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Abstract

We show how to sequentially optimize magnetic resonance imaging measurement
designs over stacks of neighbouring image slices, by performing convex varia-
tional inference on a large scale non-Gaussian linear dynamical system, tracking
dominating directions of posterior covariance without imposing any factorization
constraints. Our approach can be scaled up to high-resolution images by reduc-
tions to numerical mathematics primitives and parallelization on several levels. In
a first study, designs are found that improve significantly on others chosen inde-
pendently for each slice or drawn at random.

1 Introduction

Magnetic resonance imaging (MRI) [10, 6] is a very flexible imaging modality. Inflicting no harm
on patients, it is used for an ever-growing number of diagnoses in health-care. Its most serious
limitation is acquisition speed, being based on a serial idea (gradient encoding) with limited scope
for parallelization. Fourier (aka. k-space) coefficients are sampled along smooth trajectories (phase
encodes), many of which are needed for reconstructions of sufficient quality [17, 1]. Long scan
times lead to patient annoyance, grave errors due to movement, and high running costs. The Nyquist
sampling theorem [2] fundamentally limits traditional linear image reconstruction, but with modern
3D MRI scenarios, dense sampling is not practical anymore. Acquisition is accelerated to some
extent in parallel MRI', by using receive coil arrays [19, 9]: the sensitivity profiles of different
coils provide part of the localization normally done by more phase steps. A different idea is to use
(nonlinear) sparse image reconstruction, with which the Nyquist limit can be undercut robustly for
images, emphasized recently as compressed sensing [5, 3]. While sparse reconstruction has been
used for MRI [28, 12], we address the more fundamental question of how to optimize the sampling
design for sparse reconstruction over a specific real-world signal class (MR images) in an adaptive
manner, avoiding strong assumptions such as exact, randomly distributed sparsity that do not hold
for real images [23]. Our approach is in line with recent endeavours to extend MRI capabilities
and reduce its cost, by complementing expensive, serial hardware with easily parallelizable digital
computations.

We extend the framework of [24], the first approximate Bayesian method for MRI sampling opti-
mization applicable at resolutions of clinical interest. Their approach falls short of real MRI practice
on a number of points. They considered single image slices only, while stacks? of neighbouring

'While parallel MRI is becoming the standard, its use is not straightforward. The sensitivity maps are
unknown up front, depend partly on what is scanned, and their reliable estimation can be difficult.

2“Stack-of-slices” acquisition along the z axis works by transmitting a narrow-band excitation pulse while
applying a magnetic field gradient linear in z. If the echo time (between excitation and readout) is shorter than



slices are typically acquired. Reconstruction can be improved significantly by taking the strong
statistical dependence between pixels of nearby slices into account [14, 26, 18]. Design optimiza-
tion is a joint problem as well: using the same acquisition pattern for neighbouring slices is clearly
redundant. Second, the latent image was modelled as real-valued in [24], while in reality it is a
complex-valued signal. To our knowledge, the few directly comparable approaches rely on “trial-
and-error” exploration [12, 16, 27], requiring substantially more human expert interventions and real
MRI measurements, whose high costs our goal-directed method aims to minimize.

Our extension to stacks of slices requires new technology. Global Gaussian covariances have to
be approximated, a straightforward extension of which to many slices is out of the question. We
show how to use approximate Kalman smoothing, implementing message passing by the Lanczos
algorithm, which has not been done in machine learning before (see [20, 25] for similar proposals
to oceanography problems). Our technique is complementary to mean field variational inference
approximations (“variational Bayes”), where most correlations are ruled out a priori. We track
the dominating posterior covariance directions inside our method, allowing them to change during
optimization. While our double loop approach may be technically more demanding to implement,
relaxation as well as algorithm are characterized much better (convex problem; algorithm reducing to
standard computational primitives), running orders of magnitude faster. Beyond MRI, applications
could be to Bayesian inference over video streams, or to computational photography [11]. Our
approach is parallelizable on several levels. This property is essential to even start projecting such
applications: on the scale demanded by modern MRI applications, with practitioners being used to
view images directly after acquisition, little else but highly parallelizable approaches are viable.

Large scale variational inference is reviewed and extended to complex-valued data in Section 2,
lifted to non-Gaussian linear dynamical systems in Section 3, and the experimental design extension
is given in Section 4. Results of a preliminary study on data from a Siemens 3T scanner are provided
in Section 5, using a serial implementation.

2 Large Scale Sparse Inference

Our motivation is to improve MR image reconstruction, not by finding a better estimation technique,
but by sampling data more economically. A latent MR image slice u € C" (n pixels) is measured
by a design matrix X € C™*": y = Xu + € (¢ ~ N(0,0%I) models noise). For Cartesian
MRI, X = Ig.F,, F, the 2D fast Fourier transform, S C {1,...,n} the sampling pattern (which
partitions into complete columns or rows: phase encodes, the atomic units of the design). Sparse
reconstruction works by encoding super-Gaussian image statistics in a non-Gaussian prior, then
finding the posterior mode (MAP estimation): a convex quadratic program for the model employed
here. To improve the measurement design X itself, posterior information beyond (and independent
of) its mode is required, chiefly posterior covariances.

We briefly review [24], extending it to complex-valued . The super-Gaussian image prior P(u) is
adapted by placing potentials on absolute values |s,|, the posterior has the form

P(uly) < N(y|Xu,o’T) ||

Here, B is a sparsity transform [24]. We use the C — R2 embedding, s = (sj), s; € R2,
and norm potentials e~ IIsi/oll. Two main ideas lead to [24]. First, inference is relaxed to an
optimization problem by lower-bounding the log partition function [7] (intuitively, each Laplace
potential e~"#11%i/7ll is lower-bounded by a Gaussian-form potential of variance ~; > 0), leading to

¢(v) =log |A|+ h(v) +ming, R(u,v), R:=0"7"(|ly— Xu|*+s"T's), v=(y), ()

h(v) = (72)T~. This procedure implies a Gaussian approximation Q(u|y) = N(u|u,,c?A™")
to P(uly), with A = X¥ X + BTT~'B and u. = u.(v). The complex extension is formally
similar to [24] (# there is v~ ! here): ' := (diagv)® I> = diag(y1,71,72:--- )7 B 1= Boyig®1Io,
By the real-valued sparsity transform. Q(u|y) is fitted to P(u|y) by min., o ¢: a convex problem
[24]. Used within an automatic decision architecture, convexity and robustness of inference become
assets that are more important than smaller bias after a lot of human expert attention.

q Crilss
€ ilsi/el g = Bu € CY.
J:

the repeat time (between phase encodes), several slices are acquired in an interleaved fashion, separated by
slice gaps to avoid crosstalk [17].



Second, ¢(7y) can be minimized very efficiently by a double loop algorithm [24]. The compu-
tationally intensive log |A| term is concave in v~!. Upper-bounding it tangentially by the affine
2T (v~1) — g*(2z) at outer loop (OL) update points, the resulting ¢, > ¢ decouples and is mini-
mized much more efficiently in inner loops (ILs). min,, g ¢ leaves us with

min {62 (w) =02y = Xul? +23 wisiD}, Bi(sil) =7+ (sil/0)2, @

a penalized least squares problem. At convergence, u. = Eq[ulyl], v; < (2; + |5« ;/0|})Y?/7;.
We can use iteratively reweighted least squares (IRLS), each step of which needs a linear sys-
tem to be solved of the structure of A. Refitting z (OL updates) is much harder: z «— (I ®
17)diag”"(BA™'BT) = (I ® 17)(¢-?*Varg[s;|y]). In terms of Gaussian (Markov) random
fields, the inner optimization needs posterior mean computations only, while OL updates require
bulk Gaussian variances [21, 15]. The reason why the double loop algorithm is much faster than
previous approaches is that only few variance computations are required. The extension to complex-
valued w is non-trivial only when it comes to IRLS search direction computations (see Appendix).

Given multi-slice data (X¢,y:), t = 1,...,T, we can use an undirected hidden Markov model
over image slices u = (u;) € C"T. By the stack-of-slices methodology, the likelihood poten-
tials P(y;|u;) are independent, and P(u;) from above serves as single-node potential, based on
sy = Buy. If sy, := u; — uy41, the dependence between neighbouring slices is captured by
additional Laplace coupling potentials [];-_; e~ Te.il(s1=)i/ol  The variational parameters -, at each
node are complemented by coupling parameters «;—, € R’.. The Gaussian Q(u|y), ¥y = (y),
has the same form as above with a huge A € C"T*"T_ Inheriting the Markov structure, it is a
Gaussian linear dynamical system (LDS) with very high-dimensional states. How will an efficient
extension of the double loop algorithm look like? The IL criterion ¢, should be coupled between
neighbouring slices, by way of potentials on s;_,. OL updates are more difficult to lift: we have to
approximate marginal variances in a Gaussian LDS. We will do this by Kalman smoothing, approx-
imating inversion in message computations (conversion from natural to moment parameters) by the
Lanczos algorithm.

The central role of Gaussian covariance for approximating non-Gaussian posteriors has not been
emphasized much in machine learning, where if Bayesian computations are intractable, simpler
“variational Bayesian” concepts are routinely used, imposing factorization constraints on the poste-
rior up front. While such constraints can be adjusted in light of the data, this is difficult and typically
not done. Factorization assumptions are a double-edged sword: they radically simplify implemen-
tations, but result in non-convex algorithms, and half of the problem is left undone. Our approach
offers an alternative: by using Lanczos on Q(u|y), we retain precisely the maximum-covariance
directions of intermediate fits to the posterior, without running into combinatorial or non-convex
problems. Finally, we place more varied sparsity penalties on the in-plane dimensions [24] than on
the third one. This is justified by voxels typically being larger and spaced with a gap in the third
dimension, with partial volume effects reducing sparsity. Moreover, a non-local sparsity transform
along the third dimension would destroy the Markovian structure essential for efficient computation.

3 Approximate Inference over Multiple Slices

We aim to extend the single slice method of [24] to the hidden Markov extension, thereby reusing
code whenever possible. The variational criterion is (1) with

h(v) = Zt hi(ve) + Lyl (v ), R = Zt Ry + 1oy Ry, Ty = (diagy;—) ® I,
Rt = 0'_2 (Hyt — Xtut||2 + StT].-‘;lst) 5 Rtg, = 0'_2831,1-‘;*1)575*).

The coupling term log | A| is upper-bounded (¢ < ¢,), so that the IL criterion ¢, (u) is the sum
of terms ¢y 2, (Ut), G1— 2, . (St ). Problems of the form min,, ¢, jointly convex with couplings
between neighbours, are routinely addressed in parallel convex optimization. In order to update u,
we consider its neighbours u;_1, w41 fixed, massaging ¢, », (u:) + P(t—1)— 21 (8¢t—1)—) +
b1 =, (5,_) into the form of [24]: B = (BT, I,1)7, 5 = (sT, (u; —uy_1)7, (uy — ui1)7)7,
u = u. These updates can be run asynchronously in parallel, sending w; to neighbours after every
few IRLS steps.



For OL updates, we have to compute z; = o 2(I ® 17)Varg[s;|y] and 2z;—, = o 2(I ®
1) Varg[s;—|y], where Q(uly) is a Gaussian LDS (fixed ). To output a global criterion
value, an estimate of log|A| is required as well. We use the two-filter Kalman information
smoother, which entails passing Gaussian-form messages along the chain in both directions. Once
all messages are available, marginal (co)variances are computed at each node in parallel. Shift
Q(uly) to zero mean (Eg[u|y] = wu, is found in the IL). Denoting NY(A) = NY(ulA) :=
e~/ " Au, Q(u|y) consists of single node potentials ®;(u;) = NY(A;) and pair po-
tentials ®; .(s;.) = NUY(T;!), where A, := XX, + B'T,;'B. Defining messages
M;_(u;) = NY(A,_), M_,(u;) = NY(A_,), the usual message propagation equation is
Mt*,(ut) X fM(t_l)_,(’u,t,l)q)(t_l)_,(S(t_l)ﬁ)dutfl@t(ut), so that

A=A+ MA4_ ). T—y-), MAT)=T'-THA+TH'T". (3

In the same way, A_,=A + M(Ah(ﬂ_l), I';_.). Denote M;_, := M(Atﬁ,I‘t_,), Mo, =

M(A_;,T;_1)—). Once all messages have been computed, the node marginal Q(u;|y) has
precision matrix A; = A; + My_— + M_uq1). f ¥ := (8 — d2) ® I, the precision
matrix of Q(u¢, uri1|y) is diag(Atﬂ,AH(tH)) + T 97, and s, = T (u], ul, )T
Covg[si—|y] can be written in terms of A; _:1 and M,_.. Finally, by tracking normalization con-
stants: log |[A| = 3", _;log|A, . + T+ 3, ;log|A_, + I‘(_tl_l)_)\ + log | A;| for any 7. In
practice, we average over ¢. The algorithm is sketched in Algorithm 1.

Algorithm 1 Double loop variational inference algorithm
repeat
if first iteration then
Default-initialize z x 1, u = 0.
else
Run Kalman smoothing to determine M;_., and (in parallel) M.
Determine node variances z;, pair variances z;_,, and log | A| from messages. Refit upper
bound ¢, to ¢ (tangent at ). Initialize u = u, (previous solution).
end if
repeat
Distributed IRLS to minimize min~ ¢, w.r.t. u.
Each local update of u, entails solving a linear system (conjugate gradients).
until v, = argmin,, ¢, converged
Update v; = (2; + |s*,j/a|2)l/2/7j.
until outer loop converged

For reconstruction, we run parallel MAP estimation. Following [12], we smooth out the nondiffer-
entiable 11 penalty by |s;/c| & (¢ + |s;/c|?)!/? for very small & > 0, then use nonlinear conjugate
gradients with Armijo line search. Nodes return with V,,, ¢, at the line minimum ., the next search
direction is centrally determined and distributed (just a scalar has to be transferred). This is not the
same as centralized CG: line searches are distributed and not done on the global criterion.

We briefly comment on how to approximate Kalman message passing by way of the Lanczos algo-
rithm [8], full details are given in [22]. Gaussian (Markov) random field practitioners will appre-
ciate the difficulties: there is no locally connected MRF structure, and the Q(u|y) are highly non-
stationary, being fitted to a posterior with non-Gaussian statistics (edges in the image, efc). Message
passing requires the inversion of a precision matrix A. The idea behind Lanczos approximations is
PCA:if A =~ UAUT, A the | < n smallest eigenvalues, UA~'UT is the PCA approximation of
A~!. With matrices A of certain spectral decay, this representation can be approximated by Lanc-
zos (see [24, 22] for details). For a low rank PCA approximation of A,_,, M;_, has the same rank
(see Appendix), which allows to run Gaussian message passing tractably. In a parallel implementa-
tion, the forward and backward filter passes run in parallel, passing low rank messages (the rank k,,,
of these should be smaller than the rank k. for subsequent marginal covariance computations). On
a lower level, both matrix-vector multiplications with X; (FFT) and reorthogonalizations required
during the Lanczos algorithm can easily be parallelized on commodity graphics hardware.



4 Sampling Optimization by Bayesian Experimental Design

With our multi-slice variational inference algorithm in place, we address sampling optimization
by Bayesian sequential experimental design, following [24]. At slice ¢, the information gain score
A(X.) :=log|I+ X .Covg[u|y] X T| is computed for a fixed number of phase encode candidates
X, € C™™ not yet in X, the score maximizer is appended, and a novel measurement is acquired
(for the maximizer only). A(X,) depends primarily on the marginal posterior covariance matrix
Covg[ut|y], computed by Gaussian message passing just as variances in OL updates above (while a
single value A(X,) can be estimated more efficiently, the dominating eigendirections of the global
covariance matrix seem necessary to approximate many score values for different candidates X, ).
Once messages have been passed, scores can be computed in parallel at different nodes. A purely
sequential approach, extending one design X; by one encode in each round, is not tractable. In
practice, we extend several node designs X in each round (a fixed subset Cyy C {1,...,T'}; “it” the
round number). Typically, Cj repeats cyclically. This is approximate, since candidates are scored
independently at each node. Certainly, Cj, should not contain neighbouring nodes. In the interleaved
stack-of-slices methodology, scan time is determined by the largest factor X; (number of rows), so
we strive for balanced designs here.

To sum up, our adaptive design optimization algorithm starts with an initial variational inference
phase for a start-up design (low frequencies only), then runs through a fixed number of design
rounds. Each round starts with Gaussian message passing, based on which scores are computed at
nodes ¢ € Cj, new measurements are acquired, and designs X are extended. Finally, variational
inference is run for the extended model, using a small number of OL iterations (only one in our
experiments). Time can be saved by basing the first OL update on the same messages and node
marginal covariances than the design score computations (neglecting their change through new phase
encodes).

S Experiments

We present experimental results, comparing designs found by our Bayesian joint design optimization
method against alternative choices on real MRI data. We use the model of Section 2, with the
prior previously used in [24] (potentials of strength 7, on wavelet coefficients, of strength 7, on
Cartesian finite differences). While the MRI signal u is complex-valued, phase contributions are
mostly erroneous, and reconstruction as well as design optimization are improved by multiplying
a further term [, e~ (7:/2)IS(u)l into each single node prior potential, easily incorporated into the
generic setup by appending I ® 82 to B. We focus on Cartesian MRI (phase encodes are complete
columns? in k-space): a more clinically relevant setting than spiral sampling treated in [24].

We use data of resolution 64 x 64 (in-plane) to test our approach with a serial implementation. While
this is not a resolution of clinical relevance, a truly parallel implementation is required in order to
run our method at resolutions 256 x 256 or beyond: an important point for future work.

5.1 Quality of Lanczos Variance Approximations

We begin with experiments to analyze the errors in Lanczos variance approximations. Recall from
[24] that variances are underestimated. We work with a single slice of resolution 64 x 64, using
a design X of 30 phase encodes, running a single common OL iteration (default-initialized z),
comparing different ways of continuing from there: exact z computations (Cholesky decomposition
of A) versus Lanczos approximations with different numbers of steps k. Results are in Figure 1.

While the relative approximation errors are rather large uniformly, there is a clear structure to them:
the largest (and also the very smallest) true values z; are approximated significantly more accurately
than smaller true values. This structure can be used to motivate why, in the presence of large errors
over all coefficients, our inference still works well for sparse linear models, indeed in some cases bet-
ter than if exact computations are used (Figure 1, upper right). The spectrum of A shows a roughly
linear decay, so that the largest and smallest eigenvalues (and eigenvectors) are well-approximated

30ur data are sagittal head scans, where the frequency encode direction (along which oversampling is
possible at no extra cost) is typically chosen vertically (the longer anatomic axis).
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Figure 1: Lanczos approximations of Gaussian variances, at beginning of second OL iteration, 64 x 64
data (upper left). Spectral decay of inverse covariance matrix A roughly linear (upper middle). l» recon-
struction error of posterior mean estimate after subsequent OL iterations, for exact variance computation vs.
k = 250,500, 750, 1500 Lanczos steps (upper right). Lower panel: Relative accuracy z; — 2z ;/z; at be-
ginning of second OL iteration, separately for “a” sites (on wavelet coefficients; red), “r” sites (on derivatives;
blue), and “i” sites (on J(u ); green).

by Lanczos, while the middle part of the spectrum is not penetrated. Contributions to the largest
values z; come dominatingly from small eigenvalues (large eigenvalues of A~'), explaining their
smaller relative error. On the other hand, smaller values z; are strongly underestimated (zj, ; < z;),
which means that the selective shrinkage effect underlying sparse linear models (shrink most co-
efficients strongly, but some not at all) is strengthened by these systematic errors. Finally, the IL
penalties are 7;(z; + |s;/a|?)'/2, enforcing sparsity more strongly for smaller z;. Therefore, Lanc-
70s approximation errors lead to strengthened sparsity in subsequent ILs, but least so for sites with
largest true z;. As an educated guess, this effect might even compensate for the fact that Laplace
potentials may not be sparse enough for natural images.

5.2 Joint Design Optimization

We use sagittal head scan data of resolution 64 x 64 in-plane, 32 slices, acquired on a Siemens
3T scanner (phase direction anterior-posterior), see [22] for further details. We consider joint and
independent MAP reconstruction (for the latter, we run nonlinear CG separately for each slice), for
a number of different design choices: {X;} optimized jointly by our method here [op—-7jt]; each
X optimized separately, by running the complex variant of [24] on slice u; [op—sp]; X; = X for
all t, with X optimized on the most detailed slice (number 16, Figure 2, row 2 middle) [op—eq];
and encodes of each X; drawn at random, from the density proposed in [12] [rd], respecting the
typical spectral decay of images [4] (all designs contain the 8 lowest-frequency encodes). Results
for rd are averaged over ten repetitions. For all setups but op—eq, X; are different across t.
Hyperparameters are adjusted based on MAP reconstruction results for a fixed design picked ad hoc
(14 = 7 = 0.01, 7; = 0.1 in-plane; 7. = 0.08 between slices), then used for all design optimization
and MAP reconstruction runs. We run the op—jt optimization with an odd-even schedule {C}; } (all
odd (even)t € 0,...,T — 1 for odd (even) “it”); results for two other schedules of period four come
out very similar, but require more running time. For variational inference, we run 6 OL iterations
in the initial, 1 OL iteration in each design round, with up to 30 IL steps (ILs in design rounds
typically converged in 2-3 steps). The rank parameters (number of Lanczos steps)* were k,,, = 100,
ke = 250 (here, u; has n = 8192 real coefficients). Results are given in Figure 2.

First, across all designs, joint MAP reconstruction improves significantly upon independent MAP
reconstruction. This improvement is strongest by far for op—jt (see Figure 2, rows 3,4), which
for joint reconstruction improves on all other variants significantly, especially with 16-30 phase

*We repeated op-7t partly with k,, = 250, with very similar MAP reconstruction errors for the final
designs, but significantly longer run time.
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Figure 2: Top row: 15 reconstruction errors ||| yap| — |tue||| of MAP reconstruction for different measure-
ment designs. Left: joint MAP reconstruction; right: independent MAP reconstruction of each slice. op-jt:
{X} optimized jointly; op—sp: X optimized separately for each slice; op-eq: X; = X, optimized on
slice 16; rd: X variable density drawn at random (averaged over 10 repetitions).

Rows 2—-4: Images for op—7jt (25 encodes), slices 15-17. Row 2: true images (range 0-0.35). Row 3: errors
joint MAP. Row 4: errors indep. MAP (range 0-0.08).

encodes, where scan time is reduced by a factor 2—4 (Nyquist sampling requires 64 phase encodes).
op—eq does worst in this domain: with a model of dependencies between slices in place, it pays



off to choose different X for each slice. rnd does best from about 35 phase encodes on. While
this suboptimal behaviour of our optimization will be analyzed more closely in future work, it is our
experience so far that the gain in using greedy sequential Bayesian design optimization over simpler
choices is generally largest below 1/2 Nyquist.

6 Conclusions

We showed how to implement MRI sampling optimization by Bayesian sequential experimental
design, jointly over a stack of neighbouring slices, extending the single slice technique of [24].
Restricting ourselves to undersampling of Cartesian encodes, our method can be applied in prac-
tice whenever dense Cartesian sampling is well under control (sequence modification is limited to
skipping encodes). We exploit the hidden Markov structure of the model by way of a Lanczos
approximation of Kalman smoothing. While the latter has been proposed for spatial statistics ap-
plications [20, 25], it has not been used for non-Gaussian approximate inference before, nor in the
context of sparsity-favouring image models or non-linear experimental design. Our method is a gen-
eral alternative to structured variational mean field approximations typically used for non-Gaussian
dynamical systems, in that dominating covariances are tracked a posteriori, rather than eliminating
most of them a priori through factorization assumptions. In a first study, we obtain encouraging
results in the range below 1/2 Nyquist. In future work, we will develop a truly parallel implementa-
tion, with which higher resolutions can be processed. We are considering extensions of our design
optimization technology to 3D MRI® and to parallel MRI with receiver coil arrays [19, 9], whose
combination with k-space undersampling can be substantially more powerful than each acceleration
technique on its own [13].

Appendix

For norm potentials, h}(s;) = hj(||s;||), and the Hessians to solve for IRLS Newton directions
do not have the form of A anymore. In order to understand this, note that we do not use complex
calculus here: s — |s| is not complex differentiable at any s € C. Rather, we use the C — R?
embedding, then standard real-valued optimization for variables twice the size. If 0; := (h})’, p; =
(h%)" at ||s;]| # 0, then using V, ||s;]| = s;/||s;[|, we have VV4 b5 = p;iIy + r3(||s4]|* T2 —
sjst), 5= (0;/lIs;] — pj)*/?/|ls;ll. Since ||s;]|° T — s;87 = vs;(vs;)", v = 656] — 8,165,
the Hessian is X X + BH®) BT. If 5 := ((diagk) ® v)s, then for any v € R?:: H®)y =
((diag p)®@I2)v+((diag w)®1I5)8, where w; := 'ustAj,j =1,...,q, which shows how to compute
Hessian matrix-vector multiplications, thus to implement IRLS steps in the complex-valued case.

Recall that messages are passed, alternating between At_, and M;_, matrices. For a PCA approxi-
mation A, , ~ Q;_ T, QT ., Q;_, € R"**= orthonormal, T}_, tridiagonal (obtained by running
k., Lanczos steps for A;_,), low rank algebra gives

~ _ _ -1 axk
M = M(A, . T7) = Qi (T +QILT—.Q,—) QL. =Vi_VL, V,_ e RVFn

computed in O(n k2,) by way of a Cholesky decomposition. Now, Api1y— = A + V,_V[T
becomes the precision matrix for the next Lanczos run: MVMs have additional complexity of
O(nk,,). Given all messages, node covariances are PCA-approximated by running Lanczos on
A+ V(t_l)_,Vg_l)_, + V<—(t+1)VZ(t+1) for k. iterations. Pair variances Varg[s;—.|y] are es-
timated by running Lanczos on vectors of size 27 (say for k./2 iterations; the precision matrix is
given in Section 3). More details are given in [22].
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