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Abstract

Over recent years Dirichlet processes and the associated Chinese restaurant pro-
cess (CRP) have found many applications in clustering while the Indian buffet
process (IBP) is increasingly used to describe latent feature models. These mod-
els are attractive because they ensure exchangeability (over samples). We propose
here extensions of these models where the dependency between samples is given
by a known decomposable graph. These models have appealing properties and
can be easily learned using Monte Carlo techniques.

1 Motivation

The CRP and IBP have found numerous applications in machine learning over recent years [5,
10]. We consider here the case where the data we are interested in are ‘locally’ dependent; these
dependencies being represented by a known graph G where each data point/object is associated
to a vertex. These local dependencies can correspond to any conceptual or real (e.g. space, time)
metric. For example, in the context of clustering, we might want to propose a prior distribution on
partitions enforcing that data which are ‘close’ in the graph are more likely to be in the same cluster.
Similarly, in the context of latent feature models, we might be interested in a prior distribution on
features enforcing that data which are ‘close’ in the graph are more likely to possess similar features.

The ‘standard’ CRP and IBP correspond to the case where the graph G is complete; that is it is fully
connected. In this paper, we generalize the CRP and IBP to decomposable graphs. The resulting
generalized versions of the CRP and IBP enjoy attractive properties. Each clique of the graph follows
marginally a CRP or an IBP process and explicit expressions for the joint prior distribution on the
graph is available. It makes it easy to learn those models using straightforward generalizations of
Markov chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC) algorithms proposed to
perform inference for the CRP and IBP [5, 10, 14].

The rest of the paper is organized as follows. In Section 2, we review the popular Dirichlet multi-
nomial allocation model and the Dirichlet Process (DP) partition distribution. We propose an exten-
sion of these two models to decomposable graphical models. In Section 3 we discuss nonparametric
latent feature models, reviewing briefly the construction in [5] and extending it to decomposable
graphs. We demonstrate these models in Section 4 on two applications: an alternative to the hierar-
chical DP model [12] and a time-varying matrix factorization problem.

2 Prior distributions for partitions on decomposable graphs

Assume we have n observations. When performing clustering, we associate to each of this observa-
tion an allocation variable zi ∈ [K] = {1, . . . , K}. Let Πn be the partition of [n] = {1, . . . , n} de-
fined by the equivalence relation i ↔ j ⇔ zi = zj . The resulting partition Πn = {A1, . . . , An(Πn)}
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is an unordered collection of disjoint non-empty subsets Aj of [n], j = 1, . . . , n(Πn), where
∪jAj = [n] and n(Πn) is the number of subsets for partition Πn. We also denote by Pn be the
set of all partitions of [n] and let nj , j = 1, . . . , n(Πn), be the size of the subset Aj .

Each allocation variable zi is associated to a vertex/site of an undirected graph G, which is assumed
to be known. In the standard case where the graph G is complete, we first review briefly here two
popular prior distributions on z1:n, equivalently on Πn. We then extend these models to undirected
decomposable graphs; see [2, 8] for an introduction to decomposable graphs. Finally we briefly
discuss the directed case. Note that the models proposed here are completely different from the
hyper multinomial-Dirichlet in [2] and its recent DP extension [6].

2.1 Dirichlet multinomial allocation model and DP partition distribution

Assume for the time being that K is finite. When the graph is complete, a popular choice for the
allocation variables is to consider a Dirichlet multinomial allocation model [11]

π ∼ D(
θ

K
, . . . ,

θ

K
), zi|π ∼ π (1)

where D is the standard Dirichlet distribution and θ > 0. Integrating out π, we obtain the following
Dirichlet multinomial prior distribution

Pr(z1:n) =
Γ(θ)

∏K
j=1 Γ(nj + θ

K )

Γ(θ + n)Γ( θ
K )K

(2)

and then, using the straightforward equality Pr(Πn) = K!
(K−n(Πn))! Pr(z1:n) valid for for all Πn ∈

PK where PK = {Πn ∈ Pn|n(Πn) ≤ K}, we obtain

Pr(Πn) =
K!

(K − n(Πn))!
Γ(θ)

∏n(Πn)
j=1 Γ(nj + θ

K )

Γ(θ + n)Γ( θ
K )n(Πn)

. (3)

DP may be seen as a generalization of the Dirichlet multinomial model when the number of com-
ponents K → ∞; see for example [10]. In this case the distribution over the partition Πn of [n] is
given by [11]

Pr(Πn) =
θn(Πn)

∏n(Πn)
j=1 Γ(nj)∏n

i=1(θ + i− 1)
. (4)

Let Π−k = {A1,−k, . . . , An(Π−k),−k} be the partition induced by removing item k to Πn and nj,−k

be the size of cluster j for j = 1, . . . , n(Π−k). It follows from (4) that an item k is assigned
to an existing cluster j, j = 1, . . . , n(Π−k), with probability proportional to nj,−k/ (n− 1 + θ)
and forms a new cluster with probability θ/ (n− 1 + θ). This property is the basis of the CRP.
We now extend the Dirichlet multinomial allocation and the DP partition distribution models to
decomposable graphs.

2.2 Markov combination of Dirichlet multinomial and DP partition distributions

Let G be a decomposable undirected graph, C = {C1, . . . , Cp} a perfect ordering of the cliques
and S = {S2, . . . , Cp} the associated separators. It can be easily checked that if the marginal
distribution of zC for each clique C ∈ C is defined by (2) then these distributions are consistent as
they yield the same distribution (2) over the separators. Therefore, the unique Markov distribution
over G with Dirichlet multinomial distribution over the cliques is defined by [8]

Pr(z1:n) =
∏

C∈C Pr(zC)∏
S∈S Pr(zS)

(5)

where for each complete set B ⊆ G, we have Pr(zB) given by (2). It follows that we have for any
Πn ∈ PK

Pr(Πn) =
K!

(K − n(Πn))!

∏
C∈C

Γ(θ)
∏K

j=1 Γ(nj,C+ θ
K )

Γ(θ+nC)Γ( θ
K )K

∏
S∈S

Γ(θ)
∏K

j=1 Γ(nj,S+ θ
K )

Γ(θ+nS)Γ( θ
K )K

(6)
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where for each complete set B ⊆ G, nj,B is the number of items associated to cluster j, j =
1, . . . , K in B and nB is the total number of items in B. Within each complete set B, the allocation
variables define a partition distributed according to the Dirichlet-multinomial distribution.

We now extend this approach to DP partition distributions; that is we derive a joint distribution over
Πn such that the distribution of ΠB over each complete set B of the graph is given by (4) with
θ > 0. Such a distribution satisfies the consistency condition over the separators as the restriction of
any partition distributed according to (4) still follows (4) [7].

Proposition. Let PGn be the set of partitions Πn ∈ Pn such that for each decomposition A, B, and
any (i, j) ∈ A×B, i ↔ j ⇒ ∃k ∈ A ∩B such that k ↔ i ↔ j. As K →∞, the prior distribution
over partitions (6) is given for each Πn ∈ PGn by

Pr(Πn) = θn(Πn)

∏
C∈C

∏n(ΠC )
j=1 Γ(nj,C)∏nC

i=1(θ+i−1)

∏
S∈S

∏n(ΠS)
j=1 Γ(nj,S)∏nS

i=1(θ+i−1)

(7)

where n(ΠB) is the number of clusters in the complete set B.

Proof. From (6), we have

Pr(Πn) =
K(K − 1) . . . (K − n(Πn) + 1)

K
∑

C∈C n(ΠC)−∑
S∈S n(ΠS)

∏
C∈C

θn(ΠC ) ∏n(ΠC )
j=1 Γ(nj,C+ θ

K )∏nC
i=1(θ+i−1)

∏
S∈S

θn(ΠS) ∏n(ΠS)
j=1 Γ(nj,S+ θ

K )∏nS
i=1(θ+i−1)

Thus when K → ∞, we obtain (7) if n(Πn) =
∑

C∈C n(ΠC) − ∑
S∈S n(ΠS) and 0 otherwise.

We have n(Πn) ≤∑
C∈C n(ΠC)−∑

S∈S n(ΠS) for any Πn ∈ Pn and the subset of Pn verifying
n(Πn) =

∑
C∈C n(ΠC)−∑

S∈S n(ΠS) corresponds to the set PGn .¥

Example. Let the notation i ∼ j (resp. i � j) indicates an edge (resp. no edge) between two sites.
Let n = 3 and G be the decomposable graph defined by the relations 1 ∼ 2, 2 ∼ 3 and 1 � 3.
The set PG3 is then equal to {{{1, 2, 3}}; {{1, 2}, {3}}; {{1}, {2, 3}}; {{1}, {2}, {3}}}. Note that
the partition {{1, 3}, {2}} does not belong to PG3 . Indeed, as there is no edge between 1 and 3, they
cannot be in the same cluster if 2 is in another cluster. The cliques are C1 = {1, 2} and C2 = {2, 3}
and the separator is S2 = {2}. The distribution is given by Pr(Π3) = Pr(ΠC1 ) Pr(ΠC2 )

Pr(ΠS2 ) hence we can

check that we obtain Pr({1, 2, 3}) = (θ + 1)−2, Pr({1, 2}, {3}) = Pr({1, 2}, {3}) = θ(θ + 1)−2

and Pr({1}, {2}, {3}) = θ2(θ + 1)−2.¥

Let now define the full conditional distributions. Based on (7) the conditional assignment of an item
k is proportional to the conditional over the cliques divided by the conditional over the separators.
Let denote G−k the undirected graph obtained by removing vertex k from G. Suppose that Πn ∈ PGn .
If Π−k /∈ PG−k

n−1, then do not change the value of item k. Otherwise, item k is assigned to cluster j
where j = 1, . . . , n(Π−k) with probability proportional to

∏
{C∈C|n−k,j,C>0} n−k,j,C∏
{S∈S|n−k,j,S>0} n−k,j,S

(8)

and to a new cluster with probability proportional to θ, where n−k,j,C is the number of items in the
set C \ {k} belonging to cluster j. The updating process is illustrated by the Chinese wedding party
process1 in Fig. 1. The results of this section can be extended to the Pitman-Yor process, and more
generally to species sampling models.

Example (continuing). Given Π−2 = {A1 = {1}, A2 = {3}}, we have
Pr( item 2 assigned to A1 = {1}|Π−2) = Pr( item 2 assigned to A2 = {3}|Π−2) = (θ + 2)−1

and Pr( item 2 assigned to new cluster A3|Π−2) = θ (θ + 2)−1. Given Π−2 = {A1 = {1, 3}},
item 2 is assigned to A1 with probability 1.¥

1Note that this representation describes the full conditionals while the CRP represents the sequential updat-
ing.
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(a) (b) (c)

(d) (e)

Figure 1: Chinese wedding party. Consider a group of n guests attending a wedding party. Each
of the n guests may belong to one or several cliques, i.e. maximal groups of people such that
everybody knows everybody. The belonging of each guest to the different cliques is represented by
color patches on the figures, and the graphical representation of the relationship between the guests
is represented by the graphical model (e). (a) Suppose that the guests are already seated such that
two guests cannot be together at the same table is they are not part of the same clique, or if there
does not exist a group of other guests such that they are related (“Any friend of yours is a friend of
mine”). (b) The guest number k leaves his table and either (c) joins a table where there are guests
from the same clique as him, with probability proportional to the product of the number of guests
from each clique over the product of the number of guests belonging to several cliques on that table
or (d) he joins a new table with probability proportional to θ.

2.3 Monte Carlo inference

2.3.1 MCMC algorithm

Using the full conditionals, a single site Gibbs sampler can easily be designed to approximate the
posterior distribution Pr(Πn|z1:n). Given a partition Πn, an item k is taken out of the partition. If
Π−k /∈ PG−k

n−1, item k keeps the same value. Otherwise, the item will be assigned to a cluster j,
j = 1, . . . , n(Π−k), with probability proportional to

p(z{k}∪Aj,−k
)

p(zAj,−k
)

×
∏
{C∈C|n−k,j,C>0} n−k,j,C∏
{S∈S|n−k,j,S>0} n−k,j,S

(9)

and the item will be assigned to a new cluster with probability proportional to p(z{k})×θ. Similarly
to [3], we can also define a procedure to sample from p(θ|n(Πn) = k)). We assume that θ ∼ G(a, b)
and use p auxiliary variables x1, . . . , xp. The procedure is as follows.

• For j = 1, . . . , p, sample xj |k, θ ∼ Beta(θ + nSj
, nCj

− nSj
)

• Sample θ|k, x1:p ∼ G(a + k, b−∑
j log xj)

2.3.2 Sequential Monte Carlo

We have so far only treated the case of an undirected decomposable graph G. We can formu-
late a sequential updating rule for the corresponding perfect directed version D of G. Indeed, let
(a1, . . . a|V |) be a perfect ordering and pa(ak) be the set of parents of ak which is by definition com-
plete. Let Πk−1 = {A1,k−1, . . . , An(Πk−1),k−1} denote the partition of the first k−1 vertices a1:k−1

and let nj,pa(ak) be the number of elements with value j in the set pa(ak), j = 1, . . . , n(Πk−1).

Then the vertex ak joins the set j with probability nj,pa(ak)/
(
θ +

∑
q nq,pa(ak)

)
and creates a new

cluster with probability θ/
(
θ +

∑
q nq,pa(ak)

)
.

One can then design a particle filter/SMC method in a similar fashion as [4]. Consider a set of
N particles Π(i)

k−1 with weights w
(i)
k−1 ∝ Pr(Π(i)

k−1, z1:k−1) (
∑N

i=1 w
(i)
k−1 = 1) that approximate

the posterior distribution Pr(Πk−1|z1:k−1). For each particle i, there are n(Π(i)
k−1) + 1 possible
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allocations for component ak. We denote Π̃(i,j)
k the partition obtained by associating component ak

to cluster j. The weight associated to Π̃(i,j)
k is given by

w̃
(i,j)
k−1 = w

(i)
k−1

p(z{ak}∪Aj,k−1)
p(zAj,k−1)

×




nj,pa(ak)

θ+
∑

q nq,pa(ak)
if j = 1, . . . , n(Π(i)

k−1)
θ

θ+
∑

q nq,pa(ak)
if j = n(Π(i)

k−1) + 1
(10)

Then we can perform a deterministic resampling step by keeping the N particles Π̃(i,j)
k with highest

weights w̃
(i,j)
k−1 . Let Π(i)

k be the resampled particles and w
(i)
k the associated normalized weights.

3 Prior distributions for infinite binary matrices on decomposable graphs

Assume we have n objects; each of these objects being associated to the vertex of a graph G. To
each object is associated a K-dimensional binary vector zn = (zn,1, . . . , zn,K) ∈ {0, 1}K where
zn,i = 1 if object n possesses feature i and zn,i = 0 otherwise. These vectors zt form a binary
n × K matrix denoted Z1:n. We denote by ξ1:n the associated equivalence class of left-ordered
matrices and let EK be the set of left-ordered matrices with at most K features.

In the standard case where the graph G is complete, we review briefly here two popular prior distribu-
tions on Z1:n, equivalently on ξ1:n: the Beta-Bernoulli model and the IBP [5]. We then extend these
models to undirected decomposable graphs. This can be used for example to define a time-varying
IBP as illustrated in Section 4.

3.1 Beta-Bernoulli and IBP distributions

The Beta-Bernoulli distribution over the allocation Z1:n is

Pr(Z1:n) =
K∏

j=1

α
K Γ(nj + α

K )Γ(n− nj + 1)
Γ(n + 1 + α

K )
(11)

where nj is the number of objects having feature j. It follows that

Pr(ξ1:n) =
K!∏2n−1

h=0 Kh!

K∏

j=1

α
K Γ(nj + α

K )Γ(n− nj + 1)
Γ(n + 1 + α

K )
(12)

where Kh is the number of features possessing the history h (see [5] for details). The nonparametric
model is obtained by taking the limit when K →∞

Pr(ξ1:n) =
αK+

∏2n−1
h=1 Kh!

exp(−αHn)
K+∏

j=1

(n− nj)!(nj − 1)!
n!

(13)

where K+ is the total number of features and Hn =
∑n

k=1
1
k . The IBP follows from (13).

3.2 Markov combination of Beta-Bernoulli and IBP distributions

Let G be a decomposable undirected graph, C = {C1, . . . , Cp} a perfect ordering of the cliques and
S = {S2, . . . , Cp} the associated separators. As in the Dirichlet-multinomial case, it is easily seen
that if for each clique C ∈ C, the marginal distribution is defined by (11), then these distributions
are consistent as they yield the same distribution (11) over the separators. Therefore, the unique
Markov distribution over G with Beta-Bernoulli distribution over the cliques is defined by [8]

Pr(Z1:n) =
∏

C∈C Pr(ZC)∏
S∈S Pr(ZS)

(14)

where Pr(ZB) given by (11) for each complete set B ⊆ G. The prior over ξ1:n is thus given, for
ξ1:n ∈ EK , by

Pr(ξ1:n) =
K!∏2n−1

h=0 Kh!

∏
C∈C

∏K
j=1

α
K Γ(nj,C+ α

K )Γ(nC−nj,C+1)

Γ(nC+1+ α
K )∏

S∈S
∏K

j=1

α
K Γ(nj,S+ α

K )Γ(nS−nj,S+1)

Γ(nS+1+ α
K )

(15)
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where for each complete set B ⊆ G, nj,B is the number of items having feature j, j = 1, . . . , K in
the set B and nB is the whole set of objects in set B. Taking the limit when K → ∞, we obtain
after a few calculations

Pr(ξ1:n) =
α

K+
[n] exp [−α (

∑
C HnC

−∑
S HnS

)]∏2n−1
h=1 Kh!

×
∏

C∈C
∏K+

C
j=1

(nC−nj,C)!(nj,C−1)!
nC !

∏
S∈S

∏K+
S

j=1
(nS−nj,S)!(nj,S−1)!

nS !

if K+
[n] =

∑
C K+

C − ∑
S K+

S and 0 otherwise, where K+
B is the number of different features

possessed by objects in B.

Let EGn be the subset of En such that for each decomposition A, B and any (u, v) ∈ A×B: {u and
v possess feature j} ⇒ ∃k ∈ A ∩ B such that {k possesses feature j}. Let ξ−k be the left-ordered
matrix obtained by removing object k from ξn and K+

−k be the total number of different features in
ξ−k. For each feature j = 1, . . . , K+

−k, if ξ−k ∈ EG−k

n−1 then we have

Pr(ξk,j = i) =





b
∏

C∈C nj,C∏
S∈C nj,S

if i = 1

b
∏

C∈C(nC−nj,C)∏
S∈C(nS−nj,S) if i = 0

(16)

where b is the appropriate normalizing constant then the customer k tries Poisson
(
α

∏
{S∈S|k∈S} nS∏
{C∈C|k∈C} nC

)

new dishes. We can easily generalize this construction to a directed version D of G using arguments
similar to those presented in Section 2; see Section 4 for an application to time-varying matrix
factorization.

4 Applications

4.1 Sharing clusters among relative groups: An alternative to HDP

Consider that we are given d groups with nj data yi,j in each group, i = 1, . . . , nj , j = 1, . . . , d. We
consider latent cluster variables zi,j that define the partition of the data. We will use alternatively the
notation θi,j = Uzi,j in the following. Hierarchical Dirichlet Process [12] (HDP) is a very popular
model for sharing clusters among related groups. It is based on a hierarchy of DPs

G0 ∼ DP (γ,H),
Gj |G0 ∼ DP (α, G0) j = 1, . . . d
θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j) i = 1, . . . , nj .

Under conjugacy assumptions, G0, Gj and U can be integrated out and we can approximate the
marginal posterior of (zi,j) given y = (yi,j) with Gibbs sampling using the Chinese restaurant
franchise to sample from the full conditional p(zi,j |z−{i,j}, y).

Using the graph formulation defined in Section 2, we propose an alternative to HDP. Let
θ0,1, . . . , θ0,N be N auxiliary variables belonging to what we call group 0. We define each clique Cj

(j = 1, . . . , d) to be composed of elements from group j and elements from group 0. This defines a
decomposable graphical model whose separator is given by the elements of group 0. We can rewrite
the model in a way quite similar to HDP

G0 ∼ DP (α, H),
θ0,i|G0 ∼ G0 i = 1, ..., N

Gj |θ0,1, . . . , θ0,N ∼ DP (α + N, α
α+N H + α

α+N

∑N
i=1 δθ0,i

) j = 1, . . . d,
θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f(θi,j) i = 1, . . . , nj

For any subset A and j 6= k ∈ {1, . . . , p} we have corr(Gj(A), Gk(A)) = N
α+N . Again, under

conjugacy conditions, we can integrate out G0, Gj and U and approximate the marginal posterior
distribution over the partition using the Chinese wedding party process defined in Section 2. Note
that for latent variables zi,j , j = 1, . . . , d, associated to data, this is the usual CRP update. As in
HDP, multiple layers can be added to the model. Figures 2 (a) and (b) resp. give the graphical DP
alternative to HDP and 2-layer HDP.

6



root

docs

z0

z3z2z1

(a) Graphical DP alter-
native to HDP

root

docs

corpora

z2,3

z0

z2z1

z1,1 z1,2 z2,1 z2,2

(b) Graphical DP alternative to 2-layer
HDP

Figure 2: Hierarchical Graphs of dependency with (a) one layer and (b) two layers of hierarchy.

If N = 0, then Gj ∼ DP (α, H) for all j and this is equivalent to setting γ →∞ in HDP. If N →∞
then Gj = G0 for all j, G0 ∼ DP (α, H). This is equivalent to setting α → ∞ in the HDP. One
interesting feature of the model is that, contrary to HDP, the marginal distribution of Gj at any layer
of the tree is DP (α, H). As a consequence, the total number of clusters scales logarithmically (as in
the usual DP) with the size of each group, whereas it scales doubly logarithmically in HDP. Contrary
to HDP, there are at most N clusters shared between different groups. Our model is in that sense
reminiscent of [9] where only a limited number of clusters can be shared. Note however that contrary
to [9] we have a simple CRP-like process. The proposed methodology can be straightforwardly
extended to the infinite HMM [12].

The main issue of the proposed model is the setting of the number N of auxiliary parameters.
Another issue is that to achieve high correlation, we need a large number of auxiliary variables.
Nonetheless, the computational time used to sample from auxiliary variables is negligible compared
to the time used for latent variables associated to data. Moreover, it can be easily parallelized. The
model proposed offers a far richer framework and ensures that at each level of the tree, the marginal
distribution of the partition is given by a DP partition model.

4.2 Time-varying matrix factorization

Let X1:n be an observed matrix of dimension n×D. We want to find a representation of this matrix
in terms of two latent matrices Z1:n of dimension n ×K and Y of dimension K ×D. Here Z1:n

is a binary matrix whereas Y is a matrix of latent features. By assuming that Y ∼ N (
0, σ2

Y IK×D

)
and

X1:n = Z1:nY + σXεn where εn ∼ N (
0, σ2

XIn×D

)
,

we obtain

p(X1:n|Z1:n) ∝

∣∣∣Z+T
1:nZ+

1:n + σ2
X/σ2

Y IK+
n

∣∣∣
−D/2

σ
(n−K+

n )D

X σK+
n D

Y

exp
{
− 1

2σ2
X

tr
(
XT

1:nΣ−1
n X1:n

)}
(17)

where Σ−1
n = I−Z+

1:n

(
Z+T

1:nZ+
1:n + σ2

X/σ2
Y IK+

n

)−1

Z+T
1:n, K+

n the number of non-zero columns of

Z1:n and Z+
1:n is the first K+

n columns of Z1:n. To avoid having to set K, [5, 14] assume that Z1:n

follows an IBP. The resulting posterior distribution p(Z1:n|X1:n) can be estimated through MCMC
[5] or SMC [14].

We consider here a different model where the object Xt is assumed to arrive at time index t and we
want a prior distribution on Z1:n ensuring that objects close in time are more likely to possess similar
features. To achieve this, we consider the simple directed graphical modelD of Fig. 3 where the site
numbering corresponds to a time index in that case and a perfect numbering of D is (1, 2, . . .). The
set of parents pa(t) is composed of the r preceding sites {{t− r}, . . . , {t− 1}}. The time-varying
IBP to sample from p(Z1:n) associated to this directed graph follows from (16) and proceeds as
follows.

At time t = 1
• Sample Knew

1 ∼Poisson(α), set z1,i = 1 for i = 1, ...,Knew
1 and set K+

1 = Knew.

At times t = 2, . . . , r
• For k = 1, . . .K+

t , sample zt,k ∼ Ber(n1:t−1,k

t ) and Knew
t ∼Poisson(α

t ).
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Figure 3: Directed graph.

At times t = r + 1, . . . , n
• For k = 1, . . .K+

t , sample zt,k ∼ Ber(nt−r:t−1,k

r+1 ) and Knew
t ∼Poisson( α

r+1 ).

Here K+
t is the total number of features appearing from time max(1, t− r) to t− 1 and nt−r:t−1,k

the restriction of n1:t−1 to the r last customers. Using (17) and the prior distribution of Z1:n which
can be sampled using the time-varying IBP described above, we can easily design an SMC method
to sample from p(Z1:n|X1:n). We do not detail it here. Note that contrary to [14], our algorithm
does not require inverting a matrix whose dimension grows linearly with the size of the data but only
a matrix of dimension r×r. In order to illustrate the model and SMC algorithm, we create 200 6×6
images using a ground truth Y consisting of 4 different 6 × 6 latent images. The 200 × 4 binary
matrix was generated from Pr(zt,k = 1) = πt,k, where πt = ( .6 .5 0 0 ) if t = 1, . . . , 30,
πt = ( .4 .8 .4 0 ) if t = 31, . . . , 50 and πt = ( 0 .3 .6 .6 ) if t = 51, . . . , 200. The
order of the model is set to r = 50. The feature occurences Z1:n and true features Y and their
estimates are represented in Figure 4. Two spurious features are detected by the model (features 2
and 5 on Fig. 3(c)) but quickly discarded (Fig. 4(d)). The algorithm is able to correctly estimate the
varying prior occurences of the features over time.

Feature1 Feature2

Feature3 Feature4

(a)
Feature
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im

e

1 2 3 4
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200

(b)

Feature1 Feature2 Feature3

Feature4 Feature5 Feature6

(c)
Feature

T
im

e

1 2 3 4 5 6

20

40

60

80

100

120

140

160

180
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(d)

Figure 4: (a) True features, (b) True features occurences, (c) MAP estimate ZMAP and (d) associated
E[Y|ZMAP ]

t=20 t=50

t=100 t=200

(a)

t=20 t=50

t=100 t=200

(b)

Figure 5: (a) E[Xt|πt,Y] and (b) E[Xt|X1:t−1] at t = 20, 50, 100, 200.

5 Related work and Discussion
The fixed-lag version of the time-varying DP of Caron et al. [1] is a special case of the proposed
model when G is given by Fig. 3. The bivariate DP of Walker and Muliere [13] is also a special
case when G has only two cliques. In this paper, we have assumed that the structure of the graph
was known beforehand and we have shown that many flexible models arise from this framework. It
would be interesting in the future to investigate the case where the graphical structure is unknown
and must be estimated from the data.
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