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Abstract

A crucial technique for scaling kernel methods to very large data sets reaching
or exceeding millions of instances is based on low-rank approximation of kernel
matrices. We introduce a new family of algorithms based on mixtures of diyistr
approximationsensemble Nysbtm algorithms, that yield more accurate low-rank
approximations than the standard Ngstr method. We give a detailed study of
variants of these algorithms based on simple averaging, an exponential weight
method, or regression-based methods. We also present a theoretical analysis of
these algorithms, including novel error bounds guaranteeing a better convergence
rate than the standard Ny8in method. Finally, we report results of extensive
experiments with several data sets containing up to 1M points demonstrating the
significant improvement over the standard N§etrapproximation.

1 Introduction

Modern learning problems in computer vision, natural language processing, computational biology,
and other areas are often based on large data sets of tens of thousands to millions of training in-
stances. But, several standard learning algorithms such as support vector machines (SVMs) [2, 4],
kernel ridge regression (KRR) [14], kernel principal component analysis (KPCA) [15], manifold
learning [13], or other kernel-based algorithms do not scale to such orders of magnitude. Even the
storage of the kernel matrix is an issue at this scale since it is often not sparse and the number of
entries is extremely large. One solution to deal with such large data sets is to use an approximation
of the kernel matrix. As shown by [18], later by [6,17,19], low-rank approximations of the kernel
matrix using the Nystirm method can provide an effective technique for tackling large-scale scale
data sets with no significant decrease in performance.

This paper deals with very large-scale applications where the sample size can reach millions of in-
stances. This motivates our search for further improved low-rank approximations that can scale to
such orders of magnitude and generate accurate approximations. We show that a new family of al-
gorithms based on mixtures of Ny&in approximationsgnsemble Nystm algorithms, yields more
accurate low-rank approximations than the standard Bgstnethod. Moreover, these ensemble al-
gorithms naturally fit distributed computing environment where their computational cost is roughly
the same as that of the standard Ngstrmethod. This issue is of great practical significance given
the prevalence of distributed computing frameworks to handle large-scale learning problems.

The remainder of this paper is organized as follows. Section 2 gives an overview of thérlystr
low-rank approximation method and describes our ensemble dgstfgorithms. We describe sev-
eral variants of these algorithms, including one based on simple averagingystrom solutions,



an exponential weight method, and a regression method whitsists of estimating the mixture pa-
rameters of the ensemble using a few columns sampled from the matrix. In Section 3, we present a
theoretical analysis of ensemble Nystr algorithms, namely bounds on the reconstruction error for

both the Frobenius norm and the spectral norm. These novel generalization bounds guarantee a bet-
ter convergence rate for these algorithms in comparison to the standardmyssthod. Section 4

reports the results of extensive experiments with these algorithms on several data sets containing up
to 1M points, comparing different variants of our ensemble Nystalgorithms and demonstrating

the performance improvements gained over the standarddvystrethod.

2 Algorithm

We first give a brief overview of the Ny$tm low-rank approximation method, introduce the notation
used in the following sections, and then describe our ensembleddystigorithms.

2.1 Standard Nystdm method

We adopt a notation similar to that of [5, 9] and other previous work. The Blysapproximation
of a symmetric positive semidefinite (SPSD) matixis based on a sample ef < n columns
of K [5,18]. LetC denote ther x m matrix formed by these columns aM¥ the m x m matrix
consisting of the intersection of thesecolumns with the corresponding rows of K. The columns
and rows ofK can be rearranged based on this sampling saKhamdC be written as follows:
W K, w
K= 21 . 1

|:K21 Koo K21:| @
Note thatW is also SPSD sincK is SPSD. For a uniform sampling of the columns, the Nystr
method generates a rankapproximationK of K for £ <m defined by:

K =CW;C" =K, 2)
where Wy, is the bestk-rank approximation ofW for the Frobenius norm, that i3, =
argmin,,. v)—x [W — V|| and W, denotes the pseudo-inverse %f; [7]. W,  can be de-
rived from the singular value decomposition (SVD)Wf, W = UXU ', whereU is orthonormal
andX = diag(oy, ..., 0.,) is a real diagonal matrix witl; >---> o, > 0. Fork <rank(W), it
is given byW; = 3% 47 'U'U?", whereU' denotes theth column ofU. Since the running
time complexity of SVD isO(m?) and O(nmk) is required for multiplication withC, the total
complexity of the Nystm approximation computation &(m?>+nmk).

e

2.2 Ensemble Nystom algorithm

The main idea behind our ensemble Ngstralgorithm is to treat each approximation generated by
the Nystbm method for a sample of, columns as aexpertand to combine > 1 such experts to
derive an improved hypothesis, typically more accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernel furitioki x X — R that
can be used to generate the entries of a kernel mE&trixrhe learner receives a samleof mp
columns randomly selected from matii& uniformly without replacements' is decomposed into
p subsamples ... ., S,. Each subsampl§,, r € [1, p], containsm columns and is used to define

a rank-kNystrom approximatioriK,.. Dropping the rank subscrigt in favor of the sample index
r, I~<,> can be written af(r = C,WIC/, whereC, and W, denote the matrices formed from
the columns of5,. andW ' is the pseudo-inverse of the rankapproximation ofW.,.. The learner
further receives a samplé of s columns used to determine the weighte R attributed to each
expertf{T. Thus, the general form of the approximationkKfgenerated by the ensemble Nystr
algorithm is

p
T ®
r=1

The mixture weightg:,. can be defined in many ways. The most straightforward choice consists of
assigning equal weight to each expert,= 1/p, r € [1, p]. This choice does not require the addi-
tional sampléel/, but it ignores the relative quality of each Ny@tm approximation. Nevertheless,



this simpleuniform methodalready generates a solution superior to any one of the approximations
K., used in the combination, as we shall see in the experimental section.

Another method, thexponential weight method, consists of measuring the reconstructio,eofor
each experf(r over the validation samplE and defining the mixture weight as =exp(—n¢,.)/Z,
wheren > 0 is a parameter of the algorithm avida normalization factor ensuring that the vector
= (p1,...,up,) belongs to the simpled of R?: A={p € RP: p > 0A>"_ pu. =1}. The
choice of the mixture weights here is similar to those used in the weighted-majority algorithm [11].
Let Ky, denote the matrix formed by using the samples fidras its columns and Ieﬁ(}’ denote

the submatrix ok, containing the columns corresponding to the columnis.iThe reconstruction
erroré, = ||I~{}./ — Ky || can be directly computed from these matrices.

A more general class of methods consists of using the sabpdetrain the mixture weightg,. to
optimize a regression objective function such as the following:

p
min Aflell3 + 1 D iKY — K[, @)
r=1
whereK,, denotes the matrix formed by the columns of the samg§laadl” and A > 0. This can
be viewed as a ridge regression objective function and admits a closed form solution. We will refer
to this method as thedge regression method.

The total complexity of the ensemble Ny&tn algorithm isO(pm? + pmkn+C,,), whereC,, is

the cost of computing the mixture weighjs, used to combine thg Nystrom approximations. In
general, the cubic term dominates the complexity since the mixture weights can be computed in
constant time for the uniform method, @(psn) for the exponential weight method, or @(p? +

pms) for the ridge regression method. Furthermore, although the ensembleéidyatgorithm
requiresp times more space and CPU cycles than the standard diystrethod, these additional
requirements are quite reasonable in practice. The space requirement is still manageable for even
large-scale applications given thais typically O(1) andm is usually a very small percentage of

n (see Section 4 for further details). In terms of CPU requirements, we note that our algorithm
can be easily parallelized, as allexperts can be computed simultaneously. Thus, with a cluster
of p machines, the running time complexity of this algorithm is nearly equal to that of the standard
Nystrom algorithm withm samples.

3 Theoretical analysis

We now present a theoretical analysis of the ensemble diystnethod for which we use as tools
some results previously shown by [5] and [9]. As in [9], we shall use the following generalization
of McDiarmid’s concentration bound to sampling without replacement [3].

Theorem 1. Let 74,..., Z,, be a sequence of random variables sampled uniformly without re-
placement from a fixed set of +u elementsZ, and let¢: Z™ — R be a symmetric function
such that for alli € [1,m] and for all z1,...,2, € Z and z1,...,z2/, € Z, |¢p(z1,. .., 2m) —
d(#1,y .-, 2im1, 2, Zit1, - - - 2m)| <c. Then, for alle > 0, the following inequality holds:

Pr (¢ —E[¢] > €] <exp [a(%jj@], %)

wherea(m, u) =

mu 1
m+u—1/2 1-1/(2max{m,u})"

We define theselection matrixcorresponding to a sample of columns as the matri® € R™*"
defined byS,; =1 if the ith column ofK is among those sample#;; =0 otherwise. ThusC=KS
is the matrix formed by the columns sampled. SikCés SPSD, there existX € RV*" such that
K = XTX. We shall denote b¥,,., the maximum diagonal entry &, K., = max; K;;, and
by d¥.. the distancenax;; \/K;; + K;; — 2Kj;.

3.1 Error bounds for the standard Nystrom method

The following theorem gives an upper bound on the norm-2 error of the déysapproximation of
the form||K —K]||2/||K]||2 < || K —Kgl2/||K]|2+O(1/+/m) and an upper bound on the Frobenius



error of the Nystom approximation of the formK — K||z/|K|r < |K — Ki|#/|K|# +

O(1/m1). Note that these bounds are similar to the bounds in The@rém{9], though in this
work we give new results for the spectral norm and present a tighter Lipschitz condition (9), the
latter of which is needed to derive tighter bounds in Section 3.2.

Theorem 2. Let K denote the rank-Mystiom approximation oK based onn columns sampled
uniformly at random without replacement fraRy, and K, the best rank-kapproximation ofK.
Then, with probability at least — §, the following inequalities hold for any sample of size

1K~ Kll2 < 1K — Killo + 22 Kumax |1+ /755 51077 108 3 dhane/ Koo

~ 1 e 1 H
IK = K|r < |K — K|l r + [22] 5 0K s {1 n \/TH/2 oy log § dgax/Kfnax} ,

1
2max{m,n—m}"

wherefs(m,n) = 1—

Proof. To bound the norm-2 error of the Ny8tn method in the scenario of sampling without re-
placement, we start with the following general inequality given by [5][proof of Lemma 4]:

IK ~ K2 < K~ Kill2 + 2 XX = ZZ |2, (6)
whereZ = /> XS. We then apply the McDiarmid-type inequality of Theorem 14(®) =

[XXT—~ZZT||,. LetS’ be a sampling matrix selecting the same columr axcept for one, and
let Z’ denote,/> XS’. Letz andz’ denote the only differing columns @ andZ’, then

6(S) — o(S)| < |22 —zz'|> = ||(2' —2)2"" +2(z —2) |2 ()
< 2|2’ — 2|2 max{]|zl2, [|2'[|2}- (8)

Columns ofZ are those o scaled by,/n/m. The norm of the difference of two columns &f
can be viewed as the norm of the difference of two feature vectors assolcidi’edrtd thus can be

bounded byixk. Similarly, the norm of a single column & is bounded byK 2,.x. This leads to the
following inequality:

‘(ZS(S/) ( )| < 7dmaxKI§naX~ (9)

The expectation ap can be bounded as follows:
B[®] = B[|XX" — ZZ" ||s] < E[|XX" - ZZ7||5] € ——Kumax 10
[@] = E[| l[2] < E[| ] < N , (10)

where the last inequality follows Corollary 2 of [9]. The inequalities (9) and (10) combined with
Theorem 1 give a bound dfXX " — ZZ ||, and yield the statement of the theorem.

The following general inequality holds for the Frobenius error of the ystmethod [5]:

K — K[} < |K - Kg|3 + V64k | XX T — ZZ7 |3 nK3*. (11)
Bounding the term| XX " —ZZ " |2 as in the norm-2 case and using the concentration bound of
Theorem 1 yields the result of the theorem. O

3.2 Error bounds for the ensemble Nystbm method

The following error bounds hold for ensemble Nysir methods based on a convex combination of
Nystrom approximations.
Theorem 3. Let S be a sample opm columns drawn uniformly at random without replacement

from K, decomposed intp subsamples of size, Si,...,S,. Forr € [1,p], let K, denote the
rank-k£ Nystiom approximation oK based on the sampl€,., and letK; denote the best rank-%
approximation of. Then, with probability at least — 9, the foIIowmg inequalities hold for any

sampleS of sizepm and for anyp in the simplexA and Kes = 1 1K

HK — KensHQ S HK — Kk||2 + j%Kmax |:1 + ,umdxp \/n 1/2 B(pm n) 1Og 5 dgax/KmaX}

[N

IK = R < K = K+ [S2] 0B [1+ pmacp? 2225 ey log & S /K|

whereS(pm,n) = 1— and fimax = maxt_; i,

1
2 max{pm,n—pm}



Proof. Forr € [1,p], letZ, = \/n/m XS,, whereS,. denotes the selection matrix corresponding

to the samples,. By definition of K" and the upper bound afiK — I~{T||2 already used in the
proof of theorem 2, the following holds:

p p
I =R = | Yo (K= K| <D K - Koo (12)
r=1 2 r=1
p
< S (1K — Killz + 2IXXT — 2,2/ ) (13)
r=1
p
=K = Kglla + 2> pe|XXT = Z,Z] 2. (14)

r=1

We apply Theorem 1 t@(S) = > 7_ u, | XX — Z,Z]|]2. LetS’ be a sample differing from
S by only one column. Observe that changing one column of the full saspleanges only one
subsamplé5,. and thus only one term,.|| XX " — Z,Z, ||2. Thus, in view of the bound (9) on the
change td/ XX — Z,Z |2, the following holds:

2n 1
|¢(Sl) - (ZS(S)‘ < E,U/maxdgaxK?na‘X7 (15)

The expectation oft can be straightforwardly bounded B{®(5)] = >7_, u, E[|IXXT —
Z,Z7]2] < P, urﬁKmx = ﬁKmax using the bound (10) for a single expert. Plugging

in this upper bound and the Lipschitz bound (15) in Theorem 1 yields our norm-2 bound for the
ensemble Nystrm method.

For the Frobenius error bound, using the convexity of the Frobenius norm sfifljigreind the
general inequality (11), we can write

. p 2 p .
e e DIV b S D Sy 8 & (16)
r=1 r=1

p
<> e[ IK — Kelp + VOIRXXT - 2,2] | nKE™]. (@17)

r=1

p

= |K = Ki|7 + V64k Y | XX - Z, 2] || p n K™, (18)

r=1

The result follows by the application of Theorem t6S)=>""_, 11, | XX — Z,Z, || r in a way
similar to the norm-2 case. O

The bounds of Theorem 3 are similar in form to those of Theoretd®vever, the bounds for the
ensemble Nystim are tighter than those for any Ny@&tn expert based on a single sample of size
m even for a uniform weighting. In particular, far=1/p, the last term of the ensemble bound for

norm-2 is smaller by a factor larger thag,axp% =1//p.

4 Experiments

In this section, we present experimental results that illustrate the performance of the ensemble
Nystrom method. We work with the datasets listed in Table 1. In Section 4.1, we compare the
performance of various methods for calculating the mixture weights (n Section 4.2, we show

the effectiveness of our technique lamge-scaledatasets. Throughout our experiments, we mea-
sure the accuracy of a low-rank approximati€rby calculating the relative error in Frobenius and
spectral norms, that is, if we I€t= {2, F'}, then we calculate the following quantity:

% 100. (19)



Dataset Type of data | # Points (n) # Features (d)Kernel
PIE-2.7K [16]|| face images 2731 2304 linear
MNIST [10] digitimages 4000 784 linear
ESS [8] proteins 4728 16 RBF
AB-S [1] abalones 4177 8 RBF
DEXT [1] bag of words 2000 20000 linear
SIFT-1M [12] || Image features 1M 128 RBF

Table 1:A summary of the datasets used in the experiments.

4.1 Ensemble Nystdm with various mixture weights

In this set of experiments, we show results for our ensemble diysinethod using different tech-
nigues to choose the mixture weights as discussed in Section 2.2. We first experimented with the
first five datasets shown in Table 1. For each dataset, we fixed the reduced kankdpand set the
number of sampled columns ta = 3% n.! Furthermore, for the exponential and the ridge regres-
sion variants, we sampled an additional set ef 20 columns and used an additioril columns

(s") as a hold-out set for selecting the optimal valueg ahd\. The number of approximationg,

was varied fron® to 30. As a baseline, we also measured the minimal and mean percent error across

the p Nystrom approximations used to constri€t™s. For the Frobenius norm, we also calculated
the performance when using the optimalthat is, we used least-square regression to find the best
possible choice of combination weights for a fixed set approximations by setting=mn.

The results of these experiments are presented in Figure 1 for the Frobenius norm and in Figure 2
for the spectral norm. These results clearly show that the ensembl@nMysérformance is signifi-

cantly better than any of the individual Ny$tn approximations. Furthermore, the ridge regression
technique is the best of the proposed techniques and generates nearly the optimal solution in terms of
the percent error in Frobenius norm. We also observed that wissncreased to approximateys,

to 10% of n, linear regression without any regularization performs about as well as ridge regression
for both the Frobenius and spectral norm. Figure 3 shows this comparison between linear regression
and ridge regression for varying valuessofising a fixed number of experts £10). Finally we

note that the ensemble Ny&tn method tends to converge very quickly, and the most significant
gain in performance occurs asncreases fron2 to 10.

4.2 Large-scale experiments

Next, we present an empirical study of the effectiveness of the ensembleéMystethod on the
SIFT-1M dataset in Table 1 containifgnillion data points. As is common practice with large-scale
datasets, we worked on a cluster of several machines for this dataset. We present results comparing
the performance of the ensemble Nystrmethod, using both uniform and ridge regression mixture
weights, with that of the best and mean performance acrogs Kystdm approximations used to

constructK“*. We also make comparisons with a recently propdsettans based sampling tech-
nique for the Nysidm method [19]. Although thg-means technique is quite effective at generating
informative columns by exploiting the data distribution, the cost of performsimgeans becomes
expensive for even moderately sized datasets, making it difficult to use in large-scale settings. Nev-
ertheless, in this work, we include themeans method in our comparison, and we present results
for various subsamples of the SIFT-1M dataset, wittanging frombK to 1M.

To fairly compare these techniques, we performed ‘fixed-time’ experiments. To do this, we first
searched for an appropriate such that the percent error for the ensemble Nystmethod with

ridge weights was approximately)%, and measured the time required by the cluster to construct
this approximation. We then alloted an equal amount of time (withsecond) for the other tech-
nigues, and measured the quality of the resulting approximations. For these experiments, we set
k=50 andp=10, based on the results from the previous section. Furthermore, in order to speed up
computation on this large dataset, we decreased the size of the validation and hold-out s€ls to
ands’ =2, respectively.

Similar results (not reported here) were observed for other valugsaofim as well.
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Figure 1: Percent error in Frobenius norm for ensemble Wgstnethod using uniform (‘uni’), ex-
ponential (‘exp”), ridge (‘ridge’) and optimal (‘optimal’) mixture weights as well as the best (‘best
b.l") and mean (‘mean b.l.") performance of théase learners used to create the ensemble approx-
imation.
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Figure 2: Percent error in spectral norm for ensemble Nystmethod using various mixture
weights as well as the best and mean performance of éipproximations used to create the ensem-
ble approximation. Legend entries are the same as in Figure 1.

The results of this experiment, presented in Figure 4, clearly show that the ensembl@mNystr
method is the most effective technique given a fixed amount of time. Furthermore, even with
the small values of ands’, ensemble Nystrm with ridge-regression weighting outperforms the
uniform ensemble Nysbm method. We also observe that due to the high computational cost of
k-means for large datasets, thaneans approximation does not perform well in this ‘fixed-time’
experiment. It generates an approximation that is worse than the mean standaéanNagbiroxi-
mation and its performance increasingly deteriorates agproachesM. Finally, we note that al-
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Figure 4: Large-scale performance comparison with SIFT-Htaskt. Given fixed computational
time, ensemble Nysbm with ridge weights tends to outperform other techniques.

though the space requirements &ddimes greater for ensemble Ny&tn in comparison to standard
Nystrom (sincep = 10 in this experiment), the space constraints are nonetheless quite reasonable.
For instance, when working with the fulM points, the ensemble Ny#&tm method with ridge re-
gression weights only required approximaté¥y of the columns oK to achieve a percent error of

10%.

5 Conclusion

We presented a novel family of algorithnesisemble Nyshim algorithms, for accurate low-rank ap-
proximations in large-scale applications. The consistent and significant performance improvement
across a number of different data sets, along with the fact that these algorithms can be easily par-
allelized, suggests that these algorithms can benefit a variety of applications where kernel methods
are used. Interestingly, the algorithmic solution we have proposed for scaling these kernel learning
algorithms to larger scales is itself derived from the machine learning idea of ensemble methods.
We also gave the first theoretical analysis of these methods. We expect that finer error bounds and
theoretical guarantees will further guide the design of the ensemble algorithms and help us gain a
better insight about the convergence properties of our algorithms.
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