
Multi-step Linear Dyna-style Planning

Hengshuai Yao
Department of Computing Science

University of Alberta
Edmonton, AB, Canada T6G2E8

Shalabh Bhatnagar
Department of Computer Science

and Automation
Indian Institute of Science
Bangalore, India 560012

Dongcui Diao
School of Economics and Management

South China Normal University
Guangzhou, China 518055

Abstract

In this paper we introduce a multi-step linear Dyna-style planning algorithm. The
key element of the multi-step linear Dyna is a multi-step linear model that en-
ables multi-step projection of a sampled feature and multi-step planning based on
the simulated multi-step transition experience. We propose two multi-step linear
models. The first iterates the one-step linear model, but is generally computa-
tionally complex. The second interpolates between the one-step model and the
infinite-step model (which turns out to be the LSTD solution), and can be learned
efficiently online. Policy evaluation on Boyan Chain shows that multi-step linear
Dyna learns a policy faster than single-step linear Dyna, and generally learns faster
as the number of projection steps increases. Results on Mountain-car show that
multi-step linear Dyna leads to much better online performance than single-step
linear Dyna and model-free algorithms; however, the performance of multi-step
linear Dyna does not always improve as the number of projection steps increases.
Our results also suggest that previous attempts on extending LSTD for online
control were unsuccessful because LSTD looks infinite steps into the future, and
suffers from the model errors in non-stationary (control) environments.

1 Introduction

Linear Dyna-style planning extends Dyna to linear function approximation (Sutton, Szepesvári,
Geramifard & Bowling, 2008), and can be used in large-scale applications. However, existing Dyna
and linear Dyna-style planning algorithms are all single-step, because they only simulate sampled
features one step ahead. This is many times insufficient as one does not exploit in such a case all
possible future results. We extend linear Dyna architecture by using a multi-step linear model of
the world, which gives what we call themulti-step linear Dyna-style planning. Multi-step linear
Dyna-style planning is more advantageous than existing linear Dyna, because a multi-step model of
the world can project a feature multiple steps into the future and give more steps of results from the
feature.

For policy evaluation we introduce two multi-step linear models. The first is generated by iterating
the one-step linear model, but is computationally complex when the number of features is large. The
second, which we call theλ-model, interpolates between the one-step linear model and an infinite-
step linear model of the world, and is computationally efficient to compute online. Our multi-step
linear Dyna-style planning for policy evaluation, Dyna(k), uses the multi-step linear models to gen-
eratek-steps-ahead prediction of the sampled feature, and applies a generalized TD (temporal dif-

1



ference, e.g., see (Sutton & Barto, 1998)) learning on the imaginary multi-step transition experience.
Whenk is equal to1, we recover the existing linear Dyna-style algorithm; whenk goes to infinity,
we actually use the LSTD (Bradtke & Barto, 1996; Boyan, 1999) solution for planning.

For the problem of control, related work include least-squares policy iteration (LSPI) (Lagoudakis &
Parr, 2001; Lagoudakis & Parr, 2003; Li, Littman & Mansley, 2009), and linear Dyna-style planning
for control. LSPI is an offline algorithm, that learns a greedy policy out of a data set of experience,
through a number of iterations, each of which sweeps the data set and alternates between LSTD
and policy improvement. Sutton et al. (2008) explored the use of linear function approximation
with Dyna for control, which does planning using a set of linear action models built from state
to state. In this paper, we first build a one-step model from state-action pair to state-action pair
through tracking the greedy policy. Using this tracking model for planning is in fact another way of
doing single-step linear Dyna-style planning. In a similar manner to policy evaluation, we also have
two multi-step models for control. We build the iterated multi-step model by iterating the one-step
tracking model. Also, we build aλ-model for control by interpolating the one-step tracking model
and the infinite-step model (also built through tracking). As the infinite-step model coincides with
the LSTD solution, we actually propose an online LSTD control algorithm.

Policy evaluation on Boyan Chain shows that multi-step linear Dyna learns a policy faster than
single-step linear Dyna. Results on the Mountain-car experiment show that multi-step linear Dyna
can find the optimal policy faster than single-step linear Dyna; however, the performance of multi-
step linear Dyna does not always improve as the number of projection steps increases. In fact, LSTD
control and the infinite-step linear Dyna for control are both unstable, and some intermediate value
of k makes thek-step linear Dyna for control perform the best.

2 Backgrounds

Given a Markov decision process (MDP) with a state spaceS = {1, 2, . . . , N}, the problem of
policy evaluation is to predict the long-term reward of a policyπ for every states ∈ S:

V π(s) =

∞∑

t=0

γtrt, 0 < γ < 1, s0 = s,

wherert is the reward received by the agent at timet. Givenn (n ≤ N ) feature functionsϕj :S 7→ R, j = 1, . . . , n, the feature of statei is φ(i) = [ϕ1(i), ϕ2(i), . . . , ϕn(i)]T . Now V π can
be approximated usinĝV π = Φθ, whereθ is the weight vector, andΦ is the feature matrix whose
entries areΦi,j = ϕj(i), i = 1, . . . , N ; j = 1, . . . , n. At time t, linear TD(0) updates the weights as

θt+1 = θt + αtδtφt, δt = rt + γθT
t φt+1 − θT

t φt,

whereαt is a positive step-size andφt corresponds toφ(st).

Most of earlier work on Dyna uses a lookup table representation of states (Sutton, 1990; Sutton &
Barto, 1998). Modern Dyna is more advantageous in the use of linear function approximation, which
is calledlinear Dyna-style planning(Sutton et al., 2008). We denote the state transition probability
matrix of policyπ by P π, whose(i, j)th component isP π

i,j = Eπ{st+1 = j|st = i}; and denote the
expected reward vector of policyπ by Rπ, whoseith component is the expected reward of leaving
statei in one step. Linear Dyna tries to estimate a compressed model of policyπ:

(Fπ)T = (ΦT DπΦ)−1 · ΦT DπP πΦ; fπ = (ΦT DπΦ)−1 · ΦT DπRπ,

whereDπ is theN ×N matrix whose diagonal entries correspond to the steady distribution of states
under policyπ. Fπ andfπ constitute the world model of linear Dyna for policy evaluation, and are
estimated online through gradient descent:

Fπ
t+1 = Fπ

t + βt(φt+1 − Fπ
t φt)φ

T
t ; fπ

t+1 = fπ
t + βt(rt − φT

t fπ
t )φt, (1)

respectively, where the features and reward are all from real world experience andβt is the modeling
step-size.

Dyna repeats some steps of planning in each of which it samples a feature, projects it using the world
model, and plans using linear TD(0) based on the imaginary experience. For policy evaluation, the

2



fixed-point of linear Dyna is the same as that of linear TD(0) under some assumptions (Tsitsiklis &
Van Roy, 1997; Sutton et al., 2008), that satisfies

Aπθ∗ + bπ = 0 : Aπ = ΦT Dπ(γP π − I)Φ; bπ = ΦT DπRπ,

whereIN×N is the identity matrix.

3 The Multi-step Linear Model

In the lookup table representation,(P π)T andRπ constitute the one-step world model. Thek-step
transition model of the world is obtained by iterating(P π)T , k times with discount (Sutton, 1995):

P (k) = (γ(P π)T )k, ∀k = 1, 2, . . .

At the same time we accumulate the rewards generated in the process of this iterating:

R(k) =

k−1∑

j=0

(γP π)jRπ, ∀k = 1, 2, . . . ,

whereR(k) is called thek-step reward model.P (k) andR(k) predict a featurek steps into the
future. In particular,P (k)φ is the feature of the expected state afterk steps fromφ, and(R(k))T φ is
the expected accumulated rewards ink steps fromφ. Notice that

V π = R(k) + (P (k))T V π, ∀k = 1, 2, . . . , (2)

which is a generalization of the Bellman equation,V π = Rπ + γP πV π.

3.1 The Iterated Multi-step Linear Model

In the linear function approximation,Fπ andfπ constitute the one-step linear model. Similar to the
lookup table representation, we can iterateFπ, k times, and accumulate the approximated rewards
along the way:

F (k) = (γFπ)k; f (k) =

k−1∑

j=0

(γ(Fπ)T )jfπ.

We call (F (k), f (k)) the iteratedmulti-step linear model. By this definition, we extend (2) to the
k-step linear Bellman equation:

V̂ π = Φθ∗ = Φf (k) + Φ(F (k))T θ∗, ∀k = 1, 2, . . . , (3)

whereθ∗ is the linear TD(0) solution.

3.2 Theλ-model

The quantitiesF (k) andf (k) require powers ofFπ. One can first estimateFπ andfπ, and then
estimateF (k) andf (k) using powers of the estimatedFπ. However, real life tasks require a lot
of features. Generally(Fπ)k requiresO((k − 1)n3) computation, which is too complex when the
number of features (n) is large.

Rather than usingF (k) andf (k), we would like to explore some other multi-step model that is cheap
in computation but is still meaningful in some sense. First let us see howF (k) andf (k) are used
if they can be computed. Given an imaginary featureφ̃τ , we lookk steps ahead to see our future
feature by applyingF (k):

φ̃(k)
τ = F (k)φ̃τ .

As k grows,F (k) diminishes and thus̃φ(k)
τ converges to0. 1 This means that the more steps we look

into the future from a given feature, the more ambiguous is our resulting feature. It suggests that we

1This is becauseγF π has a spectral radius smaller than one, cf. Lemma 9.2.2 of (Bertsekas, Borkar &
Nedich, 2004).

3



can use a decayed one-step linear model to approximate the effects of looking multiple steps into
the future:

L(k) = (λγ)k−1γFπ,

parameterized by a factorλ ∈ (0, 1]. To guarantee that the optimality (3) still holds, we define

l(k) = (I − (L(k))T )(I − γ(Fπ)T )−1fπ.

We call(L(k), l(k)) theλ-model. Whenk = 1, we haveL(1) = F (1) = γFπ andl(1) = f (1) = fπ,
recovering the one-step model used by existing linear Dyna. Notice thatL(k) diminishes ask grows,
which is consistent with the fact thatF (k) also diminishes ask grows. Finally, the infinite-step
model reduces to a single vector,l(∞) = f (∞) = θ∗. The intermediatek interpolates between the
single-step model and infinite-step model.

For intermediatek, computation ofL(k) has the same complexity as the estimation ofFπ. Interest-
ingly, all l(k) can be obtained by shifting froml(∞) by an amount that shrinksl(∞) itself: 2

l(k) = (I − (L(k))T )(I − γ(Fπ)T )−1fπ,

= l(∞) − (L(k))T l(∞). (4)

The case ofk = 1 is interesting. The linear Dyna algorithm (Sutton et al., 2008) takes advantage
of the fact thatl(1) = fπ and estimates it through gradient descent. On the other hand, in our Dyna
algorithm, we use (4) and estimate alll(k) from the estimation ofl(∞), which is generally no longer
a gradient-descent estimate.

4 Multi-step Linear Dyna-style Planning for Policy Evaluation

The architecture of multi-step linear Dyna-style planning, Dyna(k), is shown in Algorithm 1. Gen-
erally any valid multi-step model can be used in the architecture. For example, in the algorithm we
can takeM (k) = F (k) andm(k) = f (k), giving us a linear Dyna architecture using the iterated
multi-step linear model, which we call theDyna(k)-iterate.

In the following we present the family of Dyna(k) planning algorithms that use theλ-model. We first
develop a planning algorithm for the infinite-step model, and based on it we then present Dyna(k)
planning using theλ-model for any finitek.

4.1 Dyna(∞): Planning using the Infinite-step Model

The infinite-step model is preferable in computation becauseF (∞) diminishes and the model re-
duces tof (∞). It turns out thatf (∞) can be further simplified to allow an efficient online estimation:

f (∞) = (I − γ(Fπ)T )−1fπ

= (ΦT DπΦ − γΦT DπP πΦ)−1 · ΦT DπΦfπ

= −(Aπ)−1bπ.

We can accumulateAπ andbπ online like LSTD (Bradtke & Barto, 1996; Boyan, 1999; Xu et al.,
2002) and solvef (∞) by matrix inversion methods or recursive least-square methods.

As with traditional Dyna, we initially sample a featurẽφ from some distributionµ. We then apply
the infinite-step model to get the expected future features and all the possible future rewards:

φ̃(∞) = F (∞)φ̃; r̃(∞) = (f (∞))T φ̃.

Next, a generalized linear TD(0) is applied on this simulated experience.

θ̃ := θ̃ + α(r̃(∞) + θ̃T φ̃(∞) − θ̃T φ̃)φ̃.

Becausẽφ(∞) = 0, this simplifies into

θ̃ := θ̃ + α(r̃(∞) − θ̃T φ̃)φ̃.

We call this algorithm Dyna(∞), which actually uses the LSTD solution for planning.

2Similarly f (k) can be obtained by shifting fromf (∞) by an amount that shrinks itself.

4



Algorithm 1 Dyna(k) algorithm for evaluating policyπ (using any validk-step model).
Initialize θ0 and some model
Select an initial state
for each time stepdo

Take an actiona according toπ, observingrt andφt+1

θt+1 = θt + αt(rt + γφT
t+1θt − φT

t θt)φt /* linear TD(0) */
UpdateM (k) andm(k)

Setθ̃0 = θt+1

repeatτ = 1 to p /*Planning*/
Sampleφ̃τ ∼ µ(·)

φ̃(k) = M (k)φ̃τ /* φ̃(∞) = 0*/
r̃(k) = (m(k))T φ̃τ

θ̃τ+1 := θ̃τ +ατ (r̃
(k)
τ + θ̃T

τ φ̃
(k)
τ − θ̃T

τ φ̃τ )φ̃τ /*Generalizedk-step linear TD(0) learning */
Setθt+1 = θ̃τ+1

end for

4.2 Planning using theλ-model

The k-stepλ-model is efficient to estimate, and can be directly derived from the single-step and
infinite-step models:

L(k) = (λγ)k−1γFπ
t+1; l(k) = f (∞) − (L(k))T f (∞),

respectively, where the infinite-step model is estimated byf (∞) = (Aπ
t+1)

−1bπ
t+1. Given an imagi-

nary featurẽφ, we lookk steps ahead to see the future features and rewards:

φ̃(k) = L(k)φ̃; r̃(k) = (l(k))T φ̃.

Thus we obtain an imaginaryk-step transition experiencẽφ → (φ̃(k), r̃(k)), on which we apply a
k-step version of linear TD(0):

θ̃τ+1 = θ̃τ + α(r̃(k) + θ̃T
τ φ̃(k) − θ̃T

τ φ̃)φ̃.

We call this algorithm theDyna(k)-lambdaplanning algorithm. Whenk = 1, we obtain another
single-step Dyna, Dyna(1). Notice that Dyna(1) usesf (∞) while the linear Dyna usesfπ. When
k → ∞, we obtain the Dyna(∞) algorithm.

5 Planning for Control

Planning for control is more difficult than that for policy evaluation because in control the policy
changes from time step to time step. Linear Dyna uses a separate model for each action, and these
action models are from state to state (Sutton et al., 2008). Our model for control is different in that
it is from state-action pair to state-action pair. However, rather than building a model for all state-
action pairs, we build only one state-action model that tracks the sequence of greedy actions. Using
this greedy-tracking model is another way of doing linear Dyna-style planning. In the following we
first build the single-step greedy-tracking model and the infinite-step greedy-tracking model, and
based on these tracking models we build the iterated model and theλ-model.

Our extension of linear Dyna to control contains a TD control step (we use Q-learning), and we
call it the linear Dyna-Q architecture. In the Q-learning step, the next feature is already implicitly
selected. Recall that Q-learning selects the largest nextQ-function as the target for TD learning,
which ismaxa′ Q̂t+1(st+1, a′) = maxa′ φ(st+1, a′)T θt. Alternatively, the greedy next state-action
feature

~φt+1 = arg max
φ′=φ(st+1,·)

φ′T θt

is selected by Q-learning. We build a single-step projection matrix between state-action pairs,F , by
moving its projection of the current feature towards the greedy next state-action feature (tracking):

Ft+1 = Ft + βt(~φt+1 − Ftφt)φ
T
t . (5)

5



Algorithm 2 Dyna-Q(k)-lambda:k-step linear Dyna-Q algorithm for control (using theλ-model).
Initialize F0, A0, b0 andθ0

Select an initial state
for each time stepdo

Take actiona atst (usingǫ-greedy), observingrt andst+1

Choosea′ that leads to the largest̂Q(st+1, a
′)

Setφ = φ(st, a), ~φ = φ(st+1, a
′)

θt+1 = θt + αt(rt + γ~φT θt − φT θt)φ /*Q-learning*/
At+1 = At + φt(γ~φT − φ)T , bt+1 = bt + φtrt

f (∞) = −(At+1)
−1bt+1 /*Using matrix inversion or recursive least-squares */

Ft+1 = Ft + αt(~φ − Ftφ)φT ,
L(k) = (λγ)k−1γFt+1

l(k) = f (∞) − (L(k))T f (∞)

Setθ̃0 = θt+1

repeatτ times /*Planning*/
Sampleφ̃τ ∼ µ

φ̃(k) = L(k)φ̃τ

r̃(k) = (l(k))T φ̃τ

θ̃τ+1 := θ̃τ + ατ (r̃
(k)
τ + θ̃T

τ φ̃
(k)
τ − θ̃T

τ φ̃τ )φ̃τ

Setθt+1 = θ̃τ+1

end for

Estimation of the single-step reward model,f , is the same as in policy evaluation.

In a similar manner, in the infinite-step model, matrixA is updated using the greedy next feature,
while vectorb is updated in the same way as in LSTD. GivenA andb, we can solve them and get
f (∞). Once the one-step model and the infinite-step model are available, we interpolate them and
compute theλ-model in a similar manner to policy evaluation. The complete multi-step Dyna-Q
control algorithm using theλ-model is shown in Algorithm 2. We noticed thatf (∞) can be directly
used for control, giving an online LSTD control algorithm.

We can also extend the iterated multi-step model and Dyna(k)-iterate to control. Given the single-
step greedy-tracking model, we can iterate it and get the iterated multi-step linear model in a similar
way to policy evaluation. The linear Dyna for control using the iterated greedy-tracking model
(which we call Dyna-Q(k)-iterate) is straightforward and thus not shown.

6 Experimental Results

6.1 Boyan Chain Example

The problem we consider is exactly the same as that considered by Boyan (1999). The root mean
square error (RMSE) of the value function is used as a criterion. Previously it was shown that linear
Dyna can learn a policy faster than model-free TD methods in the beginning episodes (Sutton et al.,
2008). However, after some episodes, their implementation of linear Dyna became poorer than
TD. A possible reason leading to their results may be that the step-sizes of learning, modeling and
planning were set to the same value. Also, their step-size diminishes according to1/(traj#)1.1,
which does not satisfy the standard step-size rule required for stochastic approximation. In our linear
Dyna algorithms, we used different step-sizes for learning, modeling and planning.

(1) Learning step-size. We used here the same step-size rule for TD as Boyan (1999), whereα =
0.1(1 + 100)/(traj# + 100) was found to be the best in the class of step-sizes and also used it
for TD in the learning sub-procedure of all linear Dyna algorithms. (2)Modeling step-size. For
Dyna(k)-lambda, we usedβT = 0.5(1+10)/(10+T ) for estimation ofFπ, whereT is the number
of state visits across episodes. For linear Dyna, the estimation ofFπ andfπ also used the sameβT .
(3) Planning step-size. In our experiments all linear Dyna algorithms simply usedατ = 0.1.

6



10
0

10
1

10
2

0.1

1

10

15

Episodes (Log)

R
M

S
E

 (
Lo

g)

 

 

LSTD, A
0
=−0.1I

LSTD, A
0
=−I

LSTD, A
0
=−10I

Dyna(3)−iterate
Dyna(5)−iterate
Dyna(10)−iterate
Linear Dyna

10
0

10
1

10
2

0.1

1

10

15

Episodes (Log)

R
M

S
E

(L
o

g
)

TD

LSTD, A
0
=−0.1I

 Dyna(∞)

 Dyna(1)

 Dyna(10)−lambda

Figure 1: Results on Boyan Chain. Left: comparison of RMSE of Dyna(k)-iterate with LSTD.
Right: comparison of RMSE of Dyna(k)-lambda with TD and LSTD.

The weights of various learning algorithms,fπ for the linear Dyna, andbπ for Dyna(k) were all
initialized to zero. No eligibility trace is used for any algorithm. In the planning step, all Dyna
algorithms sampled a unit basis vector whose nonzero component was in a uniformly random loca-
tion. In the following we report the results of planning only once. All RMSEs of algorithms were
averaged over30 (identical) sets of trajectories.

Figure 1 (left) shows the performance of Dyna(k)-iterate and LSTD, and Figure 1 (right) shows
the performance of Dyna(k)-lambda, LSTD and TD. All linear Dyna algorithms were found to be
significantly and consistently faster than TD. Furthermore, multi-step linear Dyna algorithms were
much faster than single-step linear Dyna algorithms. MatrixA of LSTD and Dyna(k)-lambda needs
perturbation in initialization, which has a great impact on the performances of two algorithms. For
LSTD, we tried initialization ofAπ

0 to−10I,−I,−0.1I, and showed their effects in Figure 1 (left),
in which Aπ

0 = −0.1I was the best for LSTD. Similar to LSTD, Dyna(k)-lambda is also sensitive
to Aπ

0 . Linear Dyna and Dyna(k)-iterate do not useAπ and thus do not have to tuneAπ
0 . Fπ was

initialized to0 for Dyna(k) (k < ∞) and linear Dyna. In Figure 1 (right) LSTD and Dyna(k)-lambda
were compared under the same setting (Dyna(k)-lambda also usedA0 = −0.1I). Dyna(k)-lambda
usedλ = 0.9.

6.2 Mountain-car

We used the same Mountain-car environment and tile coding as in the linear Dyna paper (Sutton
et al., 2008). The state feature has a dimension of10, 000. The state-action feature is shifted from
the state feature, and has a dimension of30, 000 because there are three actions of the car. Because
the feature and matrix are really large, we were not able to compute the iterated model, and hence
we only present here the results of Dyna-Q(k)-lambda.

Experimental setting. (1)Step-sizes. The Q-learning step-size was chosen to be0.1, in both the
independent algorithm and the sub-procedure of Dyna-Q(k)-lambda. The planning step-size was
0.1. The matrixF is much more dense thanA and leads to a very slow online performance. To
tackle this problem, we avoided computingF explicitly, and used a least-squares computation of
the projection, given in the supplementary material. In this implementation, there is no modeling
step-size. (2)Initialization. The parametersθ andb were both initialized to0. A was initialized to
−I. (3)Other setting. Theλ value for Dyna-Q(k)-lambda was0.9. We recorded the state-action
pairs online and replayed the feature of a past state-action pair in planning. We also compared the
linear Dyna-style planning for control (with state features) (Sutton et al., 2008), which has three
sets of action models for this problem. In linear Dyna-style planning for control we replayed a state
feature of a past time step, and projected it using the model of the action that was selected at that
time step. No eligibility trace or exploration was used. Results reported below were all averaged
over30 independent runs, each of which contains20 episodes.

7



5 10 15 20
−350

−300

−250

−200

−150

−100

Episode

O
nl

in
e 

R
et

ur
n

Linear Dyna

Q−learning

Dyna−Q(5)−lambda
Dyna−Q(10)−lambda

Dyna−Q(1)

Dyna−Q(∞)

Dyna−Q(20)−lambda

Figure 2: Results on Mountain-car: comparison of online return of Dyna-Q(k)-lambda, Q-learning
and linear Dyna for control.

Results are shown in Figure 2. Linear Dyna-style planning algorithms were found to be significantly
faster than Q-learning. Multi-step planning algorithms can be still faster than single-step planning
algorithms. The results also show that planning too many steps into the future is harmful,e.g.,
Dyna-Q(20)-lambda and Dyna-Q(∞) gave poorer performance than Dyna-Q(5)-lambda and Dyna-
Q(10)-lambda. This shows that some intermediate values ofk trade off the model accuracy and the
depth of looking ahead, and performed best. In fact, Dyna-Q(∞) and LSTD control algorithm were
both unstable, and typically failed once or twice in30 runs. The intuition is that in control the policy
changes from time step to time step and the model is highly non-stationary. By solving the model
and looking infinite steps into the future, LSTD and Dyna-Q(∞) magnify the errors in the model.

7 Conclusion and Future Work

We have taken important steps towards extending linear Dyna-style planning to multi-step planning.
Multi-step linear Dyna-style planning uses multi-step linear models to project a simulated feature
multiple steps into the future. For control, we proposed a different way of doing linear Dyna-style
planning, that builds a model from state-action pair to state-action pair, and tracks the greedy ac-
tion selection. Experimental results show that multi-step linear Dyna-style planning leads to better
performance than existing single-step linear Dyna-style planning on Boyan chain and Mountain-
car problems. Our experimental results show that linear Dyna-style planning can achieve a better
performance by using different step-sizes for learning, modeling, and planning than using a uni-
form step-size for the three sub-procedures. While it is not clear from previous work, our results
fully demonstrate the advantages of linear Dyna over TD/Q-learning for both policy evaluation and
control.

Our work also sheds light on why previous attempts on developing independent online LSTD control
were not successful (e.g., forgetting strategies (Sutton et al., 2008)). LSTD and Dyna-Q(∞) can
become unstable because they magnify the model errors by looking infinite steps into the future.
Current experiments do not include comparisons with any other LSTD control algorithm because
we did not find in the literature an independent LSTD control algorithm. LSPI is usually off-line, and
its extension to online control has to deal with online exploration (Li et al., 2009). Some researchers
have combined LSTD in critic within the Actor-Critic framework (Xu et al., 2002; Peters & Schaal,
2008); however, LSTD there is still not an independent control algorithm.

Acknowledgements

The authors received many feedbacks from Dr. Rich Sutton and Dr. Csaba Szepesvári. We gratefully
acknowledge their help in improving the paper in many aspects. We also thank Alborz Geramifard
for sending us Matlab code of tile coding. This research was supported by iCORE, NSERC and the
Alberta Ingenuity Fund.

8



References

Bertsekas, D. P., Borkar, V., & Nedich, A. (2004). Improved temporal difference methods with linear
function approximation.Learning and Approximate Dynamic Programming(pp. 231–255). IEEE
Press.

Boyan, J. A. (1999). Least-squares temporal difference learning.ICML-16.

Bradtke, S., & Barto, A. G. (1996). Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22, 33–57.

Li, L., Littman, M. L., & Mansley, C. R. (2009). Online exploration in least-squares policy iteration.
AAMAS-8.

Peters, J., & Schaal, S. (2008). Natural actor-critic.Neurocomputing, 71, 1180–1190.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming.ICML-7.

Sutton, R. S. (1995). TD models: modeling the world at a mixture of time scales.ICML-12.

Sutton, R. S., & Barto, A. G. (1998).Reinforcement learning: An introduction. MIT Press.

Sutton, R. S., Szepesvári, C., Geramifard, A., & Bowling, M. (2008). Dyna-style planning with
linear function approximation and prioritized sweeping.UAI-24.

Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of temporal-difference learning with function
approximation.IEEE Transactions on Automatic Control, 42, 674–690.

Xu, X., He, H., & Hu, D. (2002). Efficient reinforcement learning using recursive least-squares
methods.Journal of Artificial Intelligence Research, 16, 259–292.

9


