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Abstract

In this paper we present a novel approach to learn directed acyclic graphs (DAGs)
and factor models within the same framework while also allowing for model com-
parison between them. For this purpose, we exploit the connection between factor
models and DAGs to propose Bayesian hierarchies based on spike and slab pri-
ors to promote sparsity, heavy-tailed priors to ensure identifiability and predictive
densities to perform the model comparison. We require identifiability to be able to
produce variable orderings leading to valid DAGs and sparsity to learn the struc-
tures. The effectiveness of our approach is demonstrated through extensive exper-
iments on artificial and biological data showing that our approach outperform a
number of state of the art methods.

1 Introduction

Sparse factor models have proven to be a very versatile tool for detailed modeling and interpretation
of multivariate data, for example in the context of gene expression data analysis [1, 2]. A sparse
factor model encodes the prior knowledge that the latent factors only affect a limited number of the
observed variables. An alternative way of modeling the datais through linear regression between
the measured quantities. This multiple regression model isa well-defined multivariate probabilistic
model if the connectivity (non-zero weights) defines a directed acyclic graph (DAG). What usually
is done in practice is to consider either factor or DAG models. Modeling the data with both types
of models at the same time and then perform model comparison should provide additional insight
as these models are complementary and often closely related. Unfortunately, existing off-the-shelf
models are specified in such a way that makes direct comparison difficult. A more principled idea
that can phrased in Bayesian terms is for example to find an equivalence between both models, then
represent them using a common/comparable hierarchy, and finally use a marginal likelihood or a
predictive density to select one of them. Although a formal connection between factor models and
DAGs has been already established in [3], this paper makes important extensions such as explicitly
modeling sparsity, stochastic search over the order of the variables and model comparison.

Is well known that learning the structure of graphical models, in particular DAGs is a very difficult
task because it turns out to be a combinatorial optimizationproblem known to be NP-hard [4]. A
commonly used approach for structure learning is to split the problem into two stages using the
fact that the space of variable orderings is far more smallerthan the space of all possible structures,
e.g. by first attempting to learn a suitable permutation of the variables and then the skeleton of the
structure given the already found ordering or viceversa. Most of the work so far for continuous
data assumes linearity and Gaussian variables hence they can only recover the DAG structure up
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to Markov equivalence [5, 6, 7, 8], which means that some subset of links can be reversed without
changing the likelihood [9]. To break the Markov equivalence usually experimental (interventional)
data in addition to the observational (non-interventional) data is required [10]. In order to obtain
identifiability from purely observational data, strong assumptions have to to be made [11, 3, 12]. In
this work we follow the line of [3] by starting from a linear factor model and ensure identifiability by
using non-normal heavy-tailed latent variables. As a byproduct we find a set of candidate orderings
compatible with a linear DAG, i.e. a mixing matrix which is “close to” triangular. Finally, we may
perform model comparison between the factor and DAG models inferred with fixed orderings taken
from the candidate set.

The rest of the paper is organized as follows. Sections2 to 5 we motivate and describe the different
ingredients in our method, in Section6 we discuss existing work, in Section7 experiments on both
artificial and real data are presented, and Section8 concludes with a discussion and perspectives for
future work.

2 From DAGs to factor models

We will assume that an orderedd-dimensional data vectorPx can be represented as a directed
acyclic graph with only observed nodes, whereP is the usually unknown true permutation ma-
trix. We will focus entirely on linear models such that the value of each variable is a linear weight
combination of parent nodes plus a driving signalz

x = P
−1

BPx+ z , (1)
whereB is a strictly lower triangular square matrix. In this setting, each non-zero element ofB
corresponds to a link in the DAG. Solving forx we can rewrite the problem as

x = P
−1

APz = P
−1(I−B)−1

Pz , (2)
which corresponds to a noise-free linear factor model with the restriction thatP−1

AP must have a
sparsity pattern that can be permuted to a triangular form since(I−B)−1 is triangular. This require-
ment alone is not enough to ensure identifiability (up to scaling and permutation of columnsPf )1.
We further have to use prior knowledge about the distribution of the factorsz. A necessary condition
is that these must be a set of non-Gaussian independent variables [11]. For heavy-tailed data is it
often sufficient in practice to use a model with heavier tailsthan Gaussian [13]. If the requirements
for A and for the distribution ofz are met, we can first estimateP−1

AP and subsequently findP
searching over the space of all possible orderings. Recently, [3] applied the fastICA algorithm to
solve for the inverse mixing matrixP−1

A
−1

P. To find a candidate solution forB, P is set such
thatB found from the direct relation equation (1), B = I − A

−1 (according to magnitude-based
criterion) is as close as possible to lower triangular. In the final step the Wald statistic is used for
pruningB and the chi-square test is used for model selection.

In our work we also exploit the relation between the factor models and linear DAGs. We apply a
Bayesian approach to learning a sparse factor models and DAGs, and the stochastic search forP

is performed as an integrated part of inference of the sparsefactor model. The inference of factor
model (including order) and DAG parameters are performed astwo separate inferences such that the
only input that comes from the first part is a set of candidate orders.

3 From factor models to DAGs

Our first goal is to perform model inference in the families offactor and linear DAG models. We
specify the joint distribution orprobability of everything, e.g. for the factor model, as

p(X,A,Z,Ψ,P, ·) = p(X|A,Z,P, ·)p(A|·)p(Z|·)p(Ψ|·)p(P|·)p(·) ,

whereX = [x1, . . . ,xN ], Z = [z1, . . . zN ], N is the number of observations and(·) indicates
additional parameters in the hierarchical models. The prior over permutationp(P|·) will always
be chosen to be uniform over thed! possible values. The actual sampling based inference forP is
discussed in the next section and the standard Gibbs sampling components are provided in the sup-
plementary material. Model comparison should ideally be performed using the marginal likelihood.
This is more difficult to calculate with sampling than obtaining samples from the posterior so we
use the predictive densities on a test set as a yardstick.

1These ambiguities are not affecting our ability to find correct permutationP of the rows.
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Factor model Instead of using the noise-free factor model of equation (2) we allow for additive
noisex = P

−1
r APcz + ǫ, whereǫ is an additional Gaussian noise term with diagonal covariance

matrix Ψ, i.e. uncorrelated noise, to account for independent measurement noise,Pr = P is the
permutation matrix for the rows ofA andPc = PfPr another permutation for the columns with
Pf accounting for the permutation freedom of the factors. We will not restrict the mixing matrix
A to be triangular. Instead we inferPr andPc using a stochastic search based upon closeness to
triangular as measured by a masked likelihood, see below. Now we can specify a hierarchy for the
Bayesian model as follows

X|Pr,A,Pc,Z,Ψ ∼ N (X|P−1
r APcZ,Ψ) , Z ∼ π(Z|·) ,

ψ−1
i |ss, sr ∼ Gamma(ψ−1

i |ss, sr) , A ∼ ρ(A|·) ,
(3)

whereψi are elements ofΨ. For convenience, to exploit conjugate exponential families we are
placing a gamma prior on the precision ofǫ with shapess and ratesr. Given that the data is
standardized, the selection of hyperparameters forψi is not very critical as long as both “signal and
noise” are supported. The prior should favor small values ofψi as well as providing support for
ψi = 1 such that certain variables can be explained solely by noise(we setss = 2 andsr = 0.05 in
the experiments).

For the factors we use a heavy-tailed priorπ(Z|·) in the form of a Laplace distribution parameterized
for convenience as a scale mixture of Gaussians [14]

zjn|µ, λ ∼ Laplace(zjn|µ, λ) =

∫
∞

0

N (zjn|µ, υ)Exponential(υjn|λ
2)dυjn , (4)

λ2|ℓs, ℓr ∼ Gamma(λ2|ℓs, ℓr) , (5)

where zjn is an element ofZ, λ is the rate andυ
has an exponential distribution acting as mixing den-
sity. Furthermore, we place a gamma distribution on
λ2 to get conditionals forυ andλ2 in standard con-
jugate families. We let the components ofZ have
on average unit variance. This is achieved by setting
ℓs/ℓr = 2 (we setℓs = 4 andℓr = 2). Alternatively
one may use at distribution—again as scale mixture
of Gaussians—which can to interpolate between very
heavy-tailed (power law) and very light tails, i.e. be-
coming Gaussian when degrees of freedom approaches
infinity. However such flexibility comes at the price of
being more difficult to select its hyperparameters, be-
cause the model could become unidentified for some
settings.

xin

zjn

υjnλ

aij

ψi

rij ηij

qij

νj

τij

n = 1 : N

j = 1 : d

i = 1 : d

Figure 1: Graphical model for Bayesian
hierarchy in equation (3).

The priorρ(A|·) for the mixing matrix should be biased towards sparsity because we want to infer
something close to a triangular matrix. Here we adopt a two-layer discrete spike and slab prior for
the elementsaij of A similar to the one in [2]. The first layer in the prior control the sparsity of
each elementaij individually, whereas the second layer impose a per-factorsparsity level to allow
elements within the same factor to share information. The hierarchy can be written as

aij |rij , ψi, τij ∼ (1− rij)δ(aij) + rijN (aij |0, ψiτij) ,

τ−1
ij |ts, tr ∼ Gamma(τ−1

ij |ts, tr) ,

rij |ηij ∼ Bernoulli(rij |ηij) ,

ηij |qij , αp, αm ∼ (1− qij)δ(ηij) + qijBeta(ηij |αpαm, αp(1− αm)) ,

qij |νj ∼ Bernoulli(qij |νj) ,

νj |βm, βp ∼ Beta(νj |βpβm, βp(1− βm)) ,

(6)

whereδ(·) is a Diracδ-function. The prior above specify a point mass mixture overaij with mask
rij . The expected probability ofaij to be non-zero isηij and is controlled through a beta hyperprior
with meanαm and precisionαp. Besides, each factor has a common sparsity rateνj that let the
elementsηij to be exactly zero with probability1−νj through a beta distribution with meanβm and

3



precisionβp, turning the distribution ofηij bimodal over the unit interval. The magnitude of non-
zero elements inA is specified through the slab distribution depending onτij . The parameters for
τij should be specified in the same fashion asψi but putting more probability mass aroundaij = 1,
for instancets = 4 and tr = 10. Note that we scale the variances withψi since it makes the
model easier to specify and tend to have better mixing properties [15]. The masking matrixrij with
parametersηij should be somewhat diffuse while favoring relatively largemasking probabilities,
e.g.αp = 10 andαm = 0.9. Additionally, qj and should favor very small values with low variance,
this is for exampleβp = 1000 andβm = 0.005. The graphical model for the entire hierarchy in (3)
omitting parameters is shown in Figure1.

DAG We make the following Bayesian specification of linear DAG model of equation (1) as

X|Pr,B,X, · ∼ π(X−P
−1
r B|·) , B ∼ ρ(B|·) , (7)

whereπ andρ are given by equations (4) and (6). The Bayesian specification for the DAG has a
similar graphical model to the one in Figure1 but without noise variancesΨ. The factor model
needs only shared variance parameterλ for the Laplace distributedzjn because a change of scale in
A is equivalent to change of variance inzjn. The DAG on the other hand, needs individual variance
parameters because it has no scaling freedom. Given that we know thatB is strictly lower triangular,
it should be in general less sparse thanA, thus we use a different setting for the sparsity prior, i.e.
βp = 100 andβm = 0.01.

4 Sampling based inference

For given permutationP, Gibbs sampling can be used for inference of the remaining parameters. De-
tails of Gibbs sampler is given in the supplementary material and we will focus on the non-standard
inference corresponding to the sampling over permutations. There are basically two approaches to
find P, one is perform the inference for parameters andP jointly with B restricted to be triangular.
The other is to let the factor model be unrestricted and search forP according to a criterion that does
not affect parameter inference. Here we prefer the latter for two reasons. First, joint combinatorial
and parameter inference in this model will probably have poor mixing with slow convergence. Sec-
ond, we are also interested in comparing the factor model against the DAG for cases when we cannot
really assume that the data is well approximated by a DAG. In our approach the proposalP⋆ corre-
sponds to picking two of the elements in the order vector by random and exchanging them. Other
approaches such as restricting to pick two adjacent elements have been suggested as well [16, 7].
For the linear DAG model we are not performing joint inference of P and the model parameters.
Rather we use a set ofPs found for the factor model to be good candidates for the DAG.

The stochastic search forP = Pc goes as follows: we make inference for the unrestricted factor
model, proposeP⋆

r andP⋆
c independently accordingq(P⋆

r |Pr)q(P
⋆
c |Pc) which is the uniform two

variable random exchange. With this proposal and the flat prior overP, we use a Metropolis-
Hastings acceptance probability simply as the ratio of likelihoods withA masked to have zeros
above its diagonal (through masking matrixM)

ξ→⋆ =
N (X|(P⋆

r )
−1(M⊙P

⋆
rA(P⋆

c)
−1)P⋆

c ,Ψ)

N (X|P−1
r (M⊙PrAP

−1
c )Pc,Ψ)

,

The procedure can be seen as a simple approach for generatinghypotheses about good, close to
triangularA, orderings in a model where the spike and slab prior providesbias towards sparsity.

To learn DAGs we first perform inference on the factor model specified by the hierarchy in (3) to
obtain a set of ordering candidates sorted according to their usage during sampling—after the burn-
in period. It is possible that the estimation ofA might contain errors, e.g. a false zero entry onA

allowing several orderings leading to several lower triangular versions ofA, only one of those being
actually correct. Thus, we propose not only to use the best candidate but a set of top candidates of
sizemtop = 10. Then we perform inference on the DAG model corresponding tothe structure search

hierarchy in (7), for each one of the permutation candidates being considered,P(1)
r , . . . ,P

(mtop)
r .

Finally, we select the DAG model among candidates using the predictive distribution for the DAG
when a test set is available or just the likelihood if not.
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5 Predictive distributions and model comparison

Given that our model produces both DAG and a factor model estimates at the same time, it could
be interesting to estimate also whether one option is betterthan the other given the observed
data, for example in exploratory analysis when the DAG assumption is just one reasonable op-
tion. In order to perform the model comparison, we use predictive densitiesp(X⋆|X,M) with
M = {MFA,MDAG}, instead of marginal likelihoods because the latter is difficult and expensive
to compute by sampling, requiring for example thermodynamic integration. With Gibbs sampling,
we draw samples from the posterior distributionsp(A,Ψ, λ|X, ·) andp(B, λ1, . . . , λm|X, ·). The
average over the extensive variables associated with the test pointsp(Z⋆|·) is a bit more compli-
cated because naively drawing samples fromp(Z⋆|·) gives an estimator with high variance—for
ψi ≪ υjn. In the following we describe how to do it for each model, omitting the permutation
matrices for clarity.

Factor model We can compute the predictive distribution by taking the likelihood in equation (3)
and marginalizingZ. Since the integral has no closed form we can approximate it using the Gaussian
distribution from the scale mixture representation as

p(X⋆|A,Ψ, ·) =

∫
p(X⋆|A,Z,Ψ)p(Z|·)dZ ≈

1

rep

∏
n

rep∑
r

N (x⋆
n|0,A

⊤
UnA+Ψ) ,

whereUn = diag(υ1n, . . . , υdn), the υjn are sampled from the prior andrep is the number of
samples generated to approximate the intractable integral(rep = 500 in the experiments). Then we
can average overp(A,Ψ, λ|X, ·) to obtainp(X⋆|X,MFA).

DAG In this case the predictive distribution is rather easy because the marginal overZ in equation
(4) is just a Laplace distribution with meanBX

p(X⋆|B, ·) =

∫
p(X⋆|B,X,Z)p(Z|·)dZ =

∏
i,n

Laplace(xij |[BX]in, λi) ,

where [BX]ij is the element indexed by thei-th row andn-th column ofBX. In practice we
compute the predictive densities for a particularX

⋆ during sampling and then select the model
based on its ratio. Note that both predictive distributionsdepend directly onλ—the rate of Laplace
distribution, making the estimates highly dependent on itsvalue. This is why it is important to have
the hyperprior onλ of equation (5) instead of just fixing its value.

6 Existing work

Among the existing approaches to DAG learning, our work is most closely related to LiNGAM
(Linear Non-Gaussian Acyclic Model for causal discovery) [3] with several important differences:
Since LiNGAM relies on fastICA to learn the mixing is not inherently sparse, hence a pruning
procedure based on Wald statistic and model fit second order information should be applied after
obtaining an ordering for the variables. The order search inLiNGAM assumes that there is not
estimation errors during fastICA model inference, then a single ordering candidate is produced.
LiNGAM produces and select a final model among several candidates, but in contrast to our method
such candidates are not different DAGs with different variable orderings but DAGs with different
sparsity levels. The factor model inference in LiNGAM, namely fastICA is very efficient however
their structure search involves repeated inversions of matrices of sizesd2 × d2 which can make
it prohibitive for large problems. More explicitly, the computational complexity of LiNGAM is
roughlyO(Nfitd

6) whereNfit is the number of model fit evaluations. In contrast, the complexity
in our case isO(Nited

2N) whereNite is the total number of samples including burn-in periods for
both, factor model and DAG inferences. Finally, our model ismore principled in the sense that all
the approach is within the same Bayesian framework, as a result it can be extended to for example
binary data or time series by selecting some suitable prior distributions.

Much work on Bayesian models for DAG learning already exist.For example, the approach pre-
sented in [16] is a Gaussian Bayesian network and therefore suffers from lack of identifiability.
Besides, order search is performed directly for the DAG model making necessary the use of longer
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sampler runs with a number of computational tricks when the problem is large (d > 10), i.e. when
exhaustive order enumeration is not an option.

7 Experiments

We consider four sets of experiments in the following. The first two consist on extensive experiments
using artificial data, the third addresses the model comparison scenario and the last one uses real
data previously published in [17]. In every case we ran 2000 samples after a burn-in period of 4000
iterations and three independent chains for the factor model, and a single chain with 1000 samples
and 2000 as burn-in for the DAG2. Hyperparameter settings are discussed in Section3.

LiNGAM suite We evaluate the performance of our model against LiNGAM3 using the artificial
model generator presented in [3]. The generator produces both dense and sparse networks with dif-
ferent degree of sparsity,Z is generated from a non-Gaussian heavy-tailed distribution,X is gener-
ated using equation (1) and then randomly permuted to hide the correct order,P. For the experiment
we have generated1000 different dataset/models usingd = {5, 10}, N = {200, 500, 1000, 2000}
and the DAG was selected using the (training set) likelihoodin equation (7). Results are summarized
in Figure2 using several performance measures. For the particular case of the area under the ROC
curve (AUC), we use the conditional posterior of the maskingmatrix, i.e. p(R|X, ·) whereR is
a matrix with elementsrij . AUC is an important measure because it quantifies how the model ac-
counts for the uncertainty of presence or absence of links inthe DAG. Such uncertainty assessment
is not possible in LiNGAM where the probability of having a link is simply zero or one, however
the AUC can be still computed.
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Figure 2: Performance measures for LiNGAM suite. Symbols are: square for 5 variables, star for 10
variables, solid line for sFA and dashed line for LiNGAM. (a)True positive rate. (b) True negative
rate. (c) Frequency of AUC being greater than 0.9. (d) Numberof estimated correct orderings.

In terms of true negative rates, AUC and ordering error rate,our approach is significantly better than
LiNGAM. The true positive rate results in Figure2(a)show that LiNGAM outperform our approach
only forN = 2000. However by comparing it to the true positive rate, it seems than LiNGAM prefer
more dense models which could be an indication of overfitting. Looking to the ordering errors, our
model is clearly superior. It is important to mention that being able to compute a probability for a
link in the DAG to be zero,p(bij 6= 0|X, ·), turns out to be very useful in practice, for example to
reject links with high uncertainty or to rank them. To give anidea of running times on a regular
two-core 2.5GHz machine, ford = 10 andN = 500: LiNGAM took in average 10 seconds and
our method 170 seconds. However, when doubling the number ofvariables the times were 730 and
550 seconds for LiNGAM and our method respectively, which isin agreement with our complexity
estimates.

2Source code available upon request (C with Matlab interface).
3Matlab package available athttp://www.cs.helsinki.fi/group/neuroinf/lingam/.
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Bayesian networks repository Next we want to compare some of the state of the art (Gaussian)
approaches to DAG learning on 7 well known structures4, namely alarm, barley, carpo, hailfinder,
insurance, mildew and water (d = 37, 48, 61, 56, 27, 35, 32 respectively). A single dataset of size
1000 per structure was generated using a similar procedure to the one used before. Apart from
ours (sFA), we considered the following methods5: standard DAG search (DS), order-search (OS),
sparse candidate pruning then DAG-search (DSC) [6], L1MB then DAG-search (DSL) [8], sparse-
candidate pruning then order-search (OSC) [7]. Results are shown in Figure3, including the number
of reversed links found due to ordering errors.
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Figure 3: Performance measures for Bayesian networks repository experiments.

In this case, our approach obtained slightly better resultswhen looking at the false positive rate,
Figure3(a). The true negative rate is comparable to the other methods suggesting that our model
in some cases is sparser than the others. AUC estimates are significantly better because we have
continuous probabilities for links to be zero (in the other methods we had to use a binary value).
From Figure3(d), the number of reversed links in the other methods is quite high as expected due to
lack of identifiability. Our model produced a small amount reversed links because it was not able to
find any of the true orderings, but indeed something quite close. This results could be improved by
running the sampler for a longer time or by considering more candidates. We also tried to run the
other approaches with data generated from Gaussian distributions but the results were approximately
equal to those shown in Figure3. On the other hand, our approach performs similarly but the number
of reversed links increases significantly since the model isno longer identified. The most important
advantage of the (Gaussian) methods used in this experimentis their speed. In all cases they are
considerably faster than sampling based methods. Their speed make them very suitable for large
scale problems regardless of their identifiability issues.

Model comparison For this experiment we have generated 1000 different datasets/models with
d = 5 andN = {500, 1000} in a similar way to the first experiment but this time we selected
the true model to be a factor model or a DAG uniformly. In orderto generate a factor model we
basically just need to be sure thatA cannot be permuted to a triangular form. We kept20% of the
data to compute the predictive densities to then select between all estimated DAG candidates and
the factor model. We found that forN = 500 our approach was able to select true DAGs91.5% of
the times and true factor models89.2%, corresponding to an overall error of9.6%, ForN = 1000
the true DAG and true factor model rates increased to98.5% and94.6% respectively. This results
demonstrate that our approach is very effective at selecting the true underlying structure in the data
between the two proposed hypotheses.

Protein-signaling network The dataset introduced in [17] consists on flow cytometry measure-
ments of 11 phosphorylated proteins and phospholipids (Raf, Erk, p38, Jnk, Akt, Mek, PKA, PKC,
PIP2, PIP3, PLCγ). Each observation is a vector of quantitative amounts measured from single
cells, generated from a series of stimulatory cues and inhibitory interventions. The dataset contains
both observational and experimental data. Here we are only using 1755 samples corresponding to

4http://compbio.cs.huji.ac.il/Repository/.
5Parameters: 10000 iterations, 5 candidates (SC, DSC), max fan-in of 5(OS, OSC) andOr strategy and

MDL penalty (DSL).
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Figure 4: Result for protein-signaling network. (a) Text-
book signaling network as reported in [17]. (b) Estimated
structure using Bayesian networks [17]. (c) Estimated
structure using our model. (e) Test likelihoods for the
best ordering DAG (dashed) and the factor model (solid).
(d) Likelihood ratios (solid) and structure errors (dashed)
for all candidates considered by our method and their us-
age. The Bayesian network is not able to identify the
direction of the links with only observational data.

pure observational data and randomly selected20% of the data to compute the predictive densities.
Using the entire set will produce a richer model, however interventions are out of the scope of this
paper. The textbook ground truth and results are presented in figure4. From the 21 possible links
in figure 4(a), the model from [17] was able to find 9, but also one falsely added link. In4(b), a
marginal likelihood equivalent prior is used and they therefore cannot make any inferences about
directionality from observational data alone, see Figure4(b). Our model in Figure4(c) was able to
find 10 true links, one falsely added link and only two reversed links (RL), one of them is PIP2 →
PIP3 which according to the ground truth is bidirectional and theother one, PLCγ → PIP3 which
was also found reversed using experimental data in [17]. Note from figure4(e) that the predictive
density ratios correlate quite well with the structural accuracy. The predictive densities for the best
candidate (sixth in Figure4(e)) is shown in Figure4(d)and suggests that the factor model is a better
option which makes sense considering that estimated DAG in figure4(c) is a substructure of the
ground truth. We also examined the estimated factor model and we found out that three factors
could correspond to unmeasured proteins (PI3K, MKK and IP3), see Figure 2 and table 3 in [17].
We also tried the above methods. Results were very similar toour method in terms of true positives
(≈ 9) and true negatives (≈ 32), however none of them were able to produce less than 6 reversed
links that corresponds to approximately two-thirds of total true positives.

8 Discussion

We have proposed a novel approach to perform inference and model comparison of sparse factor
models and DAGs within the same framework. The key ingredients for both Bayesian models are
spike and slab priors to promote sparsity, heavy-tailed priors to ensure identifiability and predictive
densities to perform the comparison. A set of candidate orderings is produced by the factor model.
Subsequently, a linear DAG is learned for each of the candidates. To the authors’ knowledge this
is the first time that a method for comparing such a closely related linear models is proposed. This
setting can be very beneficial in situations where the prior evidence suggests both DAG structure
and/or unmeasured variables in the data. For example in the protein signaling network [17], the
textbook ground truth suggests both DAG structure and a number of unmeasured proteins. The
previous approach [17] only performed structure learning in DAGs but our results suggest that the
data is better explained by the factor model. For further exploration of this data set, we obviously
need to modify our approach to handle hybrid models, i.e. graphs with directed/undirected links
and observed/latent nodes as well as being able to use experimental data. Our Bayesian hierarchical
approach is very flexible. We are currently investigating extensions to other source distributions
(non-parametric Dirichlet process, temporal Gaussian processes and discrete).
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