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Abstract

In this study, we present a new method for establishing fMRI pattern-based
functional connectivity between brain regions by estimating their multivariate
mutual information. Recent advances in the numerical approximation of high-
dimensional probability distributions allow us to successfully estimate mutual
information from scarce fMRI data. We also show that selecting voxels based
on the multivariate mutual information of local activity patterns with respect to
ground truth labels leads to higher decoding accuracy than established voxel selec-
tion methods. We validate our approach with a 6-way scene categorization fMRI
experiment. Multivariate information analysis is able to find strong information
sharing between PPA and RSC, consistent with existing neuroscience studies on
scenes. Furthermore, an exploratory whole-brain analysis uncovered other brain
regions that share information with the PPA-RSC scene network.

1 Introduction

To understand how the brain represents and processes information we must account for two com-
plementary properties: information is represented in a distributed fashion, and brain regions are
strongly interconnected. Although heralded as a tool to address these issues, functional magnetic
resonance imaging (fMRI) initially fell short of achieving these goals because of limitations of tra-
ditional analysis methods, which treat voxels as independent. Multi-voxel pattern analysis (MVPA)
has revolutionized fMRI analysis by accounting for distributed patterns of activity rather than abso-
lute activation levels. The analysis of functional connectivity, however, is so far mostly limited to
comparing the time courses of individual voxels. To overcome these limitations we demonstrate a
new method of pattern-based functional connectivity analysis based on mutual information of sets
of voxels. Furthermore, we show that selecting voxels based on the mutual information of local
activity with respect to ground truth outperforms other voxel selection methods.

We apply our new analysis methods to the decoding of natural scene categories from the human
brain. Human observers are able to quickly and efficiently perceive the content of natural scenes [15,
26]. It was recently shown by [23] that activity patterns in the parahippocampal place area (PPA), the
retrosplenial cortex (RSC), the lateral occipital complex (LOC), and, to some degree, primary visual
cortex (V1) contain information about the categories of natural scenes. To truly understand how
the brain categorizes natural scenes, however, it is necessary to grasp the interactions between these
regions of interest (ROIs). Our new technique for pattern-based functional connectivity enables
us to uncover shared scene category-specific information among the ROIs. When configured for
exploratory whole-brain analysis, the technique allows us to discover other brain regions that may
be involved in natural scene categorization.

Mutual information is appropriate for fMRI analysis if one considers fMRI data as a noisy com-
munication channel in the sense of Shannon’s information theory [19]; the information contained
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in a population of neurons must be communicated through hemodynamic changes and concomitant
changes in magnetization which can be measured as the blood-oxygen level dependent (BOLD)
fMRI signal, then proceed through several layers of data processing, culminating in a single time
varying value in a particular voxel. While this noisy communication concept has been embraced
by the brain machine interface community [25], information theory has, thus far, been less utilized
in the fMRI analysis community (see [8] for exceptions). This may be partly due to the numerical
difficulties in estimating the probability distributions necessary for computing mutual information.
This problem is exacerbated when patterns of voxels are considered. In this case distributions of
higher dimensionality need to be estimated from preciously few data points. Recent developments
in information theory, however, help us overcome these hurdles.

In Section 2 we review these theoretical advances and adapt them for our dual purpose of voxel
selection and pattern-based functional connectivity analysis. Following a discussion of related work
in Section 3, in Section 4 we apply our new methods to fMRI data from an experiment on distin-
guishing natural scene categories in the human brain. We lay conclude the paper in Section 5.

2 Multivariate mutual information for fMRI data

Information theory was originally formulated for discrete variables. In order to adapt the theory to
continuous random variables, the underlying probability distribution needs to be estimated from the
sampled data points. Previous work such as [7, 18] have used fixed bin-size histogram or Parzen
window methods for this purpose. However, these methods do not generalize to high-dimensional
data. Recently, Perez-Cruz has shown that a k-nearest-neighbor (kNN) approach to estimating infor-
mation theoretic measures converges to the true information theoretic measures asymptotically with
finite k, even in higher dimensional spaces [16]. In this section we adapt this strategy to estimate
multi-voxel mutual information.

2.1 Nearest-neighbor mutual information estimate

In information theory, the randomness of a probability distribution is measured by its entropy. For a
discrete random variable z, entropy can be calculated as

Zp )log p(x;). ()

Mutual information is intuitively defined as the reduction of the entropy of the random variable = by
the entropy of x after y is known:

I(z,y) = H(z) — H(z|y). (2)

The separation into entropies allow us to calculate mutual information for multivariate data. Random
variables x, y can be of arbitrary dimensions.

As shown in [24], using kNN estimation, entropies and conditional entropies can be defined as
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where the summation is over n data points, each represented by x;. pg(z;) is the KNN density
estimated at ;. p(z;) is defined as
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where T is the gamma function, d is the dimensionality of x; and r(z;) is the Euclidean distance
from z; to the k' nearest training point. py(x;) is the probability density function at x;, which is a
set of voxel values for a given category task(or label) in the context of our fMRI experiment.



2.2 fMRI multivariate information analysis

In previous work, such as [7], information theory has been used as a measure for functional connec-
tivity of one voxel to another voxel. While such analysis is valuable for exploring connections in the
brain, it does not fully leverage the information stored in the local pattern of voxels. In this section
we propose a framework for multivariate information analysis of fMRI data for dual purposes: voxel
selection and functional connectivity.

2.2.1 Voxel selection based on mutual information with respect to ground truth label

For voxel selection we are interested in finding a subset of voxels that are highly informative for
discriminating between the ground truth labels in the experiment. This is a useful step that serves two
purposes. From a machine learning perspective, reducing the dimensionality of the brain image data
can boost classifier performance and reduce classifier variance. From a neuroscience perspective,
the locations of highly informative voxels identify functional regions involved in the experiment. To
achieve both of these goals we use a multivariate mutual information measure to analyze a localized
pattern of M voxels. This local analysis windows is moved across the brain image. At each location
we estimate the mutual information shared between the pattern of M voxels and the experiment label.
In our experiments we choose M = 7 to evaluate the smallest symmetrical pattern around a center
voxel, which consists of the center voxel and its 6 face-connected neighbors. Mutual information
between voxels V' and labels L is defined as

I(V,L) = H(V)+ H(L) — H(V, L). (6)

Using equation 1 the entropies can be calculated by

i=1

where n is the number of data-points observed, L; is the experiment label for i*" data point, V; is a

7-dimensional random variable, V; = (v;1,0;2,V;3,Vi4,V:5,V;6, vV;7) With each entry corresponding to
one of 7 voxels’ values at data point ¢. Equation 7 can be used to compute the mutual information
of localized set of voxels V; with respect to their ground truth label L;. We can then perform voxel
selection by selecting the locations of highest mutual information. This is useful as a preprocessing
step before applying any machine learning algorithms and as well as a way to spatially map out the
informative voxels with respect to the task.

2.2.2 Functional connectivity by shared information between distributed voxel patterns

Two distributed brain regions can be modeled as a communication channel. Measuring the mutual
information across the two regions provides an intuitive measure for their functional connectivity.
The voxel values observed in each region can be regarded as observed data from an underlying prob-
ability distribution — the distribution that characterizes the functional region under the experiment
condition.

Previous approaches have analyzed shared information in a univariate way, computing the mutual
information between two voxels. However such univariate information analysis disregards the in-
formation stored in the local patterns of voxels. In this work we present a multivariate information
analysis that estimates shared information between two sets of voxels that leverages the information
stored in the local patterns:

I(V,S|L) = H(V|L) + H(S|L) — H(V, S|L), ®)

where V' and S are random variables for sets of 7 voxels. L is the experiment label. Using equations
3 and 4 this can be written as
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Equation 9 allows us to measure the functional connectivity between two distributed sets of voxels
V and S by computing the mutual information between the two sets of voxels conditioned on the
experiment task label L. We show in our experiments (sec 4.4) that by using this measurement, our
algorithm can uncover meaningful functional congectivity patterns among regions of the brain.
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Figure 1: Comparison of decoding accuracy® between MI voxel selection and other standard voxel selection
methods(refer to section 4.2). The single voxel MI approach surpasses most discr." voxel selection but performs
on par with most active® voxel selection. Using a pattern of 7 voxels, the MI7D approach achieves the highest
decoding accuracy. At 600 voxels, MI7D decoding accuracy® is significantly higher than most active with p-
value < 0.05. At 1250 voxels, MI7D decoding accuracy is significantly higher than MI1D with p-value < 0.01
(This figure must be viewed in color)

3 Related work

Statistical relationships between different parts of the brain, referred to as functional connectivity,
have been computed with a number of different methods. The methods can be broadly classified as
either data-driven or model-based [10].

In data-driven approaches, no specific hypothesis of connectivity is used, but large networks of
brain regions are discovered based purely on the data. Most commonly, this is achieved with a
dimensionality-reduction procedure such as principal component analysis (PCA) or independent
component analysis (ICA). Originally applied to the analysis of PET data [5], PCA has also been
applied to fMRI data (see [12]). ICA has been gained interest for the investigation of the so-called
default network in the brain at rest [11].

Model-based approaches test a prior hypothesis about the statistical relations between a seed voxel
and a target voxel. By fixing the seed voxel and moving the target voxel all over the brain, a
connectivity map with respect to the seed voxel can be generated. The statistical relation of the
two voxels is usually modeled assuming temporal dependence between voxels in methods such as:
cross-correlation [2], coherence [21], Granger causality [1], or transfer entropy [20].

These methods compare the time courses of individual voxels. Following the same principal idea,
we model functional connectivity based on the mutual information between sets of seed and target
voxels to leverage the spatial information contained in activity patterns among voxels rather than
the temporal information between two voxels. fMRI has a higher spatial resolution than tempo-
ral resolution. We design our mutual information connectivity measure to exploit this property of
fMRI data. Yao et al. [26] have also explored pattern-based functional connectivity by modeling
the interactions between distributed sets of voxels with a generative model. We take a simpler ap-
proach by using only the multivariate information measure which allows us to explore for unknown
connections in the whole brain in a searchlight manner.

In recent years it has become apparent that patterns of fMRI activity hold more detailed information
about experimental conditions than the activation levels of individual voxels [6]. It is therefore

"Most discri. — Most discriminative voxels are those showing the largest difference in activity between any
pair of scene categories.

*Most active — Most active voxels are those showing the largest difference in activity between the fixation
condition and viewing images of any category.
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Figure 2: Locations of voxels with high 7D mutual information with respect to scene category label. The
known functional areas that respond to scenes and visual stimuli such as PPA, RSC, V1 are all selected, which
also explains the high decoding accuracy using the selected voxels. The brain maps shown above are based on
group analysis over 5 subjects superimposed on an MNI standard brain. (This figure must be viewed in color)

cogent to also consider the information contained in voxel patterns for the analysis of functional
connectivity. We achieve this by computing the mutual information of a pattern of locally connected
voxels at the seed location with a pattern at the target location. As with the univariate functional
connectivity analysis, this multivariate version also allows us to test hypotheses about connectivity
of brain regions as well as generate connectivity maps.

Because of the large number of voxels in the brain (many thousands, depending on resolution),
multivariate techniques usually require some kind of feature selection or dimensionality reduction.
This can be achieved by focusing on pre-defined ROIs, or by selecting voxels form the brain based
on some statistical criteria [3, 14]. Here we show that using mutual information of individual voxels
with respect to ground truth for voxel selection works at the same level as these previous methods,
but that mutual information of patterns of voxels with respect to ground truth outperforms all of the
univariate methods we tested.

Information theory has been applied to fMRI data in the context of brain machine interfaces [25],
to generate activation maps [8], for effective connectivity in patients [7], and for image registration
[17]. However, to our knowledge this is the first application to both voxel selection and functional
connectivity based on multivariate activity patterns.

4 Experiments

4.1 Data

For the experiments described in this section we use the data from the fMRI experiment on natural
scene categories by [23]. Briefly, five participants passively viewed color images belonging to six
categories of natural scenes (beaches, buildings, forests, highways, industry, and mountains). Stim-
uli were arranged into blocks of 10 images from the same natural scene category. Each image was
displayed sequentially for 1.6 seconds. A run was composed of 6 blocks, one for each natural scene
category, interleaved with 12 s fixation periods. Images were presented upright inverted on alter-
nating runs, with each inverted run preserving the image and category order used in the preceding
upright run. A session contained 12 such runs, and the order of categories was randomized across
blocks. Each subject performed two blocks with a total of 24 runs. In total we have 1192 data
points per subject across all 6 categories. The data obtained from the authors in [23] contains only
localizers for V1, PPA, RSC, LOC, FFA areas. Thus we limit our seed areas to these ROIs.

4.2 Voxel selection

The goal of voxel selection is to identify the most relevant voxels for the experiment task out of the
tens of thousands of voxels in the entire brain. A quantitative evaluation of voxel selection is the
decoding accuracy? of the selected voxels, which measures how well can the selected voxels predict
the viewing condition from the neural responses.

Fig.1 compares our mutual information-based voxel selection method to other voxel selection meth-
ods. Decoding accuracy’ using univariate kNN mutual information is comparable to most active'



I Vi 7D

3 I Mi1D
LOg,(6) F-----mmmmmmmmm e
*%
*%
2 | *% *%
S 157
'I L
0.5+
0 I I I
IPPA rPPA IRSC rRSC
(a) Comparing 7D and 1D mutual information within-ROI (b) 7D MI between-ROI connections
connections

Figure 3: a) Within-ROI MI values for 7D and 1D mutual information, b) Schematic showing the significant
ROI connections found using 7D mutual information analysis. The network shows strong connections between
PPA and RSC, both ipsilaterally and contralaterally. **p < 107°, *p < 0.01

voxel selection. Multivariate information measure is able to select the more informative voxels by
considering a local pattern of voxels jointly, leading to a boost in decoding accuracy?.

To further understand why multivariate mutual information boosts the decoding accuracy?, we can
look at the spatial locations of the informative voxels selected by multivariate information analysis
shown in Fig.2. The most informative voxels selected correspond to known functional regions for
scenes. In this figure we see the scene areas V1, RSC, PPA, LOC that were also identified in [23].
Interestingly, our automatic voxel selection achieves a higher decoding accuracy® than the ROIs
selected by localizer in [23]. This may suggest that the multivariate information voxel selection is a
better segmentation of the relevant ROIs than the localizer runs.

4.3 Functional connectivity of ROIs

In the previous section, we have shown that multivariate information can effectively select infor-
mative voxels for classification. In this section, we first illustrate the increased sensitivity of a
multivariate assessment of functional connectivity within known ROIs. Then we use multivariate
information to explore connections between ROIs.

A good comparison for the functional connectivity measure is the within-ROI connectivity. Voxels
within the same ROI should exhibit high functional connectivity with each other. In Fig.3a we com-
pared our 7D measures with equivalent one dimensional measures using within-ROI connectivity.
To this end we randomly selected 15 seed and 15 target locations within each ROI, making sure that
seed and target patterns have no voxels in common. Then we computed mutual information between
all seed and all target locations, either using individual voxels (1D case) or patterns of seven voxels
(7D case). Fig.3a shows the mean of the mutual information values for these two cases in each ROI.
In all ROIs, we find that multivariate information measure(7D) is significantly higher than the uni-
variate measure(1D), suggesting that a pattern-based mutual information has a higher fidelity than
univariate-based mutual information in mapping out functional connections.

After having established that 7D mutual information significantly outperforms 1D mutual informa-
tion we proceed to calculate the between-ROI connectivity for scene areas V1, left/right PPA, and
left/right RSC using 7D mutual information as shown in Fig.3b. Between-ROI connectivity is de-

3Decoding accuracy is obtained with a leave-two-runs-out cross-validation on the our scene data. In each
fold two runs from viewing the same images upright and inverted are left out as test data. Voxel selection is
performed on the training runs using k = n/2, where n is the number of training examples in each category.
Using selected voxels, a linear SVM classifier is trained on the upright runs with C' = 0.02 as in [23]. In testing
we use majority voting on the SVM prediction labels to vote for the most likely scene label for each block of
data. Decoding accuracy is the average of cross-validation accuracy over the 5 subjects.
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fined similarly as within-ROI connectivity except that seed and target locations are the chosen in
different ROIs.

A number of aspects of the connections mapped out with MI7D analysis agree with neuroscience
findings. First, it is expected that PPA and RSC should be strongly connected as part of a scene
network. Moreover, since V1 is the input to the cortical visual system, it is also likely that it should
share information with at least one member of the scene network, which in this case was the right
PPA. One novel finding from this analysis is that all of the strongest connections we discovered
included right RSC. In particular, right RSC shares strong connections with left RSC, right PPA and
left PPA, suggesting that right RSC may play a particularly important role in distinguishing natural
scene categories. More work will be needed to verify this hypothesis.

To summarize, we have verified that multivariate information analysis can reliably map out con-
nections within and between ROIs known to be involved in processing natural scene categories. In
the next section we show how the same analysis can be extended to uncover other ROIs that share
information with this scene network in our scene classification experiment.

4.4 Functional connectivity - whole brain analysis

While it is valuable to confirm existing hypotheses about areas that represent scene categories, it
is also interesting to uncover new brain areas that might be related to scene categorization. In this
section, we show that we can use our multivariate information analysis approach to explore other
areas outside of the known ROISs that form strong connections with the known ROIs.

For each of the functional areas in the scene network, we can explore other areas connected to it.
As in section 3 we measure functional connectivity as multivariate mutual information between the
seed and candidate target areas. We fix the seed area to an ROI defined by a localizer. The candidate
area moves around the brain, at each location measuring the mutual information with respect to the
seed area.



4.4.1 Confirming known connections

Fig.4 shows an example of the connectivity map seeding from left PPA. Each highlighted location in
the connectivity map shows its connectivity to left PPA as measured by the multivariate information.
As shown in Fig.4, both left and right PPA are highlighted, confirming their bilateral connection.
Furthermore, we see strong connections between left PPA and left and right RSC. A minimum
cluster size of 13 is used to threshold the connectivity map. The minimum cluster size is determined
by AlphaSim in AFNI [4]. Notice in Fig.4 that the highest MI in the whole-brain analysis has MI of
0.51 whereas the within-ROI MI of left PPA in Fig.3b has a value of 1.5. The decrease in MI is due
to the smoothing of connectivity maps when we combine them across subjects.

4.4.2 Discovering new connections

Besides confirming known regions of the scene network, our connectivity maps allow us to explore
other brain areas that might be related to the scene network. In Fig.4 we not only observe known
scene network ROIs but additional areas such as the right Inferior Frontal Gyrus, left Medial Frontal
Gyrus, and left Precuneus. Interestingly, the Inferior Frontal Gyrus, typically associated with lan-
guage processing [13], also showed up in a searchlight analysis for decoding accuracy in [23].

So far we have examined how the rest of the brain connects to one ROI in the scene network,
specifically we used left PPA as the example. However, to further strongly establish which regions
are functionally connected in regards to distinguishing scene category, we asked which brain areas
are strongly connected to two or more of the scene network ROIs. Areas that connect to more than
one of the scene network ROIs are particularly interesting, because having multiple connections
strengthens evidence that they play a significant role in distinguishing scene categories.

To investigate this question, we generate one connectivity map for each of the 4 scene network ROIs,
similar to Fig.4. We take the areas with the top 5 percent highest mutual information in each of the
4 maps and overlap them. Fig.5 shows this overlap analysis.

Similar to the previous analysis, the overlap analysis highlights all 4 known areas of the scene
network. Interestingly, this analysis shows that right RSC and right PPA are connected with more
regions of the scene network than left RSC and PPA. This suggests that perhaps there is a laterality
effect in the scene network that could be investigated in future studies.

Furthermore, we can also explore areas outside of the scene network with the overlap analysis.
In Fig.5, left/right Cuneus and right Precuneus, highlighted in orange, exhibit strong connections
with 3/4 of the scene network ROIs. Left Medial Frontal Gyrus is strongly connected to 2/4 of the
scene network ROIs. These exploratory areas also point to interesting future investigations for scene
category studies.

5 Conclusion

In this paper we have introduced a new method for evaluating the mutual information that patterns
of fMRI voxels share with the ground truth labels of the experiment and with patterns of voxels
elsewhere in the brain. When used as a voxel selection method for subsequent decoding of viewed
natural scene category, mutual information of patterns of voxels with respect to the ground truth
label is superior to mutual information of individual voxels.

We have shown that mutual information of voxel patterns in two ROIs is a more sensitive measure
of task-specific functional connectivity analysis than mutual information of individual voxels. We
have identified a network of regions consisting of left and right PPA and left and right RSC that
share information about the category of a natural scene viewed by the subject. Connectivity maps
generated with this method have identified left medial frontal gyrus, left/right cuenus, and right
precuneus as sharing scene-specific information with PPA and RSC. This could stimulate interesting
future work such as estimating mutual information for an even larger set of voxels and understanding
the exploratory areas highlighted by this analysis. Although we confined our experiments to data
from a scene category task, all the analysis proposed here could be used for other tasks in other
domains.
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