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Abstract

We proposeDirichlet-Bernoulli Alignment(DBA), a generative model for cor-
pora in which each pattern (e.g., a document) contains a set of instances (e.g.,
paragraphs in the document) and belongs to multiple classes. By casting prede-
fined classes as latent Dirichlet variables (i.e., instance level labels), and modeling
the multi-label of each pattern as Bernoulli variables conditioned on the weighted
empirical average of topic assignments, DBA automatically aligns the latent top-
ics discovered from data to human-defined classes. DBA is useful for both pattern
classification and instance disambiguation, which are tested on text classification
and named entity disambiguation in web search queries respectively.

1 Introduction

We consider multi-class, multi-label and multi-instance classification (M3C), a task of learning de-
cision rules from corpora in which each pattern consists of multiple instances1 and is associated
with multiple classes. M3C finds its application in many fields: For example, in web page classifi-
cation, a web page (pattern) typically comprises of different entities (instances) (e.g., texts, pictures
and videos) and is usually associated with several different topics (e.g., finance, sports and poli-
tics). In such tasks, a pattern usually consists of a set of instances, and the possible instances may
be too diverse in nature (e.g., of different structures or types, described by different features) to be
represented in a universal space. What makes the problem more complicated and challenging is
that the pattern is usually ambiguous, i.e., it can belong to several different classes simultaneously.
Traditional classification algorithms are typically incapable of handling such complications.

Even for corpora consisting of relatively homogenous data, treating the tasks as M3C might still
be advantageous since it enables us to explore the inner structures and the ambiguity of the data
simultaneously. For example, in text classification, a document usually comprises several separate
semantic parts (e.g., paragraphs), and several different topics are evolving along these parts. Since
the class-labels are often only locally tied to the document (e.g., paragraphs are often far more topic-
focused than the whole document), base the classification on the whole document would incur too
much noise and in turn harm the performance. In addition, treating the task as M3C also offers a
natural way to track the topic evolution along paragraphs, a task that is otherwise difficult to handle.

M3C also arises naturally when the acquisition of labeled data is expensive. For example, in scene
classification, a picture usually contains several objects (e.g., cat, desk, man) belonging to several
different classes (e.g., animal, furniture, human). Ideal annotation requires a skilled expert to specify
both the exact location and class label of each object in the image, which, though not completely
impossible, involves too much human efforts especially for large image repositories. The annotation
burden would be greatly relieved if each image is labeled as a whole (e.g., a caption indicating what
is in the image), which, however, requires the learning system to be capable to handle M3C tasks.

1A “pattern” or “example” is a typical sample in a data collection and an“instance” is a part of a “pattern”.
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Recently, the Latent Dirichlet Allocation (LDA, [4]) model has been established for automatic ex-
traction of topical structures from large repository of documents. LDA is a highly-modularized
probabilistic model with various variations and extensions (e.g., [2, 3]). By modeling a document
as a mixture over topics, LDA allows each document to be associated with multiple topics with
different proportions, and thus provides a promising way to capture the heterogeneity/ambiguity in
the data. However, the topics discovered by LDA are implicit (i.e., each topic is expressed as a dis-
tribution over words, comprehensible interpretation of which requires human expertise), and cannot
be easily aligned to the topics of human interests. In addition, the standard LDA does not model the
multi-instance structure of a pattern. Hence, LDA and its like cannot be directly applied to M3C.

In this paper, by taking advantage of the LDA building blocks, we present a new probabilistic gener-
ative model for multi-class, multi-label and multi-instance corpora, referred to asDirichlet-Bernoulli
Alignment(DBA). DBA assumes a tree-structure about the data, i.e., each multi-labeled pattern is a
bag of single-labeled instances. In DBA, each pattern is modeled as a mixture over the set of pre-
defined classes, an instance is then generated independently conditioned on a sampled class-label,
and the label of a pattern is generated from a Bernoulli distribution conditioned on all the sampled
labels used for generating its instances. DBA is essentially a topic model similar to LDA except that
(1) an instance rather than a single feature is generated conditioned on each sampled topic; and (2)
instead of using implicit topics for dimensionality reduction as in LDA, DBA casts each class as an
explicit topic to gain discriminative power from the data. Through likelihood maximization, DBA
automatically aligns the topics discovered from the data to the predefined classes of our interests.
DBA can be naturally tailored to M3C tasks for both pattern classification and instance disambigua-
tion. In this paper, we apply the DBA model to text classification tasks and an interesting real-world
problem, i.e., named entity disambiguation for web search queries. The experiments confirm the
usefulness of the proposed DBA model.

The rest parts of this paper is organized as follows. Section 2 briefly reviews some related topics
and Section 3 presents the formal description of the corpora used in M3C and the basic assumptions
of our model. Section 4 introduces the detailed DBA model. In Section 5, we establish algorithms
for inference and parameter estimation for DBA. And in Section 6, we apply the DBA model to text
classification and query disambiguation tasks. Finally, Section 7 presents concluding remarks.

2 Related Works

Traditional classification largely focuses on a single-label single-instance framework (i.e.,i.i.d pat-
terns, associated with exclusive/disjoint classes). However, the real-world is more like a web of
(sub-)patterns connected with a web of classes that they belong to. Clearly, M3C reflects more of
the reality. Recently, two partial solutions, i.e., multi-instance classification (MIC) [7, 11, 1] and
multi-label classification (MLC) [10, 8, 5] were investigated. MIC assumes that each pattern con-
sists of multiple instances but belongs to a single class, whereas MLC studies single-instance pattern
associated with multiple classes. Although both MLC and MIC have drawn increasing attentions in
the literature, neither of them can handle the cases where multi-instance and multi-label are simulta-
neously present. Perhaps the first work investigating M3C is [13], in which the authors proposed an
indirect solution, i.e., to convert an M3C task into several MIC or MLC sub-tasks each of which is
then divided into single-label and single-instance classification problems and solved by discrimina-
tive algorithms such as AdaBoost or SVM. A practical challenge of this approach is its complexity,
i.e, the number of sub-tasks can be huge, making the training data extremely sparse for each sub-
classifier and the computation cost unacceptably high in both training and testing. Recently, Cour et
al proposed a discriminative framework [6] based on convex surrogate loss minimization for clas-
sifying ambiguously labeled images; and Xu et al established a hybrid generative/discriminative
approach (i.e., a heuristically regularized LDA classifier) [12] to mining named entity from web
search click-through data. In this paper, we present agenerativeapproach for M3C.

Our proposed DBA model can be viewed as a supervised version of topic models. A widely used
topic model for categorical data is the LDA model [4]. By modeling a pattern as a random mixture
over latent topics and a topic as a Multinomial distribution over features in a dictionary, LDA is
effective in discovering implicit topics from a corpus. The supervised LDA (sLDA) model [2], by
linking the empirical topics to the label of each pattern, is able to learn classifiers using Generalized
Linear Models. However, both LDA and sLDA are in essence dimensionality reduction techniques,
and cannot be employed directly for the M3C tasks.
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Figure 1: (a): Tree structure of a multi-class multi-label multi-instance corpus. (b):A graphic repre-
sentation of the DBA model with multinomial bag-of-feature instance model.

3 Problem Formalization

Intuitively, we can think of a pattern as a document, an instance as a paragraph, and a feature as a
word. In M3C, we are interested in inferring class labels for both the document and its paragraphs.

Formally, letX ⊂ R
D denote the instance space (e.g., a vector space),Y = {1, 2, . . . , C} (C > 2)

the set of class labels, andF = {f1, f2, . . . , fD} the dictionary of features. A multi-class, multi-
label multi-instance corpusD consists of a set of input patterns{Xn}n=1,2,...,N along with the
corresponding labels{Yn}n=1,2,...,N , where each patternXn = {xmn}m=1,2,...,Mn

contains a set
of instancesxmn ∈ X , andYn ⊂ Y consists of a set of class labels. The goal of M3C is to find a
decision ruleY = ϕ(X) : 2X → 2Y , where2A denotes the power set of a setA. For simplicity, we
make the following assumptions.

Assumption 1[Exchangeability]: A corpus is a bag of patterns, and each pattern is a bag of instances.

Assumption 2[Distinguishablity]: Each pattern can belong to several classes, but each instance
belongs to a single class.

These assumptions are equivalent to assuming a tree structure for the corpus (Figure 1(a)).

4 Dirichlet-Bernoulli Alignment

In this section, we present Dirichlet-Bernoulli Alignment (DBA), a probabilistic generative model
for the multi-class, multi-label and multi-instance corpus described in Section 3. In DBA, each
patternX in a corpusD is assumed to be generated by the following process:

1. Sampleθ∼Dir(a).

2. For each of theM instances inX :

⊲ Choose a classz ∼Mult(θ);
⊲ Generate an instancex ∼ p(x|z, B);

3. Generate the labely∼ p(y|z1:M ,λ).

We assume the total number of predefined classes,C, is known and fixed. In DBA,a =
[a1, . . . , aC ]⊤ with ac > 0, c = 1, . . . , C, is aC-vector prior parameter for a Dirichlet distribu-
tion Dir(a), which is defined in the (C-1)-simplex:θc > 0,

∑C

c=1 θc = 1. z is a class indicator, i.e.,
a binaryC-vector with the 1-of-C code: zc = 1 if the c-th class is chosen, and∀i 6= c, zi = 0.
y = [y1, . . . , yC ]⊤ is also a binaryC-vector withyc = 1 if the patternX belongs to thec-th class
andyc = 0 otherwise.

In this paper, we assume the label of a pattern is generated by a cost-sensitive voting process accord-
ing to the labels of the instances in it, which is intuitively reasonable. As a result,yc (c = 1, . . . , C) is
generated from a Bernoulli distribution, i.e.,p(yc|πc) = (πc)

yc(1−πc)
(1−yc), whereπ is a probabil-

ity vector based on a weighted empirical average of the Dirichlet realizationλ⊤z̄, z̄ = [z̄1, . . . , z̄C ]⊤

is the average ofz1, . . . , zM : z̄c = 1
M

∑M
m=1 zmc. For example,π can be a Dirichlet distribution

π∼Dir(λ1z̄1, . . . , λC z̄C). In this paper, we use a logistic model:

p(yc = 1|z̄, λ) =
exp(λcz̄c)

1 + exp(λcz̄c)
. (1)
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In practice, the set of possible instances can be quite diverse, such as pictures, texts, music and
videos on a web page. Without loss of generality, we follow the convention of topic models to
assume that each instancex is a bag of discrete features{f1, f2, . . . , fL} and use a multinomial
distribution2:

p(x|z, B) = p({f1, . . . , fL}|z, B) ∝ bx1

c1 bx2

c2 . . . bxD

cD |zc=1,

whereL is the total number of feature occurrences inx (e.g., the length of a paragraph),B =
[b1, . . . , bD] is a C × D-matrix with the (c, d)-th entrybcd = p(fd = 1|zc = 1) andxd is the
frequency offd in x. The joint probability is then given by:

p(X, y, Z, θ|a, B,λ) = p(θ|a)

M
∏

m=1

(

p(zm|θ)

L
∏

l=1

p(fml|B, zm)

)

p(y|z̄, λ). (2)

The graphical model for DBA is depicted in Figure 1(b). We can see that DBA has a diagram very
similar to that of sLDA (Figure 1 in [2]). The key differences are: (1) Instead of using implicit
topics for dimensionality reduction as in sLDA, DBA casts the predefined classes as explicit topics
to discover the discriminative properties from the data; (2) A bag-of-feature instance rather than a
single feature is generated conditioned on each sampled topic (class); (3) DBA models a multi-class,
multi-label multi-instance corpus and can be applied directly to M3C, i.e., the classification of each
pattern as well as the instances within it.

5 Parameter Estimation and Inference

Both parameter estimation and inferential tasks in DBA involve intractable computation of marginal
probabilities. We use variational methods to approximate those distributions.

5.1 Variational Approximations

We use the following fully-factorized variational distribution to approximate the posterior distribu-
tion of the latent variables:

q(Z, θ|γ, Φ) = q(θ|γ)

M
∏

m=1

q(zm|φm) =
Γ(
∑C

c=1 γc)
∏C

c=1 Γ(γc)

C
∏

c=1

(

θγc−1
c

M
∏

m=1

φzmc

mc

)

, (3)

whereγ andΦ=[φ1,. . . ,φM ] are variational parameters for a patternX . We have:

log P (X, y|a, B,λ) = log

∫

θ

∑

Z

p(X, y, Z, θ|a, B,λ)dθ

=L(γ, Φ) + KL(q(Z, θ|γ, Φ)||p(Z, θ|a, B,λ)) ≈ max
γ ,Φ

L(γ, Φ),
(4)

whereKL(q(x)||p(x)) =
∫

x
q(x) log q(x)

p(x)dx is the Kullback-Leibler (KL) divergence between two
distributionsp andq, andL(·) is the variational lower bound for the log-likelihood:

L(γ, Φ) = log

∫

θ

∑

Z

q(Z, θ|γ, Φ) log
p(X, y, Z, θ|a, B,λ)

q(Z, θ|γ, Φ)
dθ = Eq[log p(θ|a)]

+
M
∑

m=1

Eq[log p(zm|θ)] +
M
∑

m=1

Eq[log p(xm|B, zm)] + Eq[log p(y|z̄, λ)] + Hq.

(5)

2This is only a simple special case instance model for DBA. It is quite straightforward to substitute other
instance models such as Gaussian, Poisson and other more complicated models like Gaussian mixtures.
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The first two terms and the fifth term (the entropy of the variational distribution) in the right-hand
side of Eq.(5) are identical to the corresponding terms in sLDA [2]. The third term, i.e., the varia-
tional expectation of the log likelihood for instance observations is:

M
∑

m=1

Eq[log p(xm|B, zm)] =

M
∑

m=1

C
∑

c=1

D
∑

d=1

φmcxmd log bcd. (6)

The forth term in the righthand side of Eq.(5) corresponds to the expected log likelihood of observing
the labels given the topic assignments:

Eq[log p(y|z̄, λ)] =
1

M

M
∑

m=1

C
∑

c=1

(yc −
1

2
)λcφmc −

C
∑

c=1

Eq[log(exp
λcz̄c

2
+ exp

−λcz̄c

2
)]. (7)

We bound the second term above by using the lower bound for logistic function [9]:

− log(exp
λcz̄c

2
+ exp

−λcz̄c

2
) > − log(1 + exp(−ξc)) −

ξc

2
+ ςc(λ

2
c z̄

2
c − ξ2

c )

≈ − log(1 + exp(−ξc)) −
ξc

2
+ 2ςc(λcz̄cξc − ξ2

c ),

(8)

whereξ=[ξ1, . . . , ξC ]⊤ are variational parameters,ςc = 1
4ξc

tanh( ξc

2 ), and the second order residue
term is omitted since the lower bound is exact whenξc = −λcz̄c.

Obtaining an approximate posterior distribution for the latent variables is then reduced to optimizing
the objectivemaxL(q) or min KL(q||p) with respect to the variational parameters. By using La-
grange multipliers, we can easily derive the optimal condition which can be achieved by iteratively
updating the variational parameters according to the following formulas:

φmc ∝
D
∏

d=1

(bcd)
xmd exp

(

Ψ(γc) +
λc

2M
[2yc − 1 + tanh(

ξc

2
)]

)

,

γc = ac +
M
∑

m=1

φmc, ξc = −λc

1

M

M
∑

m=1

φmc,

(9)

whereΨ(·) is the digamma function. Note that instead of only one feature contributing toφmc as in
LDA, all the features appearing in an instance are now responsible for contributing. This property
tends to make DBA more robust to data sparsity. Also, DBA makes use of the supervision infor-
mation with a term

∑C
c=1 λcz̄c(2yc − 1) in the variational likelihood boundL. As L is optimized,

this term is equivalent to maximizing the likelihood of sampling the classes to which the pattern be-
longs:{maxλc

∑M
m=1 zmc, if yc = 1} and simultaneously minimizing the likelihood of sampling

the classes to which the pattern does not belong:{minλc

∑M

m=1 zmc, if yc = 0}. Hereλc (-λc)
acts like a utility (cost) of assigningX to thec-th class. As a result, it tends to align the Dirichlet
topics discovered from the data to the class labels (Bernoulli observations)y. This is why we coin
the nameDirichlet-Bernoulli Alignment .

5.2 Parameter Estimation

The maximum likelihood parameter estimation of DBA relies on the variational approximation pro-
cedure. Given a corpusD = {(Xn, yn)}n=1,...,N , the MLE can be formulated as:

a∗, B∗, λ∗ = argmax log P (D|a, B,λ) = arg max
a,B,λ

N
∑

n=1

max
γ

n
,Φn

L(γn, Φn|a, B,λ). (10)
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Table 1: Characteristic of the data sets.
Data Set #Train #Test D C |Y |avg #(|Y | > 1) Mavg Mmin Mmax

Text 1200 679 500 10 1.4 721 (38.4%) 8.2 1 36
Query 300 100 2000 101 1.4 99 (24.8%) 65 3 731

acq corn crude earn grain interest money ship trade wheat overall
70

80

90

100

 

 
DBA MNB MIMLSVM MIMLBoost

Figure 2: Accuracies(%) of DBA, MNB, MIMLSVM, and MIMLBoost for text classification.

The two-layer optimization in Eq.(10) involves two groups of parameters corresponding to the DBA
model and its variational approximation, respectively. Optimizing alternatively between these two
groups leads to a Variational Expectation Maximization (VEM) algorithm similar to the one used in
LDA, where the E-step corresponds to the variational approximation for each pattern in the corpus.
And the M-step in turn maximizes the objective in Eq.(6) w.r.t. the model parameters. These two
steps are repeated alternatively until convergence.

5.3 Inference

DBA involves three types of inferential tasks. The first task is to infer the latent variables for a
given pattern, which is straightforward after the variational approximation. The second task, pat-
tern classification, addresses prediction of labels for a new patternX : p(yc = 1|X ; a, B,λ) ≈

exp(λcφ̄c)/(1 + exp(λcφ̄c)), whereφ̄c = 1
M

∑M

m=1 φmc and the termλc

2M
[2yc − 1 + tanh( ξc

2 )]
is removed when updatingφ in Eq.(9). The third task, instance disambiguation, finds labels
for each instances within a pattern:p(zm|X, y) =

∫

θ p(zm, θ|X, y)dθ ≈ q(zm|φm), that is,
p(zmc = 1|X, y) = φmc.

6 Experiments

In this section, we conduct extensive experiments to test the DBA model as it is applied to pattern
classification and instance disambiguation respectively. We first apply DBA to text classification and
compare its performance with state-of-the-art M3C algorithms. Then the instance disambiguation
performance of DBA is tested on a novel real-world task, i.e., named entity disambiguation for web
search queries. Table 1 shows the information of the data sets used in our experiments.

6.1 Text Classification

This experiment is conducted on theModApte split of theReuters-21578 text collection, which
contains 10788 documents belonging to the most popular 10 classes. We use the top 500 words with
the highest document frequency as features, and represent each document as a pattern with each of
its paragraphs being an instance in order to exploit the semantic structure of documents explicitly.
After eliminating the documents that have empty label set or less than 20 features, we obtain a subset
of 1879 documents, among which 721 documents (about 38.4%) have multiple labels. The average
number of labels per document is 1.4±0.6 and the average number of instances (paragraphs) per
pattern (document) is 8.2±4.8. The data set is further randomly partitioned into a subset of 1200
documents for training and the rest for testing.

For comparison, we also test two state-of-the-art M3C algorithms, theMIMLSVMandMIMLBoost
[13], and use the Multinomial Naı̈ve Bayes (MNB) classifier trained on the vector space model of the
whole documents as the baseline. For a fair comparison, linear kernel is used in both MIMLSVM
and MIMLBoost and all the hyper-parameters are tuned by 5-fold cross validation prior to training.
We use the Hamming-Accuracy [13] to evaluate the results, for DBA and MNB, the label is esti-
mated by:y = δ(p(y = 1|X) > t), where the cut-off probability threshold is also selected based
on 5-fold cross validation. Each experiment is repeated for 5 random runs and the average results
are reported by a bar chart as depicted in Figure 2. We can see that: (1) for most classes, the three
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Table 2:Accuracy@N (N = 1, 2, 3) and micro-averaged and macro-averaged F-measures of DBA, MNB and
SVM based disambiguation methods.

Method A@1 Gain A@2 Gain A@3 Gain Fmicro Gain Fmacro Gain
MNB-TF 0.4154 30.4% 0.4913 25.7% 0.5168 25.4% 0.4154 30.4% 0.3144 47.0%
MNB-TF-IDF 0.4177 29.6% 0.4918 25.6% 0.5176 25.2% 0.4177 29.6% 0.2988 54.7%
SVM-TF 0.4927 9.9% NA NA 0.4927 9.9% 0.3720 24.2%
SVM-TF-IDF 0.4912 10.2% NA NA 0.4912 10.2% 0.3670 25.0%
DBA 0.5415 - 0.6175 - 0.6482 - 0.5415 - 0.4622
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Figure 3:Precision and Recall scores for each of 101 classes by using DBA, MNB and SVM based methods.

M3C algorithms outperform the MNB baseline; (2) the performance of DBA is at least comparable
with MIMLBoost and MIMLSVM. For most classes andoverall, DBA performs the best, whereas
for some classes, MIMLBoost and MIMLSVM perform even slightly worse than MNB. A possi-
ble reason might be: if the documents are very short, splitting them might introduce severe data
sparseness and in turn harms the performance. We also observe that DBA is much more efficient
than MIMLBoost and MIMLSVM. For training, DBA takes 42 mins on average, in contrast to 557
minutes (MIMLSVM) and 806 minutes (MIMLBoost).

6.2 Named Entity Disambiguation

Query ambiguity is a fundamental obstacle for search engine to capture users’ search intentions. In
this section, we employ DBA to disambiguate the named entities in web search queries. This is a
very challenging problem because queries are usually very short (2 to 3 words on average), noisy
(e.g., misspellings, abbreviations, less grammatical structure) and topic-distracted. A single named-
entity queryQ can be viewed as a combination of a single named entitye and a set of context words
w (the remaining text inQ). By differentiating the possible meanings of the named entity in a query
and identifying the most possible one, entity disambiguation can help search engines to capture the
precise information need of the user and in turn improve search by responding with the truly most
relevant documents. For example, when a user inputs “When are the casting calls for Harry Potter
in USA?”, the system should be able to identify that the ambiguous named entity “Harry Potter”
(i.e., it can be amovie, abookor agame) really refers to amoviein this specific query.

We treat the ambiguity ofe as a hidden classz over e and make use of the query log as a data
source for mining the relationship amonge, w andz. In particular, the query log can be viewed
as a multi-class, multi-label and multi-instance corpus{(Xn, Yn)}n=1,2,...,N , in which each pat-
ternX corresponds to a named-entitye and is characterized by a set of instances{xm}m=1,2,...,M

corresponding to all the contexts{wm}m=1,2,...,M that co-occur withe in queries, and the labelY
contains all the ambiguities ofe.

Our data was based on a snapshot ofanswers.yahoo.com crawled in early 2008, containing
216563 queries from101 classes. We manually collect 400 named entities and label them according
to the labels of their co-occurring queries in Yahoo! CQA. A randomly chosen subset of 300 entities
are used as training data and the other 100 are used for testing. We compare our DBA based method
with baselines including Multinomial Naı̈ve Bayes classifier using TF (MNB-TF) or TF-IDF (MNB-
TFIDF) as word attributes, and SVM classifier using TF (SVM-TF) or TFIDF (SVM-TF-IDF). For
SVM, a similar scheme as MIMLSVM is used for learning M3C classifiers.

Table 2 demonstrates the Accuracy@N (N = 1, 2, 3) as well as micro-averaged and macro-average
F-measure scores of each disambiguation approach3. All the results are obtained through 5-fold
cross-validation. From the table, we observe that DBA achieves significantly better performance
than all the other methods. In particular, for Accuracy@1 scores, DBA can achieve a gain of about

3Since SVM only outputs hard class assignments, there is no Accuracy@2,3 for SVM based methods.
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30% relative to two MNB methods, and about10% relative to two SVM methods; for macro-average
F-measures, DBA can achieve a gain of about50% over MNB methods, and about25% over SVM
methods. As a reference, in Figure 3, we also illustrate the sorted precision and recall scores for each
of the 101 classes. We can see that, DBA slightly outperforms the baselines in terms of precision,
and significantly performs better in terms of the recall scores. In particular, for recall, DBA can
achieve a gain of more than50% relative to MNB and SVM baselines.

7 Concluding Remarks
Multi-class, multi-label and multi-instance classification (M3C) is encountered in many applications.
Even for task that is not explicitly an M3C problem, it might still be advantageous to treat it as
M3C so as to better explore its inner structures and effectively handle the ambiguities. M3C also
naturally arises from the difficulty of acquiring finely-labeled data. In this paper, we have proposed a
probabilistic generative model for M3C corpora. The proposed DBA model is useful for both pattern
classification and instance disambiguation, as has been tested respectively in text classification and
named-entity disambiguation tasks.

An interesting observation in practice is that, although there might be a large number of
classes/topics, usually a pattern is only associated with a very limited number of them. In our
experiment, we found that substantial improvement could be achieved by simply enforcing label
sparsity, e.g., by using LASSO style regularization. In future, we will investigate such “Label Parsi-
moniousness” in a principled way. Another meaningful investigation would be to explicitly capture
or explore the class correlations by using, for example, the Logistic Normal distribution [3] rather
than Dirichlet.
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