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Abstract

In this paper, we study the manifold regularization for the Sliced Inverse Regres-
sion (SIR). The manifold regularization improves the standard SIR in two aspects:
1) it encodes the local geometry for SIR and 2) it enables SIR to deal with trans-
ductive and semi-supervised learning problems. We prove that the proposed graph
Laplacian based regularization is convergent at rate root-n. The projection direc-
tions of the regularized SIR are optimized by using a conjugate gradient method
on the Grassmann manifold. Experimental results support our theory.

1 Introduction

Sliced inverse regression (SIR) [7] was proposed for sufficient dimension reduction. In a regression
setting, with the predictors X and the response Y, the sufficient dimension reduction (SDR) sub-
space B is defined by the conditional independency YL X| BTX. Under the assumption that the
distribution of X is elliptic symmetric [7], it has been proved that the SDR subsapce B is related
to the inverse regression curve E(X]Y). It can be estimated at least partially by a generalized eigen-
decomposition between the covariance matrix of the predictors Cov(X) and the covariance matrix of
the inverse regression curve Cov(E(X]|Y)). When Y is a continuous random variable, it is discretized
by slicing its range into several slices so as to estimate E(X|Y) empirically. This procedure reflects
the name of SIR.

For practical applications, the elliptic symmetric assumption on P(X) in SIR cannot be fully satis-
fied, because many real datasets are embedded on manifolds [1]. Therefore, SIR cannot select an
efficient subspace for predicting the response Y because the local geometry of the predictors X is
ignored. Additionally, SIR only utilizes labeled (given response) data (predictors). Thus, it is valu-
able to extend SIR to deal with transductive and semi-supervised learning problems by considering
unlabelled samples.

We solve the above two problems of SIR by using the manifold regularization [2], which has been
developed to incorporate the local geometry in learning classification or regression functions. In
this paper, we utilize it to preserve the local geometry of predictors in learning the SDR subspace
B. In addition, it helps SIR to solve transductive/semi-supervised learning problems because the
regularization encodes the marginal distribution of the unlabelled predictors.

Different regularizations for SIR have been well studied, e.g., the non-singular regularization [14],
the ridge regularization [9], and the sparse regularization [8]. However, all existing regularizations
do not encode the local geometry of the predictors. Although the localized sliced inverse regression
[12] considers the local geometry, it is heuristic and does not follow up the regularization framework.

The rest of the paper is organized as following. Section 2 presents the manifold regularization for
SIR. Section 3 proves the convergence of the new manifold regularization. We discuss the optimiza-



tion algorithm of the regularized SIR by using the conjugate gradient method on the Grassmann
manifold in Section 4. Section 5 presents the experimental results on synthetic and real datasets.
Section 6 concludes this paper.

2 Manifold Regularization for SIR

In the rest of the paper, we use terminologies in regression and deem classification as regression
with the category response. Upper case letters X € RP and Y € R are respectively the predictors
and the response, and lower case letters x and y are corresponding realizations. Given a sample
set, containing n; labeled samples {z;,y;};", and n, unlabeled samples {xi}?';:'l'fln“, we seek an
optimal k-dimensional subspace spanned by B = /31, ..., Bx] such that the response Y is predictable
with the projected predictors BT X. We also use matrix X = [z, 2o, ..., ¥,,] to denote all predictors
in the sample set.

2.1 Sliced Inverse Regression

Suppose the response Y is predictable with a sufficient k-dimensional projection of the original
predictors X. We can consider the following regression model [7].

Y =f (81X, 87X, .., Bt X,¢€) (1)

where 3’s are linear independent projection vectors and ¢ is the independent noise. Given a set
of samples {z;,y;}.~,, SIR estimates the projection subspace B = [0, ..., Ox| via following steps:
discretize Y by slicing its range into H slices; calculate the sample frequency f, of Y falling into the
h-th slice and the sample estimation of the conditional mean X;, = E(X[Y = h); estimate the mean

X and covariance matrix ¥ of predictors X; calculate the matrix I' = Y-, f, (X, — X) (X — X) T,
and B is finally obtained by using the generalized eigen-decomposition X5 = AI'(3. It can be proved
that the generalized eigen-decomposition is equivalent to the following optimization,

max trace ((BTEB) - BTFB) . )
We refer to (2) as the objective function of SIR and thus we can impose with the manifold regular-
ization on (2).

Remark 2.1 Another way to get the objective (2) is based on the least square formulation for SIR
proposed in [3],

H
minL (B,C) = Y fu (X =X = £BC,) £ (X = X — BBC,) 3)
h=1

where C' = [Cy, Cs, ..., Cy] are auxiliary variables. Eliminate C}, by setting the partial derivative
OL/OCp, = 0, and then (2) can be obtained directly. Additionally, (2) shows that SIR could have
a similar objective as linear discriminant analysis, although they are obtained from different under-
standings of discriminative dimension reduction.

2.2 Manifold Regularization for SIR

Each dimension reduction projection 3 can be deemed as a linear function or a mapping g(x) =
BT x. We expect to preserve the local geometry of the distribution of the predictors X while doing
mapping g(z). Suppose the predictors X are embedded on a manifold M, this can be achieved by
penalizing the gradient V 5, g along the manifold M. Because we are dealing with random variables
with the distribution P(X), the following formulation can be applied,

R= / IV gl dP (X). @)

XeM

The above formulation is different from the original manifold regularization [2]on the point that
the function g(z) is a dimension reduction mapping here while it is a classification or regression



function in [2]. Usually, both the manifold and the marginal distribution of X are unknown. It has
been well studied in manifold learning, however, that the regularization (4) can be approximated by
using the associated graph Laplacian of labeled and unlabeled {x;}7—," """,

n=ni+mn.

Construct an adjacent graph for {z;}; , where the pairwise edge weight (W), ;=

¢ (||z; — x;]|) is defined by the kernel function ¢ (-), e.g., the heat kernel ¢ (d) = exp (—d?),
and then the associated graph Laplacian is L = D — W, where D is a diagonal matrix given
by Dy = > ; Wij. Thus, the regularization in (4) can be approximated by R = g’ Lg, where
g = [Tx1, ..., 3T x,]. Furthermore, because there are k independent projections B = [31, ..., Bx] ,
we take the summation of k regularizations

k
R=> gl'Lg = trace (G"LG) (5)
=1

where G = [g1, ..., 8]

In manifold learning, it is suggested to use the normalized graph Laplacian D~Y/2LD~1/2 to re-
place L, or to use an equivalent constraint GT DG = I, to get a better performance [1], and the
solution obtained by the normalized graph Laplacian is consistent with weaker conditions than
the unnormalized one [13]. In the proposed regularized SIR, we normalize the regularization

(5) as R = trace ((GTDG)_1 GTLG>, which is equivalent to the constraint GT DG = 1.

This normalization makes R invariant to scalar and rotation transformations of the projections
B =B, ..., Bk), which is preferred for dimension reduction problems. By adding the regularization

R = trace ((GTDGfl GTLG> to SIR (2), and substituting G = X7 B, we get the regularized
SIR

max SIR, (B) = trace ((B"SB) ' B'TB)  ntrace ((B"SB) " B'QB) (©6)

where @ = 1/n(n—1) XLXT,S=1/n(n—1) XDXT, and 7 is the positive weighting factor.

3 Convergence of the Regularization

Different from the existing regularizations [8,9,14] for SIR, which are constructed as deterministic
terms, the manifold regularization in (6) is a random term that involves two data dependent variables
(matrices) () and S. Therefore, it is necessary to discuss the convergence property of the proposed
manifold regularization.

It has been well proved that both ¥ and I" converge at rate root-n [7,11,15]. Therefore, the con-
vergence rate of the objective (6) depends on whether the regularization term converges at rate
root-n. Below, we prove that both the sample based estimations Q = 1/n(n — 1) XLXT and
S =1/n(n—1)XDXT converge to deterministic matrices at rate root-n. Note that the conver-
gence of a special case where the graph Laplacian is built by the kernel function ¢ (d) = 1(d < ¢)
was proved in [6]. Our proof scheme, however, is quite other than that used in [6]. Additionally, we
target a general choice of kernel ¢ (+) and also prove the root-n convergence rate which has not been
obtained before.

Although samples {;vq;}?:lnﬁn“ are independent, the dependency of L and D on samples makes

@ and S cannot be expanded as a summation of independent items. Therefore, it is difficult to
apply the law of large numbers and the central limit theorem to prove the convergence and obtain
the corresponding convergence rate. However, we can prove them by constructing the converged
limitation and show that the variance of the sample based estimation with respect to the constructed
limitation decades at rate root-n. Throughout the results obtained in this Section, we assume the
following conditions hold.

Conditions 3.1 For kernel function ¢ (d) , it satisfies ¢ (0) = 1 and |¢ (d)| < 1. For the distribution
of predictors P(X), the fourth order moment exists, i.e.,. &/ (H (vec(za™)) (vec(xxT))TH) < 00,

where vec() vectorizes a matrix into a column vector.



We start by splitting () into two parts 77 and 75,

n

1 1 1 2
=— XLXT=__— Dy — W)zl — ————— Wizl =T, - Ty (7

Substituting the function ¢ (-) into (7), we have

Ty = gy 3 ( = 6 (s — 1) - ¢<o>>xix? -3 ( émnxi - xjn))xix?
% = 1= J#i

=1 \j=

3
n n n
T = i 2 Womiey = 5 2 ( > o (le: - xjn)x?)'
1F] 7 i

Under the condition 3.1, the next two lemmas show the convergence of 77 and 715, respectively.

Lemma 3.1 Let the conditional expectation ¢ (x) = E (¢ (||z — x||) |« ), wherez and x are indepen-

dent and both are sampled from P(X). The E (¢ (x) za™) exists, and Ty in (8) converges almost

—1/2

surely at rate n , e,

= (gp (x) a::z:T) +0 (nil/z) . 9)

Lemma 3.2 Let the conditional expectation n)(x) = E (¢ (||z — z||) z |« ), where z and x are inde-
pendent and both are sampled from P(X). The E (:m (:E)T) exists, and T in (8) converges almost

surely at rate n’1/2, Le.,

e E (mn (a:)T) +0 (n_1/2) . (10)

The proofs of above two lemmas are given in Section 6. Based on Lemmas 1 and 2, we have the
following two theorems for the convergence of ) and S.

Theorem 3.1 Given the Conditions 3.1, the sample based estimation () converges almost surely to
a deterministic matrix E (Q) = E (p (z) za™) — E (xn (x)T> at rate n=/?, ie, Q= E(Q) +
O (n17?).

Proof. Because () = T — T5, the theorem is an immediate result from Lemmas 3.1 and 3.2.

Theorem 3.2 Given the Conditions 3.1, the sample based estimation S converges almost surely to a
deterministic matrix E (i (z) zz™) at rate n=1/2, i.e., S “E (¢ (z)z2T) + O (n=1/2).

Proof. Dii = Zj Wij = Zl (b (sz — l‘jH), so S = ﬁ X:ID”l‘Zl‘? =
J= =

=X

3 -

=

M=
VR

M=

¢(|xi—$j||)>l‘i$zr =) anl <§¢(||$i—xj||)+¢(0)>l’i$iT =T+
i= VE]

=1 \j=1
n n

nioTy o tit] . Because lgy 3C i} is an unbiased estimation of Cov(X), we have
=1 i=1
n

n(nlfl) szxf =0 (n~'). Therefore, according to Lemma 3.1, we have S = T +

-
[
—
L'/a

O (n )= E (¢ (z)2zT) + O (n~1/?). Note that here E (S) # E (¢ () z2™), but equality
can be asymptotically achieved when n — oo.

4 Optimization on the Grassmann Manifold

The optimization of the regularized SIR (6) is much more difficult than that of the standard SIR (2),
which can be solved by the generalized eigen-decomposition. In this section, we present a conjugate



gradient method on the Grassmann manifold to solve (6), based on the fact it is invariant to scalar and
rotation transformations of the projection B. By exploiting the geometry of the Grassmann manifold,
the conjugate gradient algorithm converges faster than the gradient scheme in the Euclidean space.

Given a constrained optimization problem min F' (A) subject to A € RP*¥ and AT A = I, if the
problem further satisfies ' (A) = F (AO) for an arbitrary orthonormal matrix O, then it is called
an optimization problem defined on the Grassmann manifold G,;. By the following theorem, we
can transform (6) into its equivalent form (11) which is defined on the Grassmann manifold.

Theorem 4.1 Suppose that 3 is nonsingular and given the eigen-decomposition no2en-1/2 =
UAUT, problem (6) is equivalent to
~ ~ -1 ~
min F(4) = ~trace (ATFA) + ntrace ((ATAA) ATQA> (11)
=1

where T = UTS=1208-120 and Q = UTS-Y2Q2~Y2U. Given the optimal solution A of
(11), the optimal solution of (6) is given by B = ©1/2U A .

Proof. Substituting B = £~1/2U A into (6), we have SIR, (A) = trace ((ATA)‘1 ATfA) -

N R
ntrace ((ATAA) ATQA>. Given a nonsingular ¥, B = X ~/2U A is an invertible variable

transform. Thus, we know that if A maximizes SIR, (A) then B maximizes SIR, (B). Because
SIR, (A) s invariant to scalar and rotation transformations, a constraint A7 A = I can be added to
(6). We then get (11). This completes the proof.

To implement the conjugate gradient method on the Grassmann manifold, the gradient of F (A)
in (11) is required. According to [4], the gradient G4 of F' (A) on the manifold is defined by
G a = 114 F4 where F4 is the gradient of F' (A) in the Euclidian space and 14 = I — AA7 is the
projection onto the tangent space at A of the manifold. In case of F' (A) in (11), it is given by,

Ga=(I—AAT)TA -1y <1 ~AA (AT]\A)_l AT) QA (ATAA) - (12)

Next, we present the conjugate gradient method on the Grassmann manifold [4] to solve (11). The
algorithm is given by the following three steps:

e 1-D searching along the geodesic: given the current position Ay , the gradient G and the
searching direction Hy, , the 1-D searching along the geodesic is given by

min F (A(t)) st A(t) = F (ApV cos (£t) VT + Usin (St) V7) (13)

where ULV 7T is the compact SVD of Hj. Record the minimum solution ¢, = iy, and Ag41 =
A (ty) as the starting position for next searching.

¢ Transporting gradient and search direction: parallel transport G, and Hy, from A, to Ag41 by
using

TGy = G — (AR Vsin Sty + U (I — cos Bty,)) UL Gy, (14)

THy = (— AV sin Xty + U cos Sty,) VT (15)

o Calculating the conjugate direction: given the gradient G, at Ax1, the conjugate searching
direction is

Hypy1 = —Ggaq +trace ((Gk+1 — TGk)T Gk+1> /trace (GgGk) TH}. (16)

Initialize Ay by a random guess (subject to AL Ay = I ) and let Hy = —Gy, and then repeat the
above three steps iteratively to minimize F' (A) until convergence, i.e., |F (Agt1) — F (Ag)| < 0.
Note that, the same as the conjugate gradient method in the Euclidian space, the searching direction
Hj, has to be resetting as H, = —G), with a period of p (n — p), i.e., the dimension of the searching
space.



5 Experiments

In this section, we evaluate the proposed regularized SIR on two real datasets. We show the results
of the standard SIR and the localized SIR on the same experiments for reference.

5.1 USPS Test

The USPS dataset contains 9,298 handwriting characters of digits O to 9. The entire USPS database
is divided into two parts, a training set is with 7,291 samples and a test set is with 2,007 samples
[5]. In our experiment, dimension reduction is first implemented and then the nearest neighbor
rule is used for classification. By using the 1/3 of the data in training set as labeled data and the
rest 2/3 as unlabeled data, we conduct supervised and semisupervised dimension reduction by the
following five methods: supervised training of standard SIR, the manifold regularized SIR, and the
localized SIR, and semi-supervised training of the manifold regularized SIR and the localized SIR.
Performances are evaluated on the independent testing set. Table 1 summarizes the experimental
results. It shows that both the regularized SIR and the localized SIR [12] can achieve superior
performance to the standard SIR, and the manifold regularized SIR performs better than the localized
SIR in both the supervised and the semi-supervised training. Experimental results reflect that the
manifold regularized SIR is effective on exploiting the local geometry of a dataset.

Table 1: Experimental results on the USPS dataset: SIR; the manifold regularized SIR (RSIR);
the localized SIR (LSIR); semi-supervised training of the manifold regularized SIR (sRSIR); semi-
supervised training of the localized SIR (sLSIR).

Dimensionality 7 9 11 13 15 17 19 21

SIR 0.8635 0.8794 — — — — — —
RSIR 0.8575 0.8809 0.8859 0.8889 0.9028 0.9108 0.9148 0.9193
sRSIR 0.8685 0.8864 0.8934 0.8909 0.9053 0.9128 0.9208 0.9193
LSIR 0.8301 0.8421 0.8535 0.8724 0.8789 0.8949 0.8989  0.9003
sLSIR 0.8526 0.8675 0.8795 0.8826 0.8914 0.8954 0.9038 0.9063

5.2 Transductive Visualization

In Coil-20 database [10], each object has 72 images taken from different view angles. All images
are cropped into 128 x 128 pixel arrays with 256 gray levels. We then reduce the size to 32x32, and
used the first 10 objects for 2-D visualization, with randomly labeled 6 out of 72 images. Figure
1 shows the visualization results obtained by SIR, the proposed regularized SIR and the localized
SIR [12]. The figure shows that by exploiting the unlabeled data via the manifold regularization
for dimension reduction, the performance for data visualization can be significantly improved. The
localized SIR performs better than SIR, but not as good as the regularized SIR.

Figure 1: Visualization of the first 10 objects in Coil-20 database: from left to right, by the standard
SIR, the manifold regularized SIR, and the localized SIR.



6 Proofs of Lemmas

Proof of Lemma 3.1 Because the kernel function ¢ (-) is bounded by |¢ (d)] < 1, we have
lo(x)] = |[E(¢(|lz — =) |z)| < 1, which implies that E (¢ (z) zz”) exists. Then, to prove

T2 FE (¢ (z)z2T) + O (n1/2), it is sufficient to show that E(Ty) = E (¢ (z)zz”) and
Cov(vec(T1)) = E ((vec (T1)) (vec (Tl))T> — (vee (B (Ty))) (vee (E (T1))T = O (n~1).
First, because z; and z; are independent when ¢ # 7, it follows,

1 — 1 n
E(T)=E (nz (n—l > ¢(xi—xj||)) “T)
i=1 J#i,5=1
= YE (”( > B lez—wnnxn)) (17)
i=1 17'51:] 1

_ % > B (el (@) = B (p(@)as").

Next, we show E ((vec (T1)) (vec (Tl))T) is a summation of two terms, of which one is

(vee(E (Th))) (vee(E (T1)))" and the other is O (n~1).
E ((vec (Th)) (vec (Tl))T)

T
- n2(nl—1)2E vec ;MH:@ — xjH)xz:EZT vec ZQS(H:EZ — xjH)mla:ZT
17 i#]
(18)
T
- 5 L3S B (vee (6 e — ) i) (vee (6 (e — ) o))
(n— i£j i A5
1
= 3 E(®i,j,i.5 E(®;
n?(n—1)° //Z (i) + n?2 n—lzlZ R
4,7, ,7 distinct etse
where ®; ;i1 i» = vec (¢ (|lzi — ;) zizl) (vee (¢ (|lzi — z;])) xzzx;f/))T
When 4, j, 7', j" are distinct, 2;,2;,2;/, and ;, are independent, we have
E(®ijiy) =E ((Uec (@ (i = z5])) zi)) (vee (6 (lzwr — zj0) %CUZT))T)
= (vec (E (¢ (z) za™))) (vec (E (¢ () ach)))T (19)

= (vec(E (T1))) (vec (E (T1)))"
Therefore, the first term in E (vec (T1) (vec (Tl))T) is
T L B@igey) = 2SR (vee (B (1)) (vee (B (1))
datines (20)
= (vec (B (Th))) (vee (B (T1)))" + 0 (n~1).

For the second term in E ((vec (T1)) (vec (Tl))T>, E (®; ., ) is bounded by a constant (matrix)
M under the Conditions 3.1, and thus we have

1QZE 1]7.”

else

< 1ZZM 2(4?) 6) pr = o(n 1. @

ni

TL - else



Combining the above two results, we have
Cov (vec (T1)) = E(vec (T1)) (vec (Tl))T — (vec (E (T1))) (vec (E (T ))) =0 ( 1) (22)
Proof of Lemma 3.2 Similar to the proof of Lemma 3.1, (xn ) exists. Then, it is sufficient
0

to show that E (T3) = E (xn () ) and Cov (vec (T»)) = O (n™). First, we have

1 n 1 n
ET)=E| = wi| — > ¢(lzi—ul)a]

n

i=1 JFi,j=1
1 n 1 n
=Bl X BOUa—ala] ) 29
=1 i#ig=1

= > B (@) = B (on (2)).
i=1
Next, we split F¥ ((vec (Ts)) (vec (Tg))T> into two terms

E ((vec (T3)) (vec (Tg))T)

T
1 n
= — s E | vec Zqﬁ ||x; — x]||)xl vec ZQS(H:UZ —xJH)xe;F
n? (n —1)° i#] i#]
24
T
- 33 5 ((vee (61— 2y za”)) (vee (6 (o — o eaT) )
n?(n — 1) it
i#j i #5’
1
n2 (n o 1)2 Z ( VARV ) n TL YV ZZ 6,358 ]
i,4,4",5 distinct etse
T
where U, ; v i» = vee (¢ ([lz; — z;])) xliT) (vec (¢ (||lwir — x| xl/xzj)) .
Following the same method used in the proof of Lemma 3.1, we have
YT Y EWigay) = (vee(E (T2))) (vee (B (T3))" +0 (n™") (25)
B else
and
2ZE iaing)| <O (n71). (26)

n else

Therefore, we have Cov (vec (T2)) = O (n™1).

7 Conclusion

We have studied the manifold regularization for Sliced Inverse Regression (SIR). The regularized
SIR extended the original SIR in many ways, i.e., it utilizes the local geometry that is ignored
originally and enables SIR to deal with the tranductive/semisupervised learning problems. We also
discussed the statistical properties of the proposed regularization, that under mild conditions, the
manifold regularization converges at rate root-n. To solve the regularized SIR problem, we present
a conjugate gradient method conducted on the Grassmann manifold. Experiments on real datasets
validate the effectiveness of the regularized SIR.
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