, then we require that Aru

(x) ∈ u for all r ∈ R. One can now see
that if this condition is met, then verifying Equation (3) reduces to checking that

Arv
◦Ata = Atb ◦Aru

, (4)
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and that the map ta 7→ tb is onto.
The next step is to turn compositions of actions Ax ◦ Ay into an equivalent action of the form Axy .
Do do this, one needsR and T to be subgroups of the same groupG so that the associativity property
of group actions applies. A general way to accomplish this is to form the semidirect product

G = T oR. (5)

Recall that the semidirect product G = X o Y is a way to put two subgroups X,Y together where
X is required to be normal inG, andX∩Y = {1} (the usual direct product requires both subgroups
to be normal). In our setting G is easily shown to be isomorphic to a group with normal subgroup T
and subgroup R where each element may be written in the form g = tr for t ∈ T, r ∈ R. We will
see below that we do not loose generality by requiring T to be normal. Note that although this con-
struction precludes R from containing the transformations in T , allowing R to contain translations
is an uninteresting case.
Consider now the action Ag for g ∈ G = T o R. Returning to Equation (4), we can apply the
associativity property of actions and see that Equation (4) will hold as long as

rvT̃ = T̃ ru (6)

for every r ∈ R. This is our second condition for invariance, and is a purely algebraic requirement
concerning the groupsR and T , distinct from the restriction related conditions involving the patches
u and v.
The two invariance conditions we have described thus far combine to capture the content of Assump-
tion 1, but in a manner that separates group related conditions from constraints due to restriction and
the nested nature of an architecture’s patch domains. We can summarize the invariance conditions
in the form of a concise definition that can be applied to establish invariance of the neural response
feature maps Nm(f), 2 ≤ m ≤ n with respect to a set of transformations. Let R̃ ⊆ R be the set of
transformations for which we would like to prove invariance, in correspondence withR.

Definition 3 (Compatible Sets). The subsets R̃ ⊂ R and T̃ ⊂ T are compatible if all of the following
conditions hold:

1. For each r ∈ R̃, rvT̃ = T̃ ru. When ru = rv for all r ∈ R, this means that normalizer of
T̃ in R̃ is R̃.

2. Left transformations rv never take a point in v outside of v, and right transformations ru
never take a point in u/v outside of u/v (respectively):

imArv
◦ ιv ⊆ v, imAru

◦ ιu ⊆ u, imAru
◦ ιv ⊆ v,

for all r ∈ R̃.
3. Translations never take a point in u outside of v:

imAt ◦ ιu ⊆ v

for all t ∈ T̃ .
The final condition above has been added to ensure that any set of translations T̃ we might construct
satisfy the implicit assumption that the hierarchy’s translation functions h ∈ H are maps which
respect the definition h : u→ v.

If R̃ and T̃ are compatible, then for each ta ∈ T̃ Equation 3 holds for some tb ∈ T̃ , and the map
ta 7→ tb is surjective from T̃ → T̃ (by Condition (1) above). So Assumption 1 holds.
As will become clear in the following section, the tools available to us from group theory will
provide insight into the structure of compatible sets.

3.2 Orbits and Compatible Sets
Suppose we assume that R̃ is a subgroup (rather than just a subset), and ask for the smallest com-
patible T̃ . We will show that the only way to satisfy Condition (1) in Definition 3 is to require that
T̃ be a union of R̃-orbits, under the action

(t, r) 7→ rvtr
−1
u (7)

for t ∈ T , r ∈ R̃. This perspective is particularly illuminating because it will eventually allow us
to view conjugation by a transformation r as a permutation of T̃ , thereby establishing surjectivity of
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the map π defined in Assumption 1. For computational reasons, viewing T̃ as a union of orbits is
also convenient.
If rv = ru = r, then the action (7) is exactly conjugation and the R̃-orbit of a translation t ∈ T
is the conjugacy class CR̃(t) = {rtr−1 | r ∈ R̃}. Orbits of this form are also equivalence classes
under the relation s ∼ s′ if s′ ∈ CR̃(s), and we will require T̃ to be partitioned by the conjugacy
classes induced by R̃.
The following Proposition shows that, given set of candidate translations in H , we can construct a
set of translations compatible with R̃ by requiring T̃ to be a union of R̃-orbits under the action of
conjugation.
Proposition 1. Let Γ ⊆ T be a given set of translations, and assume the following: (1) G ∼= T oR,
(2) For each r ∈ R, r = ru = rv , (3) R̃ is a subgroup of R. Then Condition (1) of Definition 3 is
satisfied if and only if T̃ can be expressed as a union of orbits of the form

T̃ =
⋃
t∈Γ

CR̃(t) . (8)

An interpretation of the above Proposition, is that when T̃ is a union of R̃-orbits, conjugation by
r can be seen as a permutation of T̃ . In general, a given T̃ may be decomposed into several such
orbits and the conjugation action of R̃ on T̃ may not necessarily be transitive.

4 Analysis of Specific Invariances
We continue with specific examples relevant to image processing and text analysis.

4.1 Isometries of the Plane
Consider the case where G is the group M of planar isometries, u ⊂ v ⊂ S = R2, and H involves
translations in the plane. Let O2 be the group of orthogonal operators, and let ta ∈ T denote a
translation represented by the vector a ∈ R2. In this section we assume the standard basis and work
with matrix representations of G when it is convenient.
We first need that TCM , a property that will be useful when verifying Condition (1) of Definition 3.
Indeed, from the First Isomorphism Theorem [1], the quotient space M/T is isomorphic to O2,
giving the following commutative diagram:

M
π- O2

M/T

φ
? π̃

-

where the isomorphism π̃ : M/T → O2 is given by π̃(mT ) = π(m) and φ(m) = mT . We recall
that the kernel of a group homomorphism π : G → G′ is a normal subgroup of G, and that normal
subgroups N of G are invariant under the operation of conjugation by elements g of G. That is,
gNg−1 = N for all g ∈ G. With this picture in mind, the following Lemma establishes that T CM ,
and further shows that M is isomorphic to T oR with R = O2, and T a normal subgroup of M .
Lemma 1. For each m ∈M , ta ∈ T , mta = tbm for some unique element tb ∈ T .
We are now in a position to verify the Conditions of Definition 3 for the case of planar isometries.
Proposition 2. Let H be the set of translations associated to an arbitrary layer of the hierarchical
feature map and define the injective map τ : H → T by ha 7→ ta, where a is a parameter char-
acterizing the translation. Set Γ = {τ(h) | h ∈ H}. Take G = M ∼= T o O2 as above. The
sets

R̃ = O2, T̃ =
⋃
t∈Γ

CR̃(t)

are compatible.
This proposition states that the hierarchical feature map may be made invariant to isometries, how-
ever one might reasonably ask whether the feature map can be invariant to other transformations.
The following Proposition confirms that isometries are the only possible transformations, with group
structure, to which the hierarchy may be made invariant in the exact sense of Definition 2.

Proposition 3. Assume that the input spaces {Im(vi)}n−1
i=1 are endowed with a norm inherited from

Im(vn) by restriction. Then at all layers, the group of orthogonal operators O2 is the only group of
transformations to which the neural response can be invariant.
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vi

vi+1

ta OR~(tc)

OR~(tb)

OR~(ta)

tb

tc

Figure 1: Example illustrating construction of an appro-
priate H . Suppose H initially contains the translations
Γ = {ha, hb, hc}. Then to be invariant to rotations, the
condition on H is that H must also include translations
defined by the R̃-orbits OR̃(ta), OR̃(tb) and OR̃(tc). In
this example R̃ = SO2, and the orbits are translations
to points lying on a circle in the plane.

The following Corollary is immediate:

Corollary 1. The neural response cannot be scale invariant, even if K̂1 is.
We give a few examples illustrating the application of the Propositions above.

Example 1. If we choose the group of rotations of the plane by setting R̃ = SO2 C O2, then the
orbits OR̃(a) are circles of radius ‖a‖. See Figure 1. Therefore rotation invariance is possible as
long as the set T̃ (and therefore H , since we can take H = τ−1(T̃ )) includes translations to all
points along the circle of radius a, for each element ta ∈ T̃ . In particular if H includes all possible
translations, then Assumption 1 is verified, and we can apply Theorem 1: Nm will be invariant to
rotations as long as K̂1 is. A similar argument can be made for reflection invariance, as any rotation
can be built out of the composition of two reflections.

Example 2. Analogous to the previous example, we may also consider finite cyclical groups Cn
describing rotations by θ = 2π/n. In this case the construction of an appropriate set of translations
is similar: we require that T̃ include at least the conjugacy classes with respect to the group Cn,
CCn(t) for each t ∈ Γ = τ(H).

Example 3. Consider a simple convolutional neural network [6] consisting of two layers, one filter
at the first convolution layer, and downsampling at the second layer defined by summation over all
distinct k × k blocks. In this case, Proposition 2 and Theorem 1 together say that if the filter kernel
is rotation invariant, then the output representation will be invariant to global rotation of the input
image. This is so because convolution implies the choice K1(f, g) = 〈f, g〉L2 , average pooling,
and H = H1 containing all possible translations. If the convolution filter z is rotation invariant,
z ◦ r = z for all rotations r, and K1(f ◦ r, z) = K1(f, z ◦ r−1) = K1(f, z). So we can conclude
invariance of the initial kernel.

4.2 Strings, Reflections, and Finite Groups
We next consider the case of finite length strings defined on a finite alphabet. One of the advantages
group theory provides in the case of string data is that we need not work with permutation repre-
sentations. Indeed, we may equivalently work with group elements which act on strings as abstract
objects. The definition of the neural response given in Smale et al. involves translating an analysis
window over the length of a given string. Clearly translations over a finite string do not constitute a
group as the law of composition is not closed in this case. We will get around this difficulty by first
considering closed words formed by joining the free ends of a string. Following the case of circular
data where arbitrary translations are allowed, we will then consider the original setting described in
Smale et al. in which strings are finite non-circular objects.
Taking a geometric standpoint sheds light on groups of transformations applicable to strings. In
particular, one can interpret the operation of the translations in H as a circular shift of a string
followed by truncation outside of a fixed window. The cyclic group of circular shifts of an n-string
is readily seen to be isomorphic to the group of rotations of an n-sided regular polygon. Similarly,
reversal of an n-string is isomorphic to reflection of an n-sided polygon, and describes a cyclic group
of order two. As in Equation (5), we can combine rotation and reflection via a semidirect product

Dn
∼= Cn o C2 (9)
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where Ck denotes the cyclic group of order k. The resulting product group has a familiar presen-
tation. Let t, r be the generators of the group, with r corresponding to reflection (reversal), and t
corresponding to a rotation by angle 2π/n (leftward circular shift by one character). Then the group
of symmetries of a closed n-string is described by the relations

Dn = 〈t, r | tn, r2
v, rvtrvt〉. (10)

These relations can be seen as describing the ways in which an n-string can be left unchanged. The
first says that circularly shifting an n-string n times gives us back the original string. The second says
that reflecting twice gives back the original string, and the third says that left-shifting then reflecting
is the same as reflecting and then right-shifting. In describing exhaustively the symmetries of an
n-string, we have described exactly the dihedral group Dn of symmetries of an n-sided regular
polygon. As manipulations of a closed n-string and an n-sided polygon are isomorphic, we will use
geometric concepts and terminology to establish invariance of the neural response defined on strings
with respect to reversal. In the following discussion we will abuse notation and at times denote by u
and v the largest index associated with the patches u and v.
In the case of reflections of strings, ru is quite distinct from rv . The latter reflection, rv , is the
usual reflection of an v-sided regular polygon, whereas we would like ru to reflect a smaller u-sided
polygon. To build a group out of such operations, however, we will need to ensure that ru and rv
both apply in the context of v-sided polygons. This can be done by extending Aru

to v by defining
ru to be the composition of two operations: one which reflects the u portion of a string and leaves
the rest fixed, and another which reflects the remaining (v − u)-substring while leaving the first
u-substring fixed. In this case, one will notice that ru can be written in terms of rotations and the
usual reflection rv:

ru = rvt
−u = turv . (11)

This also implies that for any x ∈ T ,

{rxr−1 | r ∈ 〈rv〉} = {rxr−1 | r ∈ 〈rv, ru〉},
where we have used the fact that T is abelian, and applied the relations in Equation (10). We can
now make an educated guess as to the form of T̃ by starting with Condition (1) of Definition 3 and
applying the relations appearing in Equation (10). Given x ∈ T̃ , a reasonable requirement is that
there must exist an x′ ∈ T̃ such that rvx = x′ru. In this case

x′ = rvxru = rvxrvt
−u = x−1rvrvt

−u = x−1t−u, (12)
where the second equality follows from Equation (11), and the remaining equalities follow from
the relations (10). The following Proposition confirms that this choice of T̃ is compatible with the
reflection subgroup of G = Dv , and closely parallels Proposition 2.
Proposition 4. Let H be the set of translations associated to an arbitrary layer of the hierarchical
feature map and define the injective map τ : H → T by ha 7→ ta, where a is a parameter charac-
terizing the translation. Set Γ = {τ(h) | h ∈ H}. Take G = Dn

∼= T oR, with T = Cn = 〈t〉 and
R = C2 = {r, 1}. The sets

R̃ = R, T̃ = Γ ∪ Γ−1t−u
are compatible.
One may also consider non-closed strings, as in Smale et al., in which case substrings which would
wrap around the edges are disallowed. Proposition 4 in fact points to the minimum T̃ for reversals in
this scenario as well, noticing that the set of allowed translations is the same set above but with the
illegal elements removed. If we again take length u substrings of length v strings, this reduced set
of valid transformations in fact describes the symmetries of a regular (v − u+ 1)-gon. We can thus
apply Proposition 4 working with the Dihedral group G = Dv−u+1 to settle the case of non-closed
strings.

5 Conclusion
We have shown that the tools offered by group theory can be profitably applied towards understand-
ing invariance properties of a broad class of deep, hierarchical models. If one knows in advance the
transformations to which a model should be invariant, then the translations which must be built into
the hierarchy can be described. In the case of images, we showed that the only group to which a
model in the class of interest can be invariant is the group of planar orthogonal operators.
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