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Abstract

Speaker comparison, the process of finding the speaker similarity between two
speech signals, occupies a central role in a variety of applications—speaker ver-
ification, clustering, and identification. Speaker comparison can be placed in a
geometric framework by casting the problem as a model comparison process. For
a given speech signal, feature vectors are produced and used to adapt a Gaussian
mixture model (GMM). Speaker comparison can then be viewed as the process of
compensating and finding metrics on the space of adapted models. We propose
a framework, inner product discriminant functions (IPDFs), which extends many
common techniques for speaker comparison—support vector machines, joint fac-
tor analysis, and linear scoring. The framework uses inner products between the
parameter vectors of GMM models motivated by several statistical methods. Com-
pensation of nuisances is performed via linear transforms on GMM parameter
vectors. Using the IPDF framework, we show that many current techniques are
simple variations of each other. We demonstrate, on a 2006 NIST speaker recog-
nition evaluation task, new scoring methods using IPDFs which produce excellent
error rates and require significantly less computation than current techniques.

1 Introduction

Comparing speakers in speech signals is a common operation in many applications including foren-
sic speaker recognition, speaker clustering, and speaker verification. Recent popular approaches
to text-independent comparison include Gaussian mixture models (GMMs) [1], support vector ma-
chines [2, 3], and combinations of these techniques. When comparing two speech utterances, these
approaches are used in a train and test methodology. One utterance is used to produce a model which
is then scored against the other utterance. The resulting comparison score is then used to cluster,
verify or identify the speaker.

Comparing speech utterances with kernel functions has been a common theme in the speaker recog-
nition SVM literature [2, 3, 4]. The resulting framework has an intuitive geometric structure. Vari-
able length sequences of feature vectors are mapped to a large dimensional SVM expansion vector.
These vectors are “smoothed” to eliminate nuisances [2]. Then, a kernel function is applied to the
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two vectors. The kernel function is an inner product which induces a metric on the set of vectors, so
comparison is analogous to finding the distances between SVM expansion vectors.

A recent trend in the speaker recognition literature has been to move towards a more linear geo-
metric view for non-SVM systems. Compensation via linear subspaces and supervectors of mean
parameters of GMMs is presented in joint factor analysis [5]. Also, comparison of utterances via
linear scoring is presented in [6]. These approaches have introduced many new ideas and perform
well in speaker comparison tasks.

An unrealized effort in speaker recognition is to bridge the gap between SVMs and some of the new
proposed GMM methods. One difficulty is that most SVM kernel functions in speaker comparison
satisfy the Mercer condition. This restricts the scope of investigation of potential comparison strate-
gies for two speaker utterances. Therefore, in this paper, we introduce the idea of inner product
discriminant functions (IPDFs).

IPDFs are based upon the same basic operations as SVM kernel functions with some relaxation in
structure. First, we map input utterances to vectors of fixed dimension. Second, wecompensate the
input feature vectors. Typically, this compensation takes the form of a linear transform. Third, we
compare two compensated vectors with an inner product. The resulting comparison function is then
used in an application specific way.

The focus of our initial investigations of the IPDF structure are the following. First, we show that
many of the common techniques such as factor analysis, nuisance projection, and various types of
scoring can be placed in the framework. Second, we systematically describe the various inner prod-
uct and compensation techniques used in the literature. Third, we propose new inner products and
compensation. Finally, we explore the space of possible combinations of techniques and demon-
strate several novel methods that are computationally efficient and produce excellent error rates.

The outline of the paper is as follows. In Section 2, we describe the general setup for speaker
comparison using GMMs. In Section 3, we introduce the IPDF framework. Section 4 explores inner
products for the IPDF framework. Section 5 looks at methods for compensating for variability. In
Section 6, we perform experiments on the NIST 2006 speaker recognition evaluation and explore
different combinations of IPDF comparisons and compensations.

2 Speaker Comparison

A standard distribution used for text-independent speaker recognition is the Gaussian mixture
model [1],

g(x) =

N
∑

i=1

λiN (x|mi, Σi). (1)

Feature vectors are typically cepstral coefficients with associated smoothed first- and second-order
derivatives.

We map a sequence of feature vectors,xNx

1 , from a speaker to a GMM by adapting a GMM universal
background model (UBM). Here, we use the shorthandxNx

1 to denote the sequence,x1, · · · , xNx
.

For the purpose of this paper, we will assume only the mixture weights,λi, and means,mi, in (1)
are adapted. Adaptation of the means is performed with standard relevance MAP [1]. We estimate
the mixture weights using the standard ML estimate. The adaptation yields new parameters which
we stack into a parameter vector,ax, where

ax =
[

λ
t
x mt

x

]t
(2)

=
[

λx,1 · · · λx,N mt
x,1 · · · mt

x,N

]t
. (3)

In speaker comparison, the problem is to compare two sequences of feature vectors, e.g.,xNx

1 and
y

Ny

1 . To compare these two sequences, we adapt a GMM UBM to produce two sets of parameter
vectors,ax anday, as in (2). The goal of our speaker comparison process can now be recast as a
function that compares the two parameter vectors,C(ax,ay), and produces a value that reflects the
similarity of the speakers. Initial work in this area was performed using kernels from support vector
machines [4, 7, 2], but we expand the scope to other types of discriminant functions.
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3 Inner Product Discriminant Functions

The basic framework we propose for speaker comparison functions is composed of two parts—
compensation and comparison. For compensation, the parameter vectors generated by adaptation
in (2) can be transformed to remove nuisances or projected onto a speaker subspace. The second
part of our framework is comparison. For the comparison of parameter vectors, we will consider
natural distances that result in inner products between parameter vectors.

We propose the following inner product discriminant function (IPDF) framework for exploring
speaker comparison,

C(ax,ay) = (Lxax)tD2(Lyay) (4)

whereLx, Ly are linear transforms and potentially dependent onλx and/orλy. The matrixD is
positive definite, usually diagonal, and possibly dependent onλx and/orλy. Note, we also consider
simple combinations of IPDFs to be in our framework—e.g., positively-weighted sums of IPDFs.

Several questions from this framework are: 1) what inner product gives the best speaker comparison
performance, 2) what compensation strategy works best, 3) what tradeoffs can be made between
accuracy and computational cost, and 4) how do the compensation and the inner product interact.
We explore theoretical and experimental answers to these questions in the following sections.

4 Inner Products for IPDFs

In general, an inner product of the parameters should be based on a distance arising from a statistical
comparison. We derive three straightforward methods in this section. We also relate some other
methods, without being exhaustive, that fall in this framework that have been described in detail in
the literature.

4.1 Approximate KL Comparison (CKL)

A straightforward strategy for comparing the GMM parameter vectors is to use an approximate
form of the KL divergence applied to the induced GMM models. This strategy was used in [2]
successfully with an approximation based on the log-sum inequality; i.e., for the GMMs,gx andgy,
with parametersax anday,

D(gx‖gy) ≤
N

∑

i=1

λx,iD (N (·;mx,i, Σi)‖N (·;my,i, Σi)) . (5)

Here,D(·‖·) is the KL divergence, andΣi is from the UBM.

By symmetrizing (5) and substituting in the KL divergence between two Gaussian distributions, we
obtain a distance,ds, which upper bounds the symmetric KL divergence,

ds(ax,ay) = Ds(λx‖λy) +

N
∑

i=1

(0.5λx,i + 0.5λy,i)(mx,i − my,i)
tΣ−1

i (mx,i − my,i). (6)

We focus on the second term in (6) for this paper, but note that the first term could also be converted
to a comparison function on the mixture weights. Using polarization on the second term, we obtain
the inner product

CKL(ax,ay) =

N
∑

i=1

(0.5λx,i + 0.5λy,i)m
t
x,iΣ

−1
i my,i. (7)

Note that (7) can also be expressed more compactly as

CKL(ax,ay) = mt
x ((0.5λx + 0.5λy) ⊗ In)Σ−1my (8)

whereΣ is the block matrix with theΣi on the diagonal,n is the feature vector dimension, and⊗
is the Kronecker product. Note that the non-symmetric form of the KL distance in (5) would result
in the average mixture weights in (8) being replaced byλx. Also, note that shifting the means by
the UBM will not affect the distance in (6), so we can replace means in (8) by the UBM centered
means.
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4.2 GLDS kernel (CGLDS)

An alternate inner product approach is to use generalized linear discriminants and the corresponding
kernel [4]. The overall structure of this GLDS kernel is as follows. A per feature vector expansion
function is defined as

b(xi) = [b1(xi) · · · bm(xi)]
t
. (9)

The mapping between an input sequence,xNx

1 is then defined as

xNx

1 7→ bx =
1

Nx

Nx
∑

i=1

b(xi). (10)

The corresponding kernel between two sequences is then

KGLDS(xNx

1 ,y
Ny

1 ) = bt
xΓ−1by (11)

where

Γ =
1

Nz

Nz
∑

i=1

b(zi)b(zi)
t, (12)

andzNz

1 is a large set of feature vectors which is representative of the speaker population.

In the context of a GMM UBM, we can define an expansion as follows

b(xi) =
[

p(1|xi)(xi − m1)t · · · p(N |xi)(xi − mN)t
]t

(13)

wherep(j|xi) is the posterior probability of mixture componentj givenxi, andmj is from a UBM.
Using (13) in (10), we see that

bx = (λx ⊗ In)(mx − m) and by = (λy ⊗ In)(my − m) (14)

wherem is the stacked means of the UBM. Thus, the GLDS kernel inner product is

CGLDS(ax,ay) = (mx − m)t(λx ⊗ In)Γ−1(λy ⊗ In)(my − m). (15)

Note thatΓ in (12) is almost the UBM covariance matrix, but is not quite the same because of a
squaring of thep(j|zi) in the diagonal. As is commonly assumed, we will consider a diagonal
approximation ofΓ, see [4].

4.3 Gaussian-Distributed Vectors

A common assumption in the factor analysis literature [5] is that the parameter vectormx asx varies
has a Gaussian distribution. If we assume a single covariance for the entire space, then the resulting
likelihood ratio test between two Gaussian distributions results in a linear discriminant [8].

More formally, suppose that we have a distribution with meanmx and we are trying to distinguish
from a distribution with the UBM meanm, then the discriminant function is [8],

h(x) = (mx − m)tΥ−1(x − m) + cx (16)

wherecx is a constant that depends onmx, andΥ is the covariance in the parameter vector space.
We will assume that the comparison function can be normalized (e.g., by Z-norm [1]), so thatcx can
be dropped. We now apply the discriminant function to another mean vector,my, and obtain the
following comparison function

CG(ax,ay) = (mx − m)tΥ−1(my − m). (17)

4.4 Other Methods

Several other methods are possible for comparing the parameter vectors that arise either from ad hoc
methods or from work in the literature. We describe a few of these in this section.

Geometric Mean Comparison (CGM). A simple symmetric function that is similar to the KL (8)
and GLDS (15) comparison functions is arrived at by replacing the arithmetic mean inCKL by a
geometric mean. The resulting kernel is

CGM (ax,ay) = (mx − m)t(λ1/2
x ⊗ In)Σ−1(λ1/2

y ⊗ In)(my − m) (18)
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whereΣ is the block diagonal UBM covariances.

Fisher Kernel (CF ). The Fisher kernel specialized to the UBM case has several forms [3]. The
main variations are the choice of covariance in the inner product and the choice of normalization
of the gradient term. We took the best performing configuration for this paper—we normalize the
gradient by the number of frames which results in a mixture weight scaling of the gradient. We also
use a diagonal data-trained covariance term. The resulting comparison function is

CF (ax,ay) =
[

(λx ⊗ In)Σ−1(mx − m)
]t

Φ−1
[

(λy ⊗ In)Σ−1(my − m)
]

(19)

whereΦ is a diagonal matrix acting as a variance normalizer.

Linearized Q-function (CQ). Another form of inner product may be derived from the linear Q-
scoring shown in [6]. In this case, the scoring is given as(mtrain − m)tΣ−1(F − Nm) whereN
andF are the zeroth and first order sufficient statistics of a test utterance,m is the UBM means,
mtrain is the mean of a training model, andΣ is the block diagonal UBM covariances. A close
approximation of this function can be made by using a small relevance factor in MAP adaptation of
the means to obtain the following comparison function

CQ(ax,ay) = (mx − m)tΣ−1(λy ⊗ In)(my − m). (20)

Note that if we symmetrizeCQ, this gives usCKL; this analysis ignores for a moment that in [6],
compensation is also asymmetric.

KL Kernel (KKL). By assuming the mixture weights are constant and equal to the UBM mixture
in the comparison functionCKL (7), we obtain the KL kernel,

KKL(mx,my) = mt
x (λ ⊗ In)Σ−1my (21)

whereλ are the UBM mixture weights. This kernel has been used extensively in SVM speaker
recognition [2].

An analysis of the different inner products in the preceding sections shows that many of the methods
presented in the literature have a similar form, but are interestingly derived with quite disparate
techniques. Our goal in the experimental section is to understand how these comparison function
perform and how they interact with compensation.

5 Compensation in IPDFs

Our next task is to explore compensation methods for IPDFs. Our focus will be on subspace-based
methods. With these methods, the fundamental assumption is that either speakers and/or nuisances
are confined to a small subspace in the parameter vector space. The problem is to use this knowledge
to produce a higher signal (speaker) to noise (nuisance) representation of the speaker. Standard
notation is to useU to represent the nuisance subspace and to haveV represent the speaker subspace.
Our goal in this section is to recast many of the methods in the literature in a standard framework
with oblique and orthogonal projections.

To make a cohesive presentation, we introduce some notation. We define an orthogonal projection
with respect to a metric,PU,D, whereD andU are full rank matrices as

PU,D = U(U tD2U)−1U tD2 (22)

whereDU is a linearly independent set, and the metric is‖x − y‖D = ‖Dx − Dy‖2. The
process of projection, e.g.y = PU,Db, is equivalent to solving the least-squares problem,
x̂ = argminx ‖Ux − b‖D and lettingy = Ux̂. For convenience, we also define the projection
onto the orthogonal complement ofU , U⊥, asQU,D = PU⊥,D = I − PU,D. Note that we can reg-
ularize the projectionPU,D by adding a diagonal term to the inverse in (22); the resulting operation
remains linear but is no longer a projection.

We also define the oblique projection ontoV with null spaceU + (U + V )⊥ and metric induced by
D. LetQR be the (skinny) QR decomposition of the matrix[UV ] in theD norm (i.e.,QtD2Q = I),
andQV be the columns corresponding toV in the matrixQ. Then, the oblique (non-orthogonal)
projection ontoV is

OV,U,D = V (Qt
V D2V )−1Qt

V D2. (23)
The use of projections in our development will add geometric understanding to the process of com-
pensation.
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5.1 Nuisance Attribute Projection (NAP)

A framework for eliminating nuisances in the parameter vector based on projection was shown in [2].
The basic idea is to assume that nuisances are confined to a small subspace and can be removed via
an orthogonal projection,mx 7→ QU,Dmx. One justification for using subspaces comes from the
perspective that channel classification can be performed with inner products along one-dimensional
subspaces. Therefore, the projection removes channel specific directions from the parameter space.

The NAP projection uses the metric induced by a kernel in an SVM. For the GMM context, the
standard kernel used is the approximate KL comparison (8) [2]. We note that sinceD is knowna
priori to speaker comparison, we can orthonormalize the matrixDU and apply the projection as a

matrix multiply. The resulting projection hasD =
(

λ
1/2 ⊗ In

)

Σ−1/2.

5.2 Factor Analysis and Joint Factor Analysis

The joint factor analysis (JFA) model assumes that the mean parameter vector can be expressed as

ms,sess = m + Ux + V y (24)

wherems,sess is the speaker- and session-dependent mean parameter vector,U andV are matrices
with small rank, andm is typically the UBM. Note that for this section, we will use the standard
variables for factor analysis,x andy, even though they conflict with our earlier development. The
goal of joint factor analysis is to find solutions to the latent variablesx andy given training data.
In (24), the matrixU represents a nuisance subspace, andV represents a speaker subspace. Existing
work on this approach for speaker recognition uses both maximum likelihood (ML) estimates and
MAP estimates ofx andy [9, 5]. In the latter case, a Gaussian prior with zero mean and diagonal
covariance forx andy is assumed. For our work, we focus on the ML estimates [9] ofx andy
in (24), since we did not observe substantially different performance from MAP estimates in our
experiments.

Another form of modeling that we will consider is factor analysis (FA). In this case, the termV y is
replaced by a constant vector representing the true speaker model,ms; the goal is then to estimate
x. Typically, as a simplification,ms is assumed to be zero when calculating sufficient statistics for
estimation ofx [10].

The solution to both JFA and FA can be unified. For the JFA problem, if we stack the matrices[UV ],
then the problem reverts to the FA problem. Therefore, we initially study the FA problem. Note that
we also restrict our work to only one EM iteration of the estimation of the factors, since this strategy
works well in practice.

The standard ML solution to FA [9] for one EM iteration can be written as
[

U tΣ−1(N⊗ In)U
]

x = U tΣ−1 [F − (N⊗ In)m] (25)

whereF is the vector of first order sufficient statistics, andN is the diagonal matrix of zeroth order
statistics (expected counts). The sufficient statistics are obtained from the UBM applied to an input
set of feature vectors. We first letNt =

∑N
i=1 Ni and multiply both sides of (25) by1/Nt. Now

use relevance MAP with a small relevance factor andF andN to obtainms; i.e., bothms −m and
F − (N⊗ In)m will be nearly zero in the entries corresponding to smallNi. We obtain

[

U tΣ−1(λs ⊗ In)U
]

x = U tΣ−1 (λs ⊗ In) [ms − m] (26)

whereλs is the speaker dependent mixture weights. We note that (26) are the normal equations
for the least-squares problem,x̂ = argmin

x
‖Ux − (ms − m)‖D whereD is given below. This

solution is not unexpected since ML estimates commonly lead to least-squares problems with GMM
distributed data [11].

Once the solution to (26) is obtained, the resultingUx is subtracted from an estimate of the speaker
mean,ms to obtain the compensated mean. If we assume thatms is obtained by a relevance map
adaptation from the statisticsF andN with a small relevance factor, then the FA process is well
approximated by

ms 7→ QU,Dms (27)

where
D =

(

λ
1/2
s ⊗ In

)

Σ−1/2. (28)
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JFA becomes an extension of the FA process we have demonstrated. One first projects onto the
stackedUV space. Then another projection is performed to eliminate theU component of variabil-
ity. This can be expressed as a single oblique projection; i.e., the JFA process is

ms 7→ OV,U,IP[UV ],Dms = OV,U,Dms. (29)

5.3 Comments and Analysis

Several comments should be made on compensation schemes and their use in speaker comparison.
First, although NAP and ML FA (27) were derived in substantially different ways, they are essen-
tially the same operation, an orthogonal projection. The main difference is in the choice of metrics
under which they were originally proposed. For NAP, the metric depends on the UBM only, and for
FA it is utterance and UBM dependent.

A second observation is that the JFA oblique projection ontoV has substantially different properties
than a standard orthogonal projection. When JFA is used in speaker recognition [5, 6], typically
JFA is performed in training, but the test utterance is compensated only with FA. In our notation,
applying JFA with linear scoring [6] gives

CQ(OV,U,D1
m1, QU,D2

m2) (30)

wherem1 andm2 are the mean parameter vectors estimated from the training and testing utterances,
respectively; also,D1 = (λ

1/2
1 ⊗ In)Σ−1/2 andD2 = (λ

1/2
2 ⊗ In)Σ−1/2. Our goal in the exper-

iments section is to disentangle and understand some of the properties of scoring methods such
as (30). What is significant in this process—mismatched train/test compensation, data-dependent
metrics, or asymmetric scoring?

A final note is that training the subspaces for the various projectionsoptimally is not a process
that is completely understood. One difficulty is that the metric used for the inner product may
not correspond to the metric for compensation. As a baseline, we used the same subspace for all
comparison functions. The subspace was obtained with an ML style procedure for training subspaces
similar to [11] but specialized to the factor analysis problem as in [5].

6 Speaker Comparison Experiments

Experiments were performed on the NIST 2006 speaker recognition evaluation (SRE) data set. En-
rollment/verification methodology and the evaluation criterion, equal error rate (EER) and minDCF,
were based on the NIST SRE evaluation plan [12]. The main focus of our efforts was the one con-
versation enroll, one conversation verification task for telephone recorded speech. T-Norm models
and Z-Norm [13] speech utterances were drawn from the NIST 2004 SRE corpus. Results were
obtained for both the English only task (Eng) and for all trials (All) which includes speakers that
enroll/verify in different languages.

Feature extraction was performed using HTK [14] with20 MFCC coefficients, deltas, and accelera-
tion coefficients for a total of60 features. A GMM UBM with 512 mixture components was trained
using data from NIST SRE 2004 and from Switchboard corpora. The dimension of the nuisance
subspace,U , was fixed at100; the dimension of the speaker space,V , was fixed at300.

Results are in Table 1. In the table, we use the following notation,

DUBM =
(

λ
1/2 ⊗ In

)

Σ−1/2, D1 =
(

λ
1/2
1 ⊗ In

)

Σ−1/2, D2 =
(

λ
1/2
2 ⊗ In

)

Σ−1/2 (31)

whereλ are the UBM mixture weights,λ1 are the mixture weights estimated from the enrollment
utterance, andλ2 are the mixture weights estimated from the verification utterance. We also use
the notationDL, DG, andDF to denote the parameters of the metric for the GLDS, Gaussian, and
Fisher comparison functions from Sections 4.2, 4.3, and 4.4, respectively.

An analysis of the results in Table 1 shows several trends. First, the performance of the best IPDF
configurations is as good or better than the state of the art SVM and JFA implementations. Second,
the compensation method that dominates good performance is an orthogonal complement of the
nuisance subspace,QU,D. Combining a nuisance projection with an oblique projection is fine, but
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Table 1:A comparison of baseline systems and different IPDF implementations

Comparison Enroll Verify EER minDCF EER minDCF
Function Comp. Comp. All ( %) All (×100) Eng (%) Eng (×100)

Baseline SVM QU,DUBM
QU,DUBM

3.82 1.82 2.62 1.17
Baseline JFA,CQ OV,U,D1

QU,D2
3.07 1.57 2.11 1.23

CKL OV,U,D1
QU,D2

3.21 1.70 2.32 1.32
CKL OV,U,D1

OV,U,D2
8.73 5.06 8.06 4.45

CKL QU,D1
QU,D2

2.93 1.55 1.89 0.93
CKL QU,DUBM

QU,DUBM
3.03 1.55 1.92 0.95

CKL I − OU,V,D1
I − OU,V,D2

7.10 3.60 6.49 3.13
CGM QU,D1

QU,D2
2.90 1.59 1.73 0.98

CGM QU,DUBM
QU,DUBM

3.01 1.66 1.89 1.05
CGM QU,DUBM

I 3.95 1.93 2.76 1.26
KKL QU,DUBM

QU,DUBM
4.95 2.46 3.73 1.75

KKL QU,D1
QU,D2

5.52 2.85 4.43 2.15
CGLDS QU,DL

QU,DL
3.60 1.93 2.27 1.23

CG QU,DG
QU,DG

5.07 2.52 3.89 1.87
CF QU,DF

QU,DF
3.56 1.89 2.22 1.12

Table 2:Summary of some IPDF performances and computation time normalized to a baseline system. Com-
pute time includes compensation and inner product only.

Comparison Enroll Verify EER minDCF Compute
Function Comp. Comp. Eng (%) Eng (×100) time

CQ OV,U,D1
QU,D2

2.11 1.23 1.00
CGM QU,D1

QU,D2
1.73 0.98 0.17

CGM QU,DUBM
QU,DUBM

1.89 1.05 0.08
CGM QU,DUBM

I 2.76 1.26 0.04

using only oblique projections onto V gives high error rates.A third observation is that comparison
functions whose metrics incorporateλ1 andλ2 perform significantly better than ones with fixedλ

from the UBM. In terms of best performance,CKL, CQ, andCGM perform similarly. For example,
the95% confidence interval for2.90% EER is[2.6, 3.3]%.

We also observe that a nuisance projection with fixedDUBM gives similar performance to a pro-
jection involving a “variable” metric,Di. This property is fortuitous since a fixed projection can
be precomputed and stored and involves significantly reduced computation. Table 2 shows a com-
parison of error rates and compute times normalized by a baseline system. For the table, we used
precomputed data as much as possible to minimize compute times. We see that with an order of
magnitude reduction in computation and a significantly simpler implementation, we can achieve the
same error rate.

7 Conclusions and future work

We proposed a new framework for speaker comparison, IPDFs, and showed that several recent sys-
tems in the speaker recognition literature can be placed in this framework. We demonstrated that
using mixture weights in the inner product is the key component to achieve significant reductions in
error rates over a baseline SVM system. We also showed that elimination of the nuisance subspace
via an orthogonal projection is a computationally simple and effective method of compensation.
Most effective methods of compensation in the literature (NAP, FA, JFA) are straightforward vari-
ations of this idea. By exploring different IPDFs using these insights, we showed that computation
can be reduced substantially over baseline systems with similar accuracy to the best performing
systems. Future work includes understanding the performance of IPDFs for different tasks, incor-
porating them into an SVM system, and hyperparameter training.
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