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Abstract

In this paper we address the problem of provably correct feature selection in arbi-
trary domains. An optimal solution to the problem is a Markov boundary, which
is a minimal set of features that make the probability distribution of a target vari-
able conditionally invariant to the state of all other features in the domain. While
numerous algorithms for this problem have been proposed, their theoretical cor-
rectness and practical behavior under arbitrary probability distributions is unclear.
We address this by introducing the Markov Boundary Theorem that precisely char-
acterizes the properties of an ideal Markov boundary, and use it to develop algo-
rithms that learn a more general boundary that can capture complex interactions
that only appear when the values of multiple features are considered together. We
introduce two algorithms: an exact, provably correct one as well a more practi-
cal randomized anytime version, and show that they perform well on artificial as
well as benchmark and real-world data sets. Throughout the paper we make min-
imal assumptions that consist of only a general set of axioms that hold for every
probability distribution, which gives these algorithms universal applicability.

1 Introduction and Motivation

The problem of feature selection has a long history due to its significance in a wide range of im-
portant problems, from early ones like pattern recognition to recent ones such as text categoriza-
tion, gene expression analysis and others. In such domains, using all available features may be
prohibitively expensive, unnecessarily wasteful, and may lead to poor generalization performance,
especially in the presence of irrelevant or redundant features. Thus, selecting a subset of features of
the domain for use in subsequent application of machine learning algorithms has become a standard
preprocessing step. A typical task of these algorithnieasning a classifier Given a number of

input features and a quantity of interest, calledtdrget variable, choose a member of a family of
classifiers that can predict the target variable’s value as well as possible. Anotheuiag&ristand-

ing the domain and the quantities that interact with the target quantity.

Many algorithms have been proposed for feature selection. Unfortunately, little attention has been
paid to the issue of their behavior under a variety of application domains that can be encountered in
practice. In particular, it is known that many can fail under certain probability distributions such as
ones that contain a (near) parity function [1], which contain interactions that only appear when the
values of multiple features are considered together. There is therefore an acute need for algorithms
that are widely applicable and can be theoretically proven to work under any probability distribution.

In this paper we present two such algorithms, an exact and a more practical randomized approximate
one. We use the observation (first made in Koller and Sahami [2]) that an optimal solution to the
problem is a Markov boundary, defined to be a minimal set of features that make the probability
distribution of a target variable conditionally invariant to the state of all other features in the domain
(a more precise definition is given later in Section 3) and present a family of algorithms for learning



the Markov boundary of a target variable in arbitrary domaié first introduce a theorem that
exactly characterizes the minimal set of features necessary for probabilistically isolating a variable,
and then relax this definition to derive a family of algorithms that learn a parameterized approxima-
tion of the ideal boundary that apgovably correctunder a minimal set of assumptions, including a

set of axioms that hold for any probability distribution.

In the following section we present work on feature selection, followed by notation and definitions in
Section 3. We subsequently introduce an important theorem and the aforementioned parameterized
family of algorithms in Sections 4 and 5 respectively, including a practical anytime version. We
evaluate these algorithms in Section 6 and conclude in Section 7.

2 Related Work

Numerous algorithms have been proposed for feature selection. At the highest level algorithms can
be classified aflter, wrapper, orembeddednethods. Filter methods work without consulting the
classifier (if any) that will make use of their output i.e., the resulting set of selected features. They
therefore have typically wider applicability since they are not tied to any particular classifier fam-
ily. In contrast, wrappers make the classifier an integral part of their operation, repeatedly invoking

it to evaluate each of a sequence of feature subsets, and selecting the subset that results in mini-
mum estimated classification error (for that particular classifier). Finally, embedded algorithms are
classifier-learning algorithms that perform feature selection implicitly during their operation e.g.,
decision tree learners.

Early work was motivated by the problem of pattern recognition which inherently contains a large
number of features (pixels, regions, signal responses at multiple frequencies etc.). Narendra and
Fukunaga [3] first cast feature selection as a problem of maximization of an objective function over
the set of features to use, and proposed a number of search approaches irfolwading selec-

tion andbackward elimination. Later work by machine learning researchers includes the FOCUS
algorithm of Almuallim and Dietterich [4], which is a filter method for deterministic, noise-free
domains. The RELIEF algorithm [5] instead uses a randomized selection of data points to update a
weight assigned to each feature, selecting the features whose weight exceeds a given threshold. A
large number of additional algorithms have appeared in the literature, too many to list here—good
surveys are included in Dash and Liu [6]; Guyon and Elisseeff [1]; Liu and Motoda [7]. An impor-
tant concept for feature subset selection is relevance. Several notions of relevance are discussed in
a number of important papers such as Blum and Langley [8]; Kohavi and John [9]. The argument
that the problem of feature selection can be cast as the problem of Markov blanket discovery was
first made convincingly in Koller and Sahami [2], who also presented an algorithm for learning an
approximate Markov blanket using mutual information. Other algorithms include the GS algorithm
[10], originally developed for learning of the structure of a Bayesian network of a domain, and ex-
tensions to it [11] including the recent MMMB algorithm [12]. Meinshausen addlBann [13]
recently proposed an optimal theoretical solution to the problem of learning the neighborhood of
a Markov network when the distribution of the domain can be assumed to be a multidimensional
Gaussian i.e., linear relations among features with Gaussian noise. This assumption implies that
the Composition axiom holds in the domain (see Pearl [14] for a definition of Composition); the
difference with our work is that we address here the problem in general domains where it may not
necessarily hold.

3 Notation and Preliminaries

In this section we present notation, fundamental definitions and axioms that will be subsequently
used in the rest of the paper. We use the term “feature” and “variable” interchangeably, and de-
note variables by capital letters (X etc.) and sets of variables by bold letters B etc.). We

denote the set of all variables/features in the domain (the “universelj.byll algorithms pre-

sented aréndependence-based, learning the Markov boundary of a given target variable using the
truth value of a number of conditional independence statements. The use of conditional indepen-
dence for feature selection subsumes many other criteria proposed in the literature. In particular, the
use of classification accuracy of the target variable can be seen as a special case of testing for its
conditional independence with some of its predictor variables (conditional on the subset selected at
any given moment). A benefit of using conditional independence is that, while classification error
estimates depend on the classifier family used, conditional independence does not. In addition, al-
gorithms utilizing conditional independence for feature selection are applicable to all domain types,



e.g., discrete, ordinal, continuous with non-linear ortagloy non-degenerate associations or mixed
domains, as long as a reliable estimate of probabilistic independence is available.

We denote probabilistic independence by the symbal *i.e., (X1LY | Z) denotes the fact

that the variables in sé&X are (jointly) conditionally independent from those in 3&tgiven the

values of the variables in s&; (XY | Z) denotes their conditional dependence. We assume

the existence of probabilistic independence query oradleat is available to answer any query

of the form (X,Y | Z), corresponding to the question “Is the set of variableXimdependent

of the variables inY given the value of the variables ?" (This is similar to the approach of
learning from statistical queries of Kearns and Vazirani [15].) In practice however, such an oracle
does not exist, but can be approximated by a statistical independence test on a data set. Many tests of
independence have appeared and studied extensively in the statistical literature over the last century;
in this work we use the? (chi-square) test of independence [16].

A Markov blanket of variableX is a set of variables such that, after fixing (by “knowing”) the value
of all of its members, the set of remaining variables in the domain, taken together as a single set-
valued variable, are statistically independenkofMore precisely, we have the following definition.

Definition 1. A set of variablesS C U is called aMarkov blanket of variable X if and only if
(XULU-S—{X}|9).

Intuitively, a Markov blankes of X captures all the information in the remaining domain variables
U — S — {X} that can affect the probability distribution &f, making their value redundant as far
as X is concerned (give®). The blanket therefore captures the essence of the feature selection
problem for target variablé&': By completely “shielding”X, a Markov blanket precludes the exis-
tence of any possible information aboXitthat can come from variables not in the blanket, making

it an ideal solution to the feature selection problem. A minimal Markov blanket is called a Markov
boundary.

Definition 2. A set of variable$ C ¢/ — {X} is called aMarkov boundary of variable X ifitis a
minimal Markov blanket oX i.e., none of its proper subsets is a Markov blanket.
Pearl [14] proved that that the axioms of Symmetry, Decomposition, Weak Union, and Intersection
are sufficient to guarantee a unique Markov boundary. These are shown below together with the
axiom of Contraction.
(Symmetry) XLY|Z) = (Y1X|Z)
(Decomposition) (X1 Y U Z (XLY |Z) N (XLLW|Z)
( U
(

W|Z) =
(Weak Union) XULYUW|Z) = (XLY|ZUW) 1)
(Contraction) XULY|Z) AN (XLW|YUZ) = (XULYUW |Z)
(Intersection) (XLY|ZUW)A (XLW|ZUY) = (XULYUW|Z)

The Symmetry, Decomposition, Contraction and Weak Uniolrazgi are very general: they are
necessanaxioms for the probabilistic definition of independence i.e., they hokvaryprobability
distribution, as their proofs are based on the axioms of probability theory. Intersection is not univer-
sal but it holds in distributions that are positive, i.e., any value combination of the domain variables
has a non-zero probability of occurring.

4 The Markov Boundary Theorem

According to Definition 2, a Markov boundary is a minimal Markov blanket. We first introduce a
theorem that provides an alternative, equivalent definition of the concept of Markov boundary that
we will relax later in the paper to produce a more general boundary definition.

Theorem 1 (Markov Boundary Theorem). Assuming that the Decomposition and Contraction
axioms holdS C U/ — {X} is a Markov boundary of variabl& < ¢/ if and only if
VTQU—{X},{TQZ/{—S<:>(XJ_LT|S—T)}. @)

A detailed proof cannot be included here due to space constraints but a proof sketch appears in
Appendix A. According to the above theorem, a Markov bound&upartitions the powerset of

U — {X} into two parts: (a) seP; that contains all subsets &f — S, and (b) setP, containing

the remaining subsets. All sets 4 are conditionally independent of, and all sets irP, are
conditionally dependent witlX.

Intuitively, the two directions of the logical equivalence relation of Eq. (2) correspond to the concept
of Markov blanket and its minimality i.e., the equation

VT CU - {X}, {Tgufs — (XJJ_T|SfT)}

3



Algorithm 1 The abstrac€S™ (X) algorithm. Returns am-Markov boundary ofX .
1. S— o

2: [* Growing phase?*/

3:forall Y CU —S —{X}suchthatl <|Y| <mdo
4:  if (XJ)LY |S)then

5: S—SuUY
6
7
8
9

: gotoline 3 /* Restart loop*/
. [* Shrinking phase*/
»forall Y € Sdo
o f(XLY |S—{Y}) then
10: S—S—{Y}
11: gotoline 8 /* Restart loop*/
12: return S

or, equivalently, VT C &/ — S — {X}, (XL T | S)) (asT andS are disjoint) corresponds to
the definition of Markov blanket, as it includds = &/ — S — {X}. In the opposite direction, the
contrapositive form is
VTguf{X},{T,@ufS — (XLT[S-T)}.
This corresponds to the concept of minimality of the Markov boundary: It states that all sets that
contain a part o cannot be independent &f given the remainder 8. Informally, this is because
if there existed some s@t that contained a non-empty sub&tof S suchthaf X 1L T | S — T),
then one would be able to shritskby T’ (by the property of Contraction) and theref@&eavould
not be minimal (more details in Appendix A).

5 A Family of Algorithms for Arbitrary Domains

Theorem 1 defines conditions that precisely characterize a Markov boundary and thus can be thought
of as an alternative definition of a boundary. By relaxing these conditions we can produce a more
general definition. In particular, an-Markov boundary is defined as follows.

Definition 3. A set of variable$ C ¢/ — { X'} of a domairi/ is called anm-Markov boundary of
variable X € U/ if and only if

VT CU —{X}suchthalT| <m,{TCU—-S < (XLT| sz)}.
We call the parametern. of anm-Markov boundary théMarkov boundary margin. Intuitively, an
m-boundaryS guarantees that (a) all subsets of its complement (excludiingf sizem or smaller
are independent ok given S, and (b) all setdl’ of sizem or smaller that are not subsets of its
complement are dependent &fgiven the part o8 that is not contained ifT". This definition is a
special case of the properties of a boundary stated in Theorem 1, with edEhrezitioned in the
theorem now restricted to having sizeor smaller. Form = n — 1, wheren = ||, the condition
|T| < m is always satisfied and can be omitted; in this case the definition 6f an1)-Markov
boundary results in exactly Eq. (2) of Theorem 1.

We now present an algorithm call&B ™, shown in Algorithm 1, that provably correctly learns
anm-boundary of a target variabl®. GS™ operates in two phases,gaowing and ashrinking

phase (hence the acronym). During the growing phase it examines sets of variables of size up to
wherem is a user-specified parameter. During the shrinking plsaisglevariables are examined for
conditional independence and possible removal ffofexamining sets in the shrinking phaset
necessary for provably correct operation—see Appendix B). The orders of examination of the sets
for possible addition and deletion from the candidate boundary are left intentionally unspecified in
Algorithm 1—one can therefore view it as an abstract representative of a family of algorithms, with
each member specifying one such ordering. All members of this familynaterrect, as the proof

of correctness does not depend on the ordering. In practice numerous choices for the ordering exist;
one possibility is to examine the sets in the growing phase in order of increasing set size and, for
each such size, in order of decreasing conditional mutual informatidh Y, S) betweenX and

Y givenS. The rationale for this heuristic choice is that (usually) tests with smaller conditional sets
tend to be more reliable, and sorting by mutual information tends to lessen the chance of adding false
members of the Markov boundary. We used this implementation in all our experiments, presented
later in Section 6.

Intuitively, the margin represents a trade-off between sample and computational complexity and
completeness: Fon. = n — 1 = |U| — 1, the algorithm returns a Markov boundary in unrestricted

4



Algorithm 2 The RGS(™*)(X) algorithm, a randomized anytime version of (8™ algorithm,
utilizing & random subsets for the growing phase.

1.S—o

2: [* Growing phase¥/

3: repeat

4 Schanged — false
5. Y < subsetot/ — S — {X} of sizel <|Y| < m of maximum dependence out brandom subsets
6
7
8

if (XJ)LY |S)then
S—SuUY
Schanged «— true
until Schanged = false
10: /* Shrinking phase*/
11: forall Y € Sdo
12; if (XY |S—{Y})then

13: S—S—-{Y}
14: gotoline 11 /* Restart loop*/
15: return S

(arbitrary) domains. Fot < m < n — 1, Gastm may recover the correct boundary depending
on characteristics of the domain. For example, it will recover the correct boundary in domains
containing embedded parity functions such that the number of variables involved in iebéry
parity function ism + 1 or less i.e., ift < m + 1 (parity functions are corner cases in the space
of probability distributions that are known to be hard to learn [17]). The proof-@orrectness of
GS™ is included in Appendix B. Note that it is based on Theorem 1 and the universal axioms of
Egs. (1) only i.e., Intersection is not needed, and thus it is widely applicable (to any domain).

A Practical Randomized Anytime Version

While GS(™ is provably correct even in difficult domains such as those that contain parity functions,
it may be impractical with a large number of features as its asymptotic complexityn¥). We

therefore also we here provide a more practical randomized version (5% 1]]s (e (Randomized

GS™)), shown in Algorithm 2. Th&GS™*) algorithm has an additional parametethat limits its
computational requirements: instead of exhaustively examining all possible sub@étsf { X })

(asGS™ does), it instead sampléssubsets from the set of all possible subset@6f S — {X}),
wherek is user-specified. It is therefore a randomized algorithm that becomes equivalésit'td
given a large enough. Many possibilities for the method of random selection of the subsets exist;
in our experiments we select a subdt= {Y;} (1 < Y| < m) with probability proportional

to Z'izll(l/p(X,Yi | S)), wherep(X,Y; | S) is the p-value of the corresponding (univariate) test
betweenX andY; givenS, which has a low computational cost.

The RGS™*) algorithm is useful in situations where the amount of time to produce an answer
may be limited and/or the limit unknown beforehand: it is easy to show that the growing phase of
GS™) produces an an upper-bound of theboundary ofX. Therefore, th&RGS™*) algorithm,

if interrupted, will return an approximation of this upper bound. Moreover, if there exists time
for the shrinking phase to be executed (which conducts a number of tests lineanih is thus

fast), extraneous variables will be removed and a minimal blanket (boundary) approximation will
be returned. These features make itasytimealgorithm, which is a more appropriate choice for
situations where critical events may occur that require the interruption of computation, e.g., during
the planning phase of a robot, which may be interrupted at any time due to an urgent external event
that requires a decision to be made based on the present state’s feature values.

6 Experiments

We evaluated the3S(™) and theRGS™*) algorithms on synthetic as well as real-world and
benchmark data sets. We first systematically examined the performance on the task of recov-
ering near-parity functions, which are known to be hard to learn [17]. We compﬁﬁéﬁ)

and RGS(™®) with respect to accuracy of recovery of the original boundary as well as com-
putational cost. We generated domains of sizes ranging from 10 to 100 variables, of which
4 variables (X to X,) were related through a near-parity relation with bit probability 0.60
and various degrees of noise. The remaining independent variableso(X,,) act as “dis-
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Figure 2: Left: F;, measure of3S(™), RGS™* and RELIEVED under increasing amounts of
noise.Middle: Probabilistic isolation performance comparison betw@&f®) and RELIEVED on
real-world and benchmark data seight: Same forGS®®) andRGS®1000)

tractors” and had randomly assigned probabilities i.e., the correct boundak; a¢ B; =

{X2, X3,X4}. In such domains, learning the boundary X%f is difficult because of the large
number of distractors and because eaGhe B; is independent of{; given any proper subset

of B; — {X,} (they only become dependent when including all of them in the conditioning set).
To measure an algorithm’s feature selection performance, ac-

curacy (fraction of variables correctly included or excluded) e Markou boundany iz —3, 1000 o poits

is inappropriate as the accuracy of trivial algorithms such as ,, [ <]
returning the empty set will tend to 1 asincreases. Preci-  °*
sion and recall are therefore more appropriate, with precision o
defined as the fraction of features returned that are in the cor-°:
rect boundary (3 features fof,), and recall as the fraction *
of the features present in the correct boundary that are re-’:
turned by the algorithm. A convenient and frequently used -
measure that combines precision and recall isRhenea-

sure, defined as the harmonic mean of precision and recall
[18]. In Fig. 1 (top) we report 95% confidence intervals for
the F; measure and execution time @5(™ (marginsm =

1 to 3) andRGS™*) (margins 1 to 3 and = 1000 random
subsets), using 20 data sets containing 10 to 100 variables, *
with the target variablé&’; was perturbed (inverted) by noise :
with 10% probability. As can be seen, tie3S™* and
GS™ using the same value for margin perform comparably
with respect td;, up to their 95% confidence intervals. With._. _ (WNL”)“E'°'Ema‘"va"ab‘e(sm7k)
respect to execution time howevR(3S™*) exhibits much ]Iczlgure 1.GS* h andRGS dper-_
greater scalability (Fig. 1 bottom, log scale); for example, prmance bW't frespebclt to 'o];nam
executes in about 10 seconds on average in domains contf@'ﬁ‘?— (number of variablesyop: I

. . . ) easure, reflecting accuracyot-
ing 100 variables, whil€&S(™) executes in 1,000 seconds O%m: Execution timge in secongs (log
average for this domain size.

scale).

We also compared}S(m) andRGS™*) to RELIEF [5], a well-known algorithm for feature selec-

tion that is known to be able to recover parity functions in certain cases [5]. RELIEF learns a weight
for each variable and compares it to a threshaid decide on its inclusion in the set of relevant vari-
ables. As it has been reported [9] that RELIEF can exhibit large variance due to randomization that
is necessary only for very large data sets, we instead used a deterministic variant called RELIEVED
[9], whose behavior corresponds to RELIEF at the limit of infinite execution time. We calculated
theF; measure fo3S), RGS(™*) and RELIEVED in the presence of varying amounts of noise,
with noise probability ranging from 0 (nho noise) to 0.4. We used domains containing 50 variables, as
GS™ becomes computationally demanding in larger domains. In Figure 2 (left) we show the per-
formance ofGS(™ andRGS™*) for m equal to 1 and 3 = 1000 and RELIEVED for thresholds

7 = 0.01 and 0.03 for various amounts of noise on the target variable. Again, each experiment was
repeated 20 times to generate 95% confidence intervals. We can observe that evemtheugh
(equivalent to the GS algorithm) performs poorly, increasing the margmakes it more likely to

recover the correct Markov boundary, aa8® (m = 3) recovers the exact blanket even with few
(1,000) data points. RELIEVED does comparablm(3) for little noise and for a large threshold,
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but appears to deteriorate for more noisy domains. As we @it sedifficult to choose the “right”
threshold for RELIEVED—better performing at low noise can become worse in noisy environ-
ments; in particular, smait tend to include irrelevant variables while larggend to miss actual
members.

We also evaluate@:S(™), RGS™*  and RELIEVED on benchmark and real-world data sets from

the UCI Machine Learning repository. As the true Markov boundary for these is impossible to know,
we used as performance measure a measypeobhbilistic isolationby the Markov boundary re-
turned of subsets outside the boundary. For each domain vaiale measured the independence

of subsetsY of size 1, 2 and 3 given the blank&tof X returned byGS®® and RELIEVED for

7 = 0.03 (as this value seemed to do better in the previous set of experiments), as measured by
the average p-value of the® test betweer’X andY givenS (with p-values of 0 and 1 indicating

ideal dependence and independence, respectively). Due to the large number of subsets outside the
boundary when the boundary is small, we limited the estimation of isolation performance to 2,000
subsets per variable. We plot the results in Figure 2 (middle and right). Each point represents a vari-
able in the corresponding data set. Points under the diagonal indicate better probabilistic isolation
performance for that variable f@#S®® compared to RELIEVED (middle plot) or tRGS3:1000)

(right plot). To obtain a statistically significant comparison, we used the non-parametric Wilcoxon
paired signed-rank test, which indicated tfi® RGS*19°%) are statistically equivalent to each
other, while both outperformed RELIEVED at the 99.99% significance level (0<7).

7 Conclusion

In this paper we presented algorithms for the problem of feature selection in unrestricted (arbitrary
distribution) domains that may contain complex interactions that only appear when the values of
multiple features are considered together. We introduced two algorithms: an exact, provably cor-
rect one as well a more practical randomized anytime version, and evaluated them on on artificial,
benchmark and real-world data, demonstrating that they perform well, even in the presence of noise.
We also introduced the Markov Boundary Theorem that precisely characterizes the properties of a
boundary, and used it to prove-correctness of the exact family of algorithms presented. We made
minimal assumptions that consist of only a general set of axioms that hold for every probability
distribution, giving our algorithms universal applicability.

Appendix A: Proof sketch of the Markov Boundary Theorem

Proof sketch.(= direction) We need to prove that B is a Markov boundary oX then (a) for
everysetl CU —S—{X}, (XL T|S-T),and (b) for every seT’ Z U — S that does not
containX, (XU T’ | S — T’). Case (a) is immediate from the definition of the boundary and the
Decomposition theorem. Case (b) can be proven by contradiction: Assuming the independence of
T’ that contains a non-empty pdF, in S and a parfT, in &/ — S, we get (from Decomposition)

(X1 T} | S— T}). We can then use Contraction to show that theSset T’ satisfies the inde-
pendence property of a Markov boundary, i.e., {#tlL ¢/ — (S — T}) — {X} | S — T}), which
contradicts the assumption ttHais a boundary (and thus minimal).

(<= direction) We need to prove that if Eqg. (2) holds, thBris a minimal Markov blanket. The
proof thatS is a blanket is immediate. We can prove minimality by contradiction: Assiime
S; U S, with S; a blanket and8, # & i.e.,S; is a blanket strictly smaller tha®. Then(X 1L S, |
Si1) = (X1L.S2 | S —S5). However, sincéS, Z U — S, from Eq. (2) we getX L. S, | S — Ss),
which is a contradiction. O

Appendix B: Proof of m-Correctness ofGS™

Let the value of the se&§ at the end of the growing phase 8g, its value at the end of the shrinking
phaseSg, and their differenc& A = S — Sg. The following two observations are immediate.

Observation 1. For everyY C U — Sg — {X} such thatl <|Y| <m, (X1 Y |S¢g).
Observation 2. For everyY € Sg, (X LY | Ss —{Y}).

Lemma 2. Consider variabled7,Y5,...,Y; forsomet > 1 and letY = {Yj}z-zl. Assuming that

Contraction holds, { X 1L Y; | S — {Y;}i_)) foralli =1,...,¢, then(X ILY | S - Y).

Proof. By induction onY}, j = 1,2,...,¢, using Contraction to decrease the conditioningSset
down toS — {Y;}i_, foralli = 1,2,...,t. SinceY = {Y;},_,, we immediately obtain the
desired relatiof X L Y | S —Y). O



Lemma 2 can be used to show that the variables found indiidirsdependent ofX during
the shrinking phase are actuallgintly independent ofX, given the final seSg. Let SA =
{Y1,Y>,...,Y:} be the set of variables removed (in that order) fri8m to form the final seS¢
i.e.,Sa =S¢ — Sg. Using the above lemma, the following is immediate.
Corollary 3. Assuming that the Contraction axiom hol@X, Ll S | Ss).
Lemma 4. If the Contraction, Decomposition and Weak Union axioms hold, then for every set
TCU—-Sg—{X}suchthat X 1L T | S¢),

o (XL TU(Sg —Ss) | Ss). _ _ 3)
FurthermoreSs is minimal i.e., there does not exist a subse® gffor which Eq. (3) is true.
Proof. From Corollary 3,(X 1L Sa | Sg). Also, by the hypothesigX Il T | S¢) = (XL T |
Ss USa), whereSy = Sg — Sg as usual. From these two relations and Contraction we obtain
(XJJ_TUSA | Ss)

To prove minimality, let us assume thet # @ (if S = @ then it is already minimal). We prove
by contradiction: Assume that there exists a$et Sg such thaf X 1L T U (S — S’) | §'). Let
W = Sg — S’ # @. Note thatW andS’ are disjoint. We have that
S¢s CSsUSA, — SS—S’QSSUSA—S’QTU(SSUSA—S’)
= WgTU(SsUSA—S/)ZTU(Sg—S/)

e Since(X1L TU(Sg—S')|S')andW C TU (SsUSa — S’), from Decomposition we
get(X 1L W | 9).

e From (X1 W | §’) and Weak Union we have that for evefy ¢ W, (X 1LY | S’ U
(W —{Y}).

e SinceS’ and W are disjoint and sinc& € W, Y ¢ S’. Applying the set equality
(A—B)UC=(AUB)-(A-C)toS"UW—{Y})weobtainS" UW — ({Y}-5') =
Ss —{Y}.

e ThereforeVY e W, (X 1LY | Sg —{Y}).

However, at the end of the shrinking phase, all variables Sg (and therefore ifW, asW C Sg)

have been evaluated for independence and found dependent (Observation 2). Thod] sinege

there exists at least oésuch tha{ X L Y | S¢ — {Y'}), producing a contradiction. O
Theorem 5. Assuming that the Contraction, Decomposition, and Weak Union axioms hold, Algo-
rithm 1 ism-correct with respect tox .

Proof. We use the Markov Boundary Theorem. We first prove that
VT C U — {X} such tha{T| < m,{T CU-Sg = (XLT|Sg —T)}
or, equivalentlyy T C U — Sg — {X} such thatT| < m, (X1 T | Sg).

Sinceld —Sg—{X} =SaU U —Sc—{X}),Sa andd — S — { X } are disjoint, there are three
kinds of sets of sizen or less to consider: (i) all seff C Sa, (ii) all setsT C U — S — {X},
and (iii) all sets (if any)T = T/ U T”, T N T” = @, that have a non-empty palt C SA and a
non-empty part” C U — S¢ — {X}.

(i) From Corollary 3,(X 1L Sa | Sg). Therefore, from Decomposition, for any SBtC Sa,
(XLT|Sg).
(i) By Observation 1, for every séF C U/ — Sg — {X} such thaiT| < m, (X 1L T | Sg).
By Lemma 4 we ge{X 1L T U SA | Sg), from which we obtain X 1L T | Sg) by
Decomposition.
(i) Since|T| < m, we have thatT”| < m. SinceT” C U — S¢ — {X}, by Observation 1,
(X1 T" | Sg). Therefore, by Lemma 4X 1L T” U SA | Sg). SinceT’ C Sa =
T UT' C T” USa, by Decomposition to obtaitX 1L T” UT' | Sg) = (X 1L T | Sg).
To complete the proof we need to prove that
VT C U — {X} such tha{T| < m,{T ZU-Ss = (XUT|Ss —T)}.
LetT = T; U Ty, with T; C SgandT; CU — Sg. SinceT U — Sg, T, contains at least one
variableY € Sg. From Observation X L Y | Ss — {Y'}). From this and (the contrapositive of)
Weak Union, we getX L {Y}U(T1—{Y}) |Ss—{Y}—(T1—{Y})) = (XL Ty | Ss—T1).
From (the contrapositive of) Decomposition we ¢&f X T; UTy | Sg — Ty) = (XU T |
Ss — T1), whichisequaltd XL T | Ss —T; — T3) = (XU T | Ss —T)asSs andT; are
disjoint. O
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