L earning to Hash with Binary Reconstructive
Embeddings

Brian Kulisand Trevor Darrell
UC Berkeley EECS and ICSI
Berkeley, CA
{kul'i s, trevor }@ecs. ber kel ey. edu

Abstract

Fast retrieval methods are increasingly critical for margé-scale analysis tasks,
and there have been several recent methods that attematrndigsh functions for
fast and accurate nearest neighbor searches. In this papéevelop an algorithm
for learning hash functions based on explicitly minimizthg reconstruction error
between the original distances and the Hamming distanct#seaforresponding
binary embeddings. We develop a scalable coordinate-deatgorithm for our
proposed hashing objective that is able to efficiently ldwsh functions in a va-
riety of settings. Unlike existing methods such as semdraghing and spectral
hashing, our method is easily kernelized and does not regestrictive assump-
tions about the underlying distribution of the data. We pn¢sesults over sev-
eral domains to demonstrate that our method outperfornssimyistate-of-the-art
techniques.

1 Introduction

Algorithms for fast indexing and search have become impoffar a variety of problems, particu-
larly in the domains of computer vision, text mining, and vaelbabases. In cases where the amount
of data is huge—large image repositories, video sequencsdxthers—having fast techniques for
finding nearest neighbors to a query is essential. At anadidavel, we may view hashing methods
for similarity search as mapping input data (which may bétiatily high-dimensional) to a low-
dimensional binary (Hamming) space. Unlike standard dsiwerality-reduction techniques from
machine learning, the fact that the embeddings are binamgtisal to ensure fast retrieval times—
one can perform efficient linear scans of the binary data thtfie exact nearest neighbors in the
Hamming space, or one can use data structures for findingeippate nearest neighbors in the
Hamming space which have running times that are sublinetireimumber of total objects [1, 2].
Since the Hamming distance between two objects can be ceahpig an xor operation and a bit
count, even a linear scan in the Hamming space for a nearggthoe to a query in a database of
100 million objects can currently be performed within a feeands on a typical workstation. If the
input dimensionality is very high, hashing methods leadtormnous computational savings.

In order to be successful, hashing techniques must apptefyrpreserve distances when mapping to
the Hamming space. One of the basic but most widely-emplomettiods, locality-sensitive hashing
(LSH) [1, 2], generates embeddings via random projectionisheas been used for many large-scale
search tasks. An advantage to this technique is that themnapdojections provably maintain the
input distances in the limit as the number of hash bits irs@saat the same time, it has been
observed that the number of hash bits required may be largerire cases to faithfully maintain
the distances. On the other hand, several recent techriquest notably semantic hashing [3]
and spectral hashing [4]—attempt to overcome this problerddsygning hashing techniques that
leverage machine learning to find appropriate hash funettonoptimize an underlying hashing
objective. Both methods have shown advantages over LSHrimstef the number of bits required

to find good approximate nearest neighbors. However, theskats cannot be directly applied in
kernel space and have assumptions about the underlyirodi&ins of the data. In particular, as
noted by the authors, spectral hashing assumes a unifotribdi®n over the data, a potentially
restrictive assumption in some cases.

In this paper, we introduce and analyze a simple objectivkfoning hash functions, develop an ef-
ficient coordinate-descent algorithm, and demonstratehlegroposed approach leads to improved
results as compared to existing hashing techniques. The ithed is to construct hash functions
that explicitly preserve the input distances when mappindné Hamming space. To achieve this,
we minimize a squared loss over the error between the ingtarties and the reconstructed Ham-
ming distances. By analyzing the reconstruction objectivee show how to efficiently and exactly
minimize the objective function with respect to a singleiable. If there aren training points.k
nearest neighbors per point in the training data, itk in our desired hash table, our method ends
up costingO(nb(k 4+ logn)) time per iteration to update all hash functions, and provat¥ches a
local optimum of the reconstruction objective. In experniise we compare against relevant existing
hashing techniques on a variety of important vision dats, setd show that our method is able to
compete with or outperform state-of-the-art hashing allgors on these data sets. We also apply
our method on the very large Tiny Image data set of 80 millimages [5], to qualitatively show
some example retrieval results obtained by our proposebatdet

1.1 Related Work

Methods for fast nearest neighbor retrieval are generatliigdn down into two families. One group
partitions the data space recursively, and includes dlgus such ag — d trees [6], M-trees [7],
cover trees [8], metric trees [9], and other related tealsg These methods attempt to speed up
nearest neighbor computation, but can degenerate to a kieaa in the worst case. Our focus in
this paper is on hashing-based methods, which map the datltodimensional Hamming space.
Locality-sensitive hashing [1, 2] is the most popular methend extensions have been explored for
accommodating distances suciasorms [10], learned metrics [11], and image kernels [12}0Al
rithms based on LSH typically come with guarantees that pipeaximate nearest neighbors (neigh-
bors within(1 + €) times the true nearest neighbor distance) may be found mttiat is sublinear

in the total number of database objects (but as a functiat).ofJnlike standard dimensionality-
reduction techniques, the binary embeddings allow foreemély fast similarity search operations.
Several recent methods have explored ways to improve ugomtidom projection techniques used
in LSH. These include semantic hashing [3], spectral hgslih parameter-sensitive hashing [13],
and boosting-based hashing methods [14].

2 Hashing Formulation

In the following section, we describe our proposed methtatting with the choice of parameteri-
zation for the hash functions and the objective function teimize. We then develop a coordinate-
descent algorithm used to minimize the objective functamdg discuss extensions of the proposed
approach.

21 Setup

Let our data set be represented by a set véctors, given byX = [z x5 ... x,]. We will assume
that these vectors are normalized to have énihorm—this will make it easier to maintain the
proper scale for comparing distances in the input spacestantie in the Hamming spate.et a
kernel function over the data be denoted«#s;, ;). We use a kernel function as opposed to the
standard inner product to emphasize that the algorithm eaxpressed purely in kernel form.

We would like to project each data point to a low-dimensidnahry space to take advantage of fast
nearest neighbor routines. Suppose that the desired nwhbanensions of the binary spacebis
we will compute theb-dimensional binary embedding by projecting our data usirsgt ofb hash
functionshy, ..., hy. Each hash function; is a binary-valued function, and our low-dimensional

Alternatively, we may scale the data appropriately by a constant so thatjtfeeed Euclidean distances
1 2 H
sllzi — x;||* are in[0, 1].

binary reconstruction can be representedzas=[hi(z;); ha(z;); ...; hp(zi)]. Finally, denote
d(z;,x;) = 1|z, — =;||* andd(z;, x;) = ;||&; — &;||*>. Notice thatd andd are always between
Oand 1.

2.2 Parameterization and Objective

In standard random hyperplane locality-sensitive hasferm [1]), each hash functidg, is gener-
ated independently by selecting a random veetpfrom a multivariate Gaussian with zero-mean
and identity covariance. Then the hash function is giveh,ds) = signr]x). In contrast, we
propose to generate a sequence of hash functions that azaddar on one another, in the same
spirit as in spectral hashing (though with a different paeterization). We introduce a matrix” of
sizeb x n, and we parameterize the hash functiéqs..., hy, ..., hy as follows:

hyp(x) = sign(i: Woqt(®pg, ac)) .

q=1

Note that the data points,, for each hash function need not be the same for égdthat is, each
hash function may utilize different sets of points). Similathe number of points used for each
hash function may change, though for simplicity we will getthe case whenis the same for each
function (and so we can represent all weights viaithe s matrix). Though we are not aware
of any existing methods that parameterize the hash fursiiothis way, this parameterization is
natural for several reasons. It does not explicitly assumghing about the distribution of the
data. It is expressed in kernelized form, meaning we cartyeasik over a variety of input data.
Furthermore, the form of each hash function—the sign of aalimembination of kernel function
values—is the same as several kernel-based learning algsriguch as support vector machines.

Rather than simply choosing the matiix based on random hyperplanes, we will specificatin-
struct this matrix to achieve good reconstructions. In partiguls will look at the squared error
between the original distances (usifigand the reconstructed distances (usipg/Ve minimize the
following objective with respect to the weight matfik:

Oz}, W) = Y (d=i,z)) — d(@i,2;))*.)

(1,5)EN

The set\ is a selection of pairs of points, and can be chosen basedceamptblication. Typically,
we will choose this to be a set of pairs which includes bothrtbarest neighbors as well as other
pairs from the database (see Section 3 for details). If wes#iopairs for each point, then the total
size of V" will be nk.

2.3 Coordinate-Descent Algorithm

The objectiveD given in (1) is highly non-convex iil”, making optimization the main challenge in
using the proposed objective for hashing. One of the moBtulif issues is due to the fact that the
reconstructions are binary; the objective is not contirumudifferentiable, so it is not immediately
clear how an effective algorithm would proceed. One apgrasto replace the sign function by the
sigmoid function, as is done with neural networks and légisigressiorf. Then the objective)
and gradien& O can both be computed iD(nkb) time. However, our experience with minimizing
O with such an approach using a quasi-Newton L-BFGS algortifpitally resulted in poor local
optima; we need an alternative method.

Instead of the continuous relaxation, we will consider fixail but one weightV,,,, and optimize
the original objective) with respect tdV,,,. Surprisingly, we will show below that sexact optimal
update to this weight can be achieved in ti&g: log n+nk). Such an approach will update a single
hash functiorh.,,; then, by choosing a single weight to update for each hasttifum we can update
all hash functions irO(nb(k + logn)) time. In particular, ift = Q(logn), then we can update
all hash functions on the order of the time it takes to comphuteobjective function itself, making
the updates particularly efficient. We will also show thas tinethod provably converges to a local
optimum of the objective functio®.

2The sigmoid function is defined agz) = 1/(1 + e~ %), and its derivative is’(z) = s(z)(1 — s(z)).

We sketch out the details of our coordinate-descent schetogvbWe begin with a simple lemma
characterizing how the objective function changes when paate a single hash function.

Lemmal. LetD;; = d(z;,x;) — d(x;, x;). Consider updating some hash functiog, to A,
(whered usesh,;4), and leth, and h,, be then x 1 vectors obtained by applying the old and new
hash functions to each data point, respectively. Then tiectize functior© from (1) after updating
the hash function can be expressed as

O = Z (DU + %(ho(l) - ho(.j))2 - %(hn(z) - hn(]))2> .

Proof. For notational convenience in this proof, Bt,; andD,,.,, be the matrices of reconstructed
distances using;q and h,...,, respectively, and letl,;; and H,,.,, be then x b matrices of old
and new hash bits, respectively. Also, égtbe thet-th standard basis vector aede a vector of
all ones. Note thatf,,.., = H,iq + (h, — ho)el, wheret is the index of the hash function being

updated. We can expreﬁ;,ld as

~ 1
Dyia = 3 (éoldeT + eﬁgld - 2HoldH3;d)7

wheref,;, is the vector of squared norms of the rowsH;;. Note that the corresponding vector
of squared norms of the rows éf,,.,, may be expressed ds.., = £, — ho, + h,, Since the hash
vectors are binary-valued. Therefore we may write

~ 1
Dnew - g <(£old + hn - ho)eT + e(eold + hn - ho)T

—2(Hoq + (hn - hO)ez)(Hold + (hn - hO)e?)T

~ 1
= Doa—7 ((hoeT +ehg —2hohg) — (hne” +ehy — zhnh§>>,

where we have used the fact thdt,;,e; = h,. We can then write the objective usirfgneu, to
obtain

O = 5 (Dt §0li) +)~ Hrolihol) = Bali) +)~ 20V ()
(i,5)eEN
= 1 . A\2 1 i) — £\ 2 2
- 5 (s + 5 00li) = Rol)? = § i)~ 1)?)
sinceh, (i) = h,(i) andh,,(i)> = h,,(i). This completes the proof. O

The lemma above demonstrates that, when updating a hadiofuribe new objective function can
be computed irO(nk) time, assuming that we have computed and stored the valuBg; oiNext
we show that we can compute an optimal weight update in € + nlogn).

Consider choosing some hash functign and choose one weight indgxi.e. fix all entries of
W exceptWW,,, which corresponds to the one weight updated during thiatiten of coordinate-
descent. Modifying the value ¥, results in updating, to a new hashing functioh,,.,,. Now,

for every pointz, there is hashing thresholda new value of¥,,,, which we will call ¥, such
that

Z Wpgk(Zpg,) = 0.
qg=1

4

Observe that, it; = 37, Wyer(zp4,), then the threshold, is given by
_C=
K(Tpq,)

We first compute the thresholds for alldata points: once we have the valuescgffor all x,
computingt,, for all points requires)(n) time. Since we are updating a singlé,, per iteration,
we can update the values @f in O(n) time after updating?,,, so the total time to compute all
thresholds, is O(n).

Next, we sort the thresholds in increasing order, which @sfanset of + 1 intervals (interval 0 is
the interval of values smaller than the first threshold,rirakl is the interval of points between the
first and the second threshold, and so on). Observe thatnjofixed interval, the new computed
hash functiom,,.,, does not change over the entire interval. Furthermore rebdkat as we cross
from one threshold to the next, a single bit of the correspandash vector flips. As a result, we
need only compute the objective function at each ofsthe 1 intervals, and choose the interval
that minimizes the objective function. We choose a valdg, within that interval (which will be
optimal) and update the hash function using this new chdiegeaht. The following result shows
that we can choose the appropriate interval in tifhek). When we add the cost of sorting the
thresholds, the total cost of an update to a single wéightis O(nk + nlogn).

Lemma 2. Consider updating a single hash function. Suppose we hagquesce of hash vectors
Ry, ..., by, suchthath;, andh,, differ by a single bit fol < j < n. Then the objective functions
for all n + 1 hash functions can be computediink) time.

te = Wpq —

Proof. The objective function may be computed @{nk) time for the hash functior,, corre-
sponding to the smallest interval. Consider the case whelggom h, = h;, , to h,, = hy, for
somel < j < n. Let the index of the bit that changes/n, bea. The only terms of the sum in
the objective that change are ones of the fguyy) € M and(i,a) € N. Let f, = 1if h,(a) =

0, h,(a) = 1,andf, = —1 otherwise. Then we can simplifyr,, (i) — h,,(7))% — (ho(i) — ho(5))?

to f,(1 — 2h,(j)) whena = i and tof,(1 — 2h,,(i)) whena = j (the expression is zero when
1 = 7 and will not contribute to the objective). Therefore theevaint terms in the objective function
as given in Lemma 1 may be written as:

S (b drnmon) + X (u o -amm)

(a,5)eEN (i,a)eN

As there arék nearest neighbors, the first sum will havelements and can be computediik)
time. The second summation may have more or lesskltterms, but across all data points there will
be k terms on average. Furthermore, we must update we progress through the hash functions,
which can also be straightforwardly done(xik) time on average. Completing this process over all
n + 1 hash functions results in a total 6fnk) time. O

Putting everything together, we have shown the followirgute

Theorem 3. Fix all but one entryiV,,, of the hashing weight matri¥”. An optimal update téV,,
to minimize(1) may be computed i@ (nk + nlogn) time.

Our overall strategy successively cycles through each festtion one by one, randomly selects a
weight to update for each hash function, and computes thmajtpdates for those weights. It then
repeats this process until reaching local convergence f@dnteration to update all hash functions

requires timeO(nb(k + logn)). Note that local convergence is guaranteed in a finite nuraber

updates since each update will never increase the objdatietion value, and only a finite number

of possible hash configurations are possible.

2.4 Extensions

The method described in the previous section may be enhdnceatious ways. For instance,
the algorithm we developed is completely unsupervised. €ngd easily extend the method to
a supervised one, which would be useful for example in laa@ek-NN classification tasks. In
this scenario, one would additionally receive a set of simaind dissimilar pairs of points based on

class labels or other background knowledge. For all sinpiéars, one could set the target original
distance to be zero, and for all dissimilar pairs, one coatdlse target original distance to be large
(say, 1).

One may also consider loss functions other than the quadoas considered in this paper. Another
option would be to use af -type loss, which would not penalize outliers as severetidifionally,
one may want to introduce regularization, especially fa supervised case. For example, the
addition of an¢; regularization over the entries 8f could lead to sparse hash functions, and may
be worth additional study.

3 Experiments

We now present results comparing our proposed approach telgwvant existing methods—Ilocality
sensitive hashing, semantic hashing (RBM), and spectsdling. We also compared against the
Boosting SSC algorithm [14] but were unable to find paranseieyield competitive performance,
and so we do not present those results here. We implementdxnauy reconstructive embedding
method (BRE) and LSH, and used the same code for spectrahigaesid RBM that was employed
in [4]. We further present some qualitative results overTh® Image data set to show example
retrieval results obtained by our method.

3.1 Data Setsand Methodology

We applied the hashing algorithms to a number of importaigelscale data sets from the com-
puter vision community. Our vision data sets include: thetBHourism data [15], a collection
of approximately 300,000 image patches, processed uskg I form 128-dimensional vectors;
the Caltech-101 [16], a standard benchmark for object ngitiog in the vision community; and
LabelMe and Peekaboom [17], two image data set on top of wiichal Gist descriptors have
been extracted. We also applied our method to MNIST, thalsrarhandwritten digits data set, and
Nursery, one of the larger UCI data sets.

We mean-centered the data and normalized the feature seécatioave unit norm. Following the sug-
gestion in [4], we apply PCA (or kernel PCA in the case of kéizeel data) to the input data before
applying spectral hashing or BRE—the results of the RBM netttnod LSH were better without
applying PCA, so PCA is not applied for these algorithms. d&bdata sets, we trained the methods
using 1000 randomly selected data points. For training tR& Bhethod, we select nearest neigh-
bors using the top 5th percentile of the training distancekset the target distances to 0; we found
that this ensures that the nearest neighbors in the embegded will have Hamming distance very
close to 0. We also choose farthest neighbors using the @8temptile of the training distances and
maintained their original distances as target distancasird both near and far neighbors improves
performance for BRE, as it prevents a trivial solution whaltehe database objects are given the
same hash key. The spectral hashing and RBM parameterstas ise[4, 17]. After construct-
ing the hash functions for each method, we randomly gen@@Q@@ hashing queries (except for
Caltech-101, which has fewer than 4000 data points; in thé® ave choose the remainder of the
data as queries).

We follow the evaluation scheme developed in [4]. We colteaining/test pairs such that the un-
normalized Hamming distance using the constructed hasttifuns is less than or equal to three.
We then compute the percentage of these pairs that are heaigisbors in the original data space,
which are defined as pairs of points from the training set wiiistances are in the top 5th percentile.
This percentage is plotted as the number of bits increasase @e number of bits is sufficiently
high (e.g. 50), one would expect that distances with a Hargmistance less than or equal to three
would correspond to nearest neighbors in the original daitaeelding.

3.2 Quantitative Results

In Figure 1, we plot hashing retrieval results over each efdhta sets. We can see that the BRE
method performs comparably to or outperforms the other atistlon all data sets. Observe that
both RBM and spectral hashing underperform all other metlwodat least one data set. On some

Photo Tourism Caltech-101 LabelMe

.......

o
©

o

o
=)
o
=

==BRE
=«sSpectral hashing
**RBM

=BRE
=+*Spectral hashing

ighbors with Hamm, distance <=

o
~

=+sSpectral hashing 20.6]
+RBM 3

Prop. of good neighbors with Hamm. distance <=
o
I

0.4 Lo 0.2 **RBM

H LSH H -v}.: LSH ‘ LSH

£l £0.4

90 20 30 50 10 20 30 50 (iO 20 30 40 50
Number of bits Number of bits Number of bits
Peekaboom MNIST Nursery

71 = ? o ———td ¢ T — et

s | P e g |
0.8] fos S o g08 S [=BRE

£

=*:Spectral hashing|
**RBM
LSH

o
&

==BRE
=+*Spectral hashing
4 *RBM
’a‘ LSH

o

=+*Spectral hashing ?;
*RBM B
LSH H

I
R

o,

rop. of good neighbors with Hamm. distance <=

Prop.
e}

Prop. of good neighbors with Hamm.
o

)
o
N
o

&
20 50 (iO 20 50 50

30 40 30 40 30 40
Number of bits Number of bits Number of bits

Figure 1: Results over Photo Tourism, Caltech-101, LabelReekaboom, MNIST, and Nursery.
The plots show how well the nearest neighbors in the Hammirages (pairs of data points with

unnormalized Hamming distance less than or equal to 3) spored to the nearest neighbors (top
5th percentile of distances) in the original dataset. Qljavar method outperforms, or performs
comparably to, existing methods. See text for further tetai

data sets, RBM appears to require significantly more thar® 1@0ning images to achieve good
performance, and in these cases the training time is sula@bahigher than the other methods.

One surprising outcome of these results is that LSH perfamelsin comparison to the other ex-
isting methods (and outperforms some of them for some daésq-sthis stands in contrast to the
results of [4], where LSH showed significantly poorer parfance (we also evaluated our LSH
implementation using the same training/test split as inadd found similar results). The better
performance in our tests may be due to our implementationSi;Lwe use Charikar's random
projection method [1] to construct hash tables.

In terms of training time, the BRE method typically convesge 50-100 iterations of updating
all hash functions, and takes 1-5 minutes to train per ddatarseur machines (depending on the
number of bits requested). Relatively speaking, the timyeired for training is typically faster than
RBM but slower than spectral hashing and LSH. Search timgeibinary space are uniform across
each of the methods and our timing results are similar toethegorted previously (see, e.g. [17]).

3.3 Qualitative Results

Finally, we present qualitative results on the large Tinpdya data set [5] to demonstrate our method
applied to a very large database. This data set containsl80mimages, and is one of the largest
readily available data sets for content-based image vatriEach image is stored 88 x 32 pixels,
and we employ the global Gist descriptors that have beeaertl for each image.

We ran our reconstructive hashing algorithm on the Gist ij@scs for the Tiny Image data set
using 50 bits, with 1000 training images used to construehiish functions as before. We selected
a random set of queries from the database and compared tlits r@fsa linear scan over the Gist
features with the hashing results over the Gist features.ightaining hashing results, we collected
the nearest neighbors in the Hamming space to the queryoftiet1 % of the Hamming distances),
and then sorted these by their distance in the original @ates. Some example results are displayed
in Figure 2; we see that, with 50 bits, we can obtain very gasdits that are qualitatively similar
to the results of the linear scan.

S
Y
Y

Figure 2: Qualitative results over the 80 million imageshe Tiny Image database [5]. For each
group of images, the top left image is the query, the top romwesponds to a linear scan, and the
second row corresponds to the hashing retrieval resultg) & hash bits. The hashing results are
similar to the linear scan results but are significantlydagt obtain.

4 Conclusion and Future Work

In this paper, we presented a method for learning hash fumgitdeveloped an efficient coordinate-
descent algorithm for finding a local optimum, and demomstiamproved performance on several
benchmark vision data sets as compared to existing statesedrt hashing algorithms. One avenue
for future work is to explore alternate methods of optimi@atour approach, while simple and fast,
may fall into poor local optima in some cases. Second, we avbig to explore the use of our
algorithm in the supervised setting for large-sdalN tasks.

Acknowledgments

This work was supported in part by DARPA, Google, and NSFigra8-0905647 and 11S-0819984.
We thank Rob Fergus for the spectral hashing and RBM codeGaad Shakhnarovich for the
Boosting SSC code.

References

[1] M. Charikar. Similarity Estimation Techniques from Rounding AlgorithrissSTOG 2002.

[2] P.Indyk and R. Motwani. Approximate Nearest Neighbors: Talsa®Removing the Curse of Dimension-
ality. In STOC 1998.

[3] R.R. Salakhutdinov and G. E. Hinton. Learning a Nonlinear EmbegynPreserving Class Neighbour-
hood Structure. IAISTATS2007.

[4] Y. Weiss, A. Torralba, and R. Fergus. Spectral Hashing\NIRS 2008.

[5] A.Torralba, R. Fergus, and W. T. Freeman. 80 Million Tiny Imagk&arge Dataset for Non-parametric
Object and Scene RecognitionPAMI, 30(11):1958-1970, 2008.

[6] J. Freidman, J. Bentley, and A. Finkel. An Algorithm for Finding Bekttches in Logarithmic Expected

(7]

Time. ACM Transactions on Mathematical SoftwaB¢3):209-226, September 1977.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Accesshidd for Similarity Search in Metric
Spaces. IVLDB, 1997.

[8] A.Beygelzimer, S. Kakade, and J. Langford. Cover TreedNarest Neighbor. [KCML, 2006.
[9] J. Uhimann. Satisfying General Proximity / Similarity Queries with Metnieds.Information Processing

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

Letters 40:175-179, 1991.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-Setige Hashing Scheme Based on p-Stable
Distributions. InNSOCG 2004.

P. Jain, B. Kulis, and K. Grauman. Fast Image Search foriezhMetrics. ICVPR 2008.

K. Grauman and T. Darrell. Pyramid Match Hashing: Sub-Linearelindexing Over Partial Correspon-
dences. ICVPR 2007.

G. Shakhnarovich, P. Viola, and T. Darrell. Fast Pose Estimatitin Rarameter-Sensitive Hashing. In
ICCV, 2003.

G. ShakhnarovichLearning Task-specific Similarity?hD thesis, MIT, 2006.

N. Snavely, S. Seitz, and R. Szeliski. Photo Tourism: Exploring@@ollections in 3D. Il'SIGGRAPH
Conference Proceedinggages 835-846, New York, NY, USA, 2006. ACM Press.

L. Fei-Fei, R. Fergus, and P. Perona. Learning GenerativeaV/idodels from Few Training Examples:
an Incremental Bayesian Approach Tested on 101 Object Categbriéd&rkshop on Generative Model
Based VisionWashington, D.C., June 2004.

A. Torralba, R. Fergus, and Y. Weiss. Small Codes and Laagaliases for Recognition. GVPR 2008.

