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Abstract

While many advances have already been made in hierarchical classification learn-
ing, we take a step back and examine how a hierarchical classification problem
should be formally defined. We pay particular attention to the fact that many ar-
bitrary decisions go into the design of the label taxonomy that is given with the
training data. Moreover, many hand-designed taxonomies are unbalanced and
misrepresent the class structure in the underlying data distribution. We attempt
to correct these problems by using the data distribution itself to calibrate the hi-
erarchical classification loss function. This distribution-based correction must be
done with care, to avoid introducing unmanageable statistical dependencies into
the learning problem. This leads us off the beaten path of binomial-type estima-
tion and into the unfamiliar waters of geometric-type estimation. In this paper,
we present a new calibrated definition of statistical risk for hierarchical classifi-
cation, an unbiased estimator for this risk, and a new algorithmic reduction from
hierarchical classification to cost-sensitive classification.

1 Introduction

Multiclass classification is the task of assigning labels from a predefined label-set to instances in a
given domain. For example, consider the task of assigning a topic to each document in a corpus.
If a training set of labeled documents is available, then a multiclass classifier can be trained using
a supervised machine learning algorithm. Often, large label-sets can be organized in a taxonomy.
Examples of popular label taxonomies are the ODP taxonomy ofweb pages [2], the gene ontology
[6], and the LCC ontology of book topics [1]. A taxonomy is a hierarchical structure over labels,
where some labels define very general concepts, and other labels define more specific specializations
of those general concepts. A taxonomy of document topics could include the labelsMUSIC, CLAS-
SICAL MUSIC, andPOPULAR MUSIC, where the last two are special cases of the first. Some label
taxonomies form trees (each label has a single parent) whileothers form directed acyclic graphs.
When a label taxonomy is given alongside a training set, the multiclass classification problem is
often called ahierarchical classificationproblem. The label taxonomy defines a structure over the
multiclass problem, and this structure should be used both in the formal definition of the hierarchical
classification problem, and in the design of learning algorithms to solve this problem.

Most hierarchical classification learning algorithms treat the taxonomy as an indisputable definitive
model of the world, never questioning its accuracy. However, most taxonomies are authored by
human editors and subjective matters of style and taste playa major role in their design. Many
arbitrary decisions go into the design of a taxonomy, and when multiple editors are involved, these
arbitrary decisions are made inconsistently. Figure 1 shows two versions of a simple taxonomy, both
equally reasonable; choosing between them is a matter of personal preference. Arbitrary decisions
that go into the taxonomy design can have a significant influence on the outcome of the learning
algorithm [19]. Ideally, we want learning algorithms that are immune to the arbitrariness in the
taxonomy.
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The arbitrary factor in popular label taxonomies is a well-known phenomenon. [17] gives the ex-
ample of theLibrary of Congress Classificationsystem (LCC), a widely adopted and constantly
updated taxonomy of “all knowledge”, which includes the categoryWORLD HISTORY and four of
its direct subcategories:ASIA, AFRICA, NETHERLANDS, andBALKAN PENINSULA . There is a clear
imbalance between the the level of granularity ofASIA versus its siblingBALKAN PENINSULA .
TheDewey Decimal Classification(DDC), another widely accepted taxonomy of “all knowledge”,
defines ten main classes, each has exactly ten subclasses, and each of those again has exactly ten sub-
classes. The rigid choice of a decimal fan-out is an arbitrary one, and stems from an aesthetic ideal
rather than a notion of informativeness. Incidentally, theten subclasses ofRELIGION in the DDC
include six categories about Christianity and the additional categoryOTHER RELIGIONS, demon-
strating the editor’s clear subjective predilection for Christianity. The ODP taxonomy of web-page
topics is optimized for navigability rather than informativeness, and is therefore very flat and often
unbalanced. As a result, two of the direct children of the label GAMES are VIDEO GAMES (with
over42, 000 websites listed) andPAPER AND PENCIL GAMES(with only 32 websites). These ex-
amples are not intended to show that these useful taxonomiesare flawed, they merely demonstrate
the arbitrary subjective aspect of their design.

Our goal is to define the problem such that it is invariant to many of these subjective and arbitrary
design choices, while still exploiting much of the available information. Some older approaches to
hierarchical classification do not use the taxonomy in the definition of the classification problem
[12, 13, 18, 9, 16]. Namely, these approaches consider all classification mistakes to be equally
bad, and use the taxonomy only to the extent that it reduces computational complexity and the
number of classification mistakes. More recent approaches [3, 8, 5, 4] exploit the label taxonomy
more thoroughly, by using it to induce a hierarchy-dependent loss function, which captures the
intuitive idea that not all classification mistakes are equally bad: incorrectly classifying a document
asCLASSICAL MUSIC when its true topic is actuallyJAZZ is not nearly as bad as classifying that
document asCOMPUTER HARDWARE. When this interpretation of the taxonomy can be made,
ignoring it is effectively wasting a valuable signal in the problem input. For example, [8] define the
loss of predicting a labeluwhen the correct label isy as the number of edges along the path between
the two labels in the taxonomy graph.

Additionally, a taxonomy provides a very natural frameworkfor balancing the tradeoff between
specificity and accuracy in classification. Ideally, we would like our classifier to assign the most
specific label possible to an instance, and the loss functionshould reward it adequately for doing
so. However, when a specific label cannot be assigned with sufficiently high confidence, it is often
better to fall-back on a more general correct label than it isto assign an incorrect specific label. For
example, classifying a document onJAZZ as the broader topicMUSIC is better than classifying it as
the more specific yet incorrect topicCOUNTRY MUSIC. A hierarchical classification problem should
be defined in a way that penalizes both over-confidence and under-confidence in a balanced way.

The graph-distance based loss function introduced by [8] captures both of the ideas mentioned
above, but it is very sensitive to arbitrary choices that go into the taxonomy design. Once again
consider the example in Fig. 1: each hierarchy would induce adifferent graph-distance, which
would lead to a different outcome of the learning algorithm.We can make the difference between
the two outcomes arbitrarily large by making some regions ofthe taxonomy very deep and other
regions very flat. Additionally, we note that the simple graph-distance based loss works best when
the taxonomy is balanced, namely, when all of the splits in the taxonomy convey roughly the same
amount of information. For example, in the taxonomy of Fig. 1, the children ofCLASSICAL MU-
SIC areVIVALDI andNON-VIVALDI , where the vast majority of classical music falls in the latter.
If the correct label isNON-VIVALDI and our classifier predicts the more general labelCLASSICAL
MUSIC, the loss should be small, since the two labels are essentially equivalent. On the other hand,
if the correct label isVIVALDI then predictingCLASSICAL MUSIC should incur a larger loss, since
important detail was excluded. A simple graph-distance based loss will penalize both errors equally.

On one hand, we want to use the hierarchy to define the problem.On the other hand, we don’t want
arbitrary choices and unbalanced splits in the taxonomy to have a significant effect on the outcome.
Can we have our cake and eat it too? Our proposed solution is toleave the taxonomy structure
as-is, and to stick with a graph-distance based loss, but to introduce non-uniformedge weights.
Namely, the loss of predictingu when the true label isy is defined as the sum of edge-weights
along the shortest path fromu to y. We use the underlying distribution over labels to set the edge
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Figure 1: Two equally-reasonable label taxonomies. Note the subjective decision to include/exclude
the labelROCK, and note the unbalanced split ofCLASSICAL to the small classVIVALDI and the
much larger classNON-VIVALDI .

weights in a way that adds balance to the taxonomy and compensates for certain arbitrary design
choices. Specifically, we set edge weights using the information-theoretic notion ofconditional self-
information[7]. The weight of an edge between a labelu and its parentu′ is the log-probability of
observing the labelu given that the example is also labeled byu′.

Others [19] have previously tried to use the training data to“fix” the hierarchy, as a preprocessing
step to classification. However, it is unclear whether it is statistically permissible to reuse the training
data twice: once to fix the hierarchy and then again in the actual learning procedure. The problem
is that the preprocessing step may introduce strong statistical dependencies into our problem. These
dependencies could prove detrimental to our learning algorithm, which expects to see a set of inde-
pendent examples. The key to our approach is that we can estimate our distribution-dependent loss
using the same data used to define it, without introducing anysignificant bias. It turns out that to
accomplish this, we must deviate from the prevalent binomial-type estimation scheme that currently
dominates machine learning and turn to a more peculiar geometric-distribution-type estimator. A
binomial-type estimator essentially counts things (such as mistakes), while a geometric-type esti-
mator measures the amount of time that passes before something occurs. Geometric-type estimators
have the interesting property that they might occasionallyfail, which we investigate in detail below.
Moreover, we show how to control the variance of our estimatewithout adding bias. Since em-
pirical estimation is the basis of supervised machine learning, we can now extrapolate hierarchical
learning algorithms from our unbiased estimation technique. Specifically, we present a reduction
from hierarchical classification to cost-sensitive multiclass classification, which is based on our new
geometric-type estimator.

This paper is organized as follows. We formally set the problem in Sec. 2 and present our new
distribution-dependent loss function in Sec. 3. In Sec. 4 wediscuss how to control the variance of
our empirical estimates, which is a critical step towards the learning algorithm described in Sec. 5.
We conclude with a discussion in Sec. 6. We omit technical proofs due to space constraints.

2 Problem Setting

We now define our problem more formally. LetX be an instance space and letT be a taxonomy of
labels. For simplicity, we focus on tree hierarchies.T is formally defined as the pair(U , π), where
U is a finite set of labels andπ is the function that specifies theparentof each label inU . U contains
both general labels and specific labels. Specifically, we assume thatU contains the special label
ALL , and that all other labels inU are special cases ofALL . π : U → U is a function that defines
the structure of the taxonomy by assigning a parentπ(u) to each labelu ∈ U . Semantically,π(u) is
a more general label thanu that containsu as a special case. In other words, we can say that “u is
a specific type ofπ(u)”. For completeness, we defineπ(ALL ) = ALL . Then’th generation parent
functionπn : U → U is defined by recursively applyingπ to itselfn times. Formally

πn(u) = π(π(. . . π
︸ ︷︷ ︸

n

(u) . . .)) .

For completeness, defineπ0 as the identity function overU . T is acyclic, namely, for allu 6= ALL
and for alln ≥ 1 it holds thatπn(u) 6= u. Theancestor functionπ⋆, maps each label to its set of
ancestors, and is defined asπ⋆(u) =

⋃∞
n=0{π

n(u)}. In other words,π⋆(u) includesu, its parent, its
parent’s parent, and so on. We assume thatT is connectedand specifically thatALL is an ancestor
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of all labels, meaning thatALL ∈ π⋆(u) for all u ∈ U . The inverse of the ancestor function is the
descendent functionτ , which mapsu ∈ U to the subset{u′ ∈ U : u ∈ π⋆(u′)}. In other words,
u is a descendent ofu′ if and only if u′ is an ancestor ofu. Graphically, we can depictT as a
rooted tree:U defines the tree nodes,ALL is the root, and{

(
u, π(u)

)
: u ∈ U \ ALL } is the set of

edges. In this graphical representation,τ(u) includes the nodes in the subtree rooted atu. Using this
representation, we define thegraph distancebetween any two labelsd(u, u′) as the number of edges
along the path betweenu andu′ in the tree. Thelowest common ancestor functionλ : U × U → U
maps any pair of labels to their lowest common ancestor in thetaxonomy, where “lowest” is in the
sense of tree depth. Formally,λ(u, u′) = πj(u) wherej = min{i : πi(u) ∈ π⋆(u′)}. In words,
λ(u, u′) is the closest ancestor ofu that is also an ancestor ifu′. It is straightforward to verify that
λ(u, u′) = λ(u′, u). Theleavesof a taxonomy are the labels that are not parents of any other labels.
We denote the set of leaves byY and note thatY ⊂ U .

Now, letD be a distribution on the product spaceX × Y. In other words,D is a joint distribution
over instances and their corresponding labels. Note that weassume that the labels that occur in the
distribution are always leaves of the taxonomyT . This assumption can be made without loss of
generality: if this is not the case then we can always add a leaf to each interior node, and relabel
all of the examples accordingly. More formally, for each label u ∈ U \ Y, we add a new nodey to
U with π(y) = u, and whenever we sample(x, u) from D then we replace it with(x, y). Initially,
we do not know anything aboutD, other than the fact that it is supported onX × Y. We samplem
independent points fromD, to obtain the sampleS = {(xi, yi)}

m
i=1.

A classifieris a functionf : X → U that assigns a label to each instance ofX . Note that a classifier
is allowed to predict any label inU , even though it knows that only leaf labels are ever observed
in the real world. We feel that this property captures a fundamental characteristic of hierarchical
classification: although the truth is always specific, a goodhierarchical classifier will fall-back to a
more general label when it cannot confidently give a specific prediction. The quality off is measured
using aloss functionℓ : U ×Y → R+. For any instance-label pair(x, y), the lossℓ(f(x), y) should
be interpreted as the penalty associated with predicting the labelf(x) when the true label isy. We
requireℓ to be weakly monotonic, in the following sense: ifu′ lies along the path fromu to y then
ℓ(u′, y) ≤ ℓ(u, y). Although the error indicator function,ℓ(u, y) = 1u6=y satisfies our requirements,
it is not what we have in mind. Another fundamental characteristic of hierarchical classification
problems is that not all prediction errors are equally bad, and the definition of the loss should reflect
this. More specifically, ifu′ lies along the path fromu to y andu is not semantically equivalent to
u′, we actually expect thatℓ(u′, y) < ℓ(u, y).

3 A Distribution-Calibrated Loss for Hierarchical Classifi cation

As mentioned above, we want to calibrate the hierarchical classification loss function using the
distributionD, through its empirical proxyS. In other words, we wantD to differentiate between
informative splits in the taxonomy and redundant ones. We follow [8] in using graph-distance to
define the loss function, but instead of setting all of the edge weights to1, we define edge weights
usingD.

For eachy ∈ Y, let p(y) be the marginal probability of the labely in the distributionD. For
eachu ∈ U , definep(u) =

∑

y∈Y∩τ(u) p(y). In words, for anyu ∈ U , p(u) is the probability of
observing any descendent ofu. We assume henceforth thatp(u) > 0 for all u ∈ U . With these
definitions handy, define the weight of the edge betweenu andπ(u) aslog

(
p(π(u))/p(u)

)
. This

weight is essentially the definition of conditional self information from information theory [7].

The nice thing about this definition is that the weighted graph-distance between labelsu and y
telescopes betweenu andλ(u, y) and betweenu andλ(u, y), and becomes

ℓ(u, y) = 2 log
(
p(λ(u, y))

)
− log

(
p(u)

)
− log

(
p(y)

)
. (1)

Since this loss function depends only onu, y, andλ(u, y), and their frequencies according toD, it
is completely invariant to the the number of labels along thepath fromu or y. It is also invariant
to inconsistent degrees of flatness of the taxonomy in different regions. Finally, it is even invariant
to the addition or subtraction of new leaves or entire subtrees, so long as the marginal distributions
p(u), p(y), andp(λ(u, y)) remain unchanged. This loss also balances uneven splits in the taxonomy.
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Recalling the example in Fig. 1 whereCLASSICAL is split intoVIVALDI andNON-VIVALDI , the edge
to the former will have a very high weight, whereas the edge tothe latter will have a weight close to
zero.

Now, define the risk of a classifierh asR(f) = E(X,Y )∼D[ℓ(f(X), Y )], the expected loss over
examples sampled fromD. Our goal is to obtain a classifier with a small risk. However,before we
tackle the problem of finding a low risk classifier, we addressthe intermediate task of estimating the
risk of a given classifierf using the sampleS. The solution is not straightforward since we cannot
even compute the loss on an individual example,ℓ(f(xi), yi), as this requires knowledge ofD. A
naive way to estimateℓ(f(xi), yi) using the sampleS is to first estimate eachp(y) by

∑m

i=1 1yi=y,
and to plug these values into the definition ofℓ. This estimator tends to suffer from a strong bias,
due to the non-linearity of the logarithm, and is consideredto be unreliable1. Instead, we want an
unbiased estimator.

First, we write the definition of risk more explicitly using the definition of the loss function in Eq. (1).
Defineq(f, u) = Pr(f(X) = u), the probability thatf outputsu whenX is drawn according to
the marginal distribution ofD overX . Also definer(f, u) = Pr(λ(f(X), Y ) = u), the probability
that the lowest common ancestor off(X) andY is u, when(X,Y ) is drawn fromD. R(f) can be
rewritten as

R(f) =
∑

u∈U

(
2r(f, u) − q(f, u)

)
log(p(u)) −

∑

y∈Y

p(y) log
(
p(y)

)
. (2)

Notice that the second term in the definition of risk is a constant, independent off . This constant
is simplyH(Y ), the Shannon entropy [7] of the label distribution. Our ultimate goal is to compare
the risk values of different classifiers and to choose the best one, so we don’t really care about this
constant, and we can discard it henceforth. From here on, we focus on estimating the augmented
risk R̄(f) = R(f) −H(Y ).

The main building block of our estimator is the estimation technique presented in [14]. Assume for
a moment that the sampleS is infinite. Recall that the harmonic numberhn is defined as

∑n

i=1
1
i
,

with h0 = 0. Define the random variablesAi andBi as follows

Ai = min{j ∈ N : yi+j ∈ τ(f(xi))} − 1

Bi = min
{
j ∈ N : yi+j ∈ τ

(
λ(f(xi), yi)

)}
− 1

For example,A1 + 2 is the index of the first example after(x1, y1) whose label is contained in
the subtree rooted atf(x1), andB1 + 2 is the index of the first example after(x1, y1) whose
label is contained in the subtree rooted atλ(f(x1), y1). Note thatBi ≤ Ai, sinceλ(u, y) is, by
definition, an ancestor ofu, soy′ ∈ τ(u) impliesy′ ∈ τ(λ(u, y)). Next, define the random variable
L1 = hA1 − 2hB1 .

Theorem 1. L1 is an unbiased estimator of̄R(f).

Proof. We have that

E
[
L1

∣
∣ f(X1) = u, Y1 = y

]
= p(u)

∞∑

j=0

hj
(
1 − p(u)

)j
− 2p

(
λ(u, y)

)
∞∑

j=0

hj
(
1 − p(λ(u, y))

)j
.

Using the fact that for anyα ∈ [0, 1) it holds that
∑∞

n=0 hnα
n = − log(1−α)

1−α we get,E[L1|f(X1) =

u, Y1 = y] = − log
(
p(u)

)
+ 2 log

(
p(λ(u, y))

)
. Therefore,

E[L1] =
∑

u∈U

∑

y∈Y Pr(f(X) = u, Y = y) E[L1|f(X1) = u, Y1 = y]

=
∑

u∈U

(
2r(f, u) − q(f, u)

)
log

(
p(u)

)
= R̄(f) .

We now recall that our sampleS is actually of finite sizem. The problem that now occurs is that
A1 andB1 are not well defined whenf(X1) does not appear anywhere inY2, . . . , Ym. When this
happens, we say that the estimatorL1 fails. If f outputs a labelu with p(u) = 0 thenL1 will fail

1The interested reader is referred to the extensive literature on the closely related problem of estimating the
entropy of a distribution from a finite sample.
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with probability1. On the other hand, the probability of failure is negligiblewhenm is large enough,
and whenf does not output labels with tiny probabilities. Formally, letβ(f) = minu:q(f,u)>0 p(u)
be the smallest probability of any label thatf outputs.

Theorem 2. The probability of failure is at moste−(m−1)β(f).

The estimatorE[L1|no-fail] is no longer an unbiased estimator ofR̄(f), but the bias is small. Specif-
ically, since we are after a classifierf with a small risk, we prove an upper-bound onR̄(f).

Theorem 3. It holds thatE
[
L1

∣
∣no-fail

]
≥ R̄(f) − (m−1)e−β(f)(m−1)

β2(f) .

For example, withβ = 0.01 andm = 2500, the bias term in Thm. 3 is less than0.0004. With
m = 5000 it is already less than10−14.

4 Decreasing the Variance of the Estimator

Say that we havek classifiers and we want to choose the best one. The estimatorL1 suffers from
an unnecessarily high variance because it typically uses a short prefix of the sampleS and wastes
the remaining examples. To reliably comparek empirical risk estimates, we need to reduce the
variance of each estimator. The exact value ofVar(L1) depends on the distributionsp, q, andr in a
non-trivial way, but we can give a simple upper-bound onVar(L1) in terms ofβ(f).

Theorem 4. Var(L1) ≤ −9 log
(
β(f)

)
+ 9 log2

(
β(f)

)
.

We reduce the variance of the estimator by repeating the estimation multiple times, without reusing
any sample points. Formally, defineS1 = 1, and define for alli ≥ 2 the random variablesSi =
Si−1 + ASi−1 + 2, andLi = hASi

− 2hBSi
. In words: the first estimatorL1 starts atS1 = 1

and usesA1 + 2 examples, namely, the examples1, . . . , (A1 + 2). Now,S2 = A1 + 3 is the first
untouched example in the sequence. The second estimator,L2 starts at exampleS2 and usesAS2 +2
examples, namely, the examplesS2, . . . , (S2 +AS2 +1), and so on. If we had an infinite sample and
chose some thresholdt, the random variablesL1, . . . , Lt would all be unbiased estimators ofR̄(f),
and therefore the aggregate estimatorL = 1

t

∑t

i=1 Li would also be an unbiased estimate ofR̄(f).
SinceL1, . . . , Lt are also independent, the variance of the aggregate estimator would be1

t
Var(L1).

In the finite-sample case, aggregating multiple estimatorsis not as straightforward. Again, the event
where the estimation fails introduces a small bias. Additionally, the number of independent estima-
tions that fit in a sample of fixed sizem is itself a random variableT . Moreover, the value ofT
depends on the value of the risk estimators. In other words, if L1, L2, . . . take large values thenT
will take a small value. The precise definition ofT should be handled with care, to ensure that the
individual estimators remain independent and that the aggregate estimator maintains a small bias.
For example, the first thing that comes to mind is to setT to be the largest numbert such that
St ≤ m - this is a bad idea. To see why, note that ifT = 2 andA1 = m − 4 then we know with
certainty thatAS2 = 0. This clearly demonstrates a strong statistical dependence betweenL1, L2

andT , which both interferes with the variance reduction and introduces a bias. Instead, we defineT
as follows: choose a positive integerl ≤ m and setT using the lastl examples inS, as follows, set

T = min {t ∈ N : St+1 ≥ m− l} . (3)

In words, we think of the lastl examples inS as the “landing strip” of our procedure: we keep
jumping forward in the sequence of samples, fromS1 to S2, toS3, and so on, until the first time we
land on the landing strip. Our new failure scenario occurs when our last jump overshoots the strip,
and noSi falls on any one of the lastl examples. IfL does not fail, define the aggregate estimator as
L =

∑T
i=1 Li. Note that we are summingLi rather than averaging them; we explain this later on.

Theorem 5. The probability of failure of the estimatorL is at moste−lβ(f).

We now prove that our definition ofT indeed decreases the variance without adding bias. We give a
simplified version of the analysis, assuming thatS is infinite, and assuming that the limitm is merely
a recommendation. In other words,T is still defined as before, but estimation never fails, even in the
rare case whereST + AST

+ 1 > m (the index of the last example used in the estimation exceeds
the predefined limitm). We note that a very similar theorem can be stated in the finite-sample case,
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INPUTS: a training setS = {(xi, yi)}
m
i=1, a label taxonomyT .

1 for i = 1, . . . ,m

2 generate random permutationψ : {1, . . . , (m− 1)} → {1, . . . , (i− 1), (i+ 1), . . . ,m}.

3 for u = 1, . . . , d

4 a = −1 + min
{

j ∈ {1, . . . , (m− 1)} : yψ(j) ∈ τ(u)
}

5 b = −1 + min
{

j ∈ {1, . . . , (m− 1)} : yψ(j) ∈ τ
(
λ(u, yi)

)}

6 M(i, u) = 1
b+1 + 1

b+2 + · · · + 1
a

OUTPUT: M

Figure 2: A reduction from hierarchical multiclass to cost-sensitive multiclass.

at the price of a significantly more complicated analysis. The complication stems from the fact that
we are estimating the risk ofk classifiers simultaneously, and the failure of one estimator depends
on the values of the other estimators. We allow ourselves to ignore failures because they occur with
such small probability, and because they introduce an insignificant bias.

Theorem 6. Assuming thatS is infinite, butT is still defined as in Eq. (3), it holds thatE
[
L] =

E
[
T ]R̄(f) andVar(L) ≤ E[T ]σ2, whereσ2 = Var

(
Li).

The proof follows from variations on Wald’s theorem [15].

Recall that we havek competing classifiers,f1, . . . , fk, and we want to choose one with a small
risk. We overload our notation to support multiple concurrent estimations, and defineT (fj) as the
stopping time (previously defined asT in Eq. (3)) of the estimation process for̄R(fj). Also let
Li(fj) be thei’th unbiased estimator of̄R(fj). To conduct a fair comparison of thek classifiers,
we redefineT = minj=1,...,k T (fj), and letL(fj) =

∑T

i=1 Li(fj). In other words, we aggregate
the same number of estimators for each classifier. We then choose the classifier with the smallest
risk estimate,arg minL(Fj). Theorem 6 still holds for each individual classifier because the new
definition ofT remains a stopping time for each of the individual estimation processes. Although
we may not know the exact value ofE[T ], it is just a number that we can use to reason about the bias
and the variance ofL. We note that findingj that minimizesL(fj) is equivalent to findingj that
minimizesL(fj)/E[T ]. The latter, according to Thm. 6, is an unbiased estimate ofR̄(f). Moreover,
the variance of eachL(fj)/E[T ] is Var (L(fj)/E[T ]) = σ2/E[T ], so the effective variance of our
unbiased estimate decreases like1/E[T ], which is what we would expect. Using the one-tailed
Chebyshev inequality [11], we get that for anyǫ > 0, Pr

(
R̄(fj) ≥ L(fj) + ǫ

)
< σ2/(σ2+E[T ]ǫ2).

The bound holds uniformly for allk classifiers with probabilitykσ2/(σ2 +E[T ]ǫ2) (using the union
bound). The variance of the estimation depends onE[T ], and we expectE[T ] to grow linearly with
m. For example we can prove the following crude lower-bound.

Theorem 7. E[T ] ≥ (m− l)/c, wherec = k +
∑k

j=1 1/β(fj).

5 Reducing Hierarchical Classification to Cost-Sensitive Classification

In this section, we propose a method for learning low-risk hierarchical classifiers, using our new
definition of risk. More precisely, we describe a reduction from hierarchical classification tocost-
sensitive multiclass classification. The appeal of this approach is the abundance of existing cost-
sensitive learning algorithms. This reduction is itself analgorithm whose input is a training set ofm
examples and a taxonomy overd labels, and whose output is ad×m matrix of non-negative reals,
denoted byM . EntryM(i, j) is the cost of classifying examplei with labelj. This cost matrix, and
the original training set, are given to a cost-aware multiclass learning algorithm, which attempts to
find a classifierf with a small empirical loss

∑m

i=1M(i, f(xi)).
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For example, a common approach to multiclass problems is to train a modelfu : X → R for each
labelu ∈ U and to define the classifierf(x) = arg maxu∈U fu(x). An SVM-flavored way to train
a cost sensitive classifier is to assume that the functionsfu live in a Hilbert space, and to minimize

d∑

u=1

‖fu‖
2 + C

m∑

i=1

∑

u6=yi

[

M(i, u) + fu(xi) − fyi
(xi)

]

+
, (4)

whereC > 0 is a parameter and[α]+ = max{0, α}. The first term is a regularizer and the second is
an empirical loss, justified by the fact thatM(i, f(xi)) ≤

∑

u6=yi

[
M(i, u) + fu(xi) − fyi

(xi)
]

+
.

Coming back to the reduction algorithm, we generateM using the procedure outlined in Fig. 2.
Based on the analysis of the previous sections, it is easy to see that, for alli, M(i, f(xi)) is an
unbiased estimator of the risk̄R(f). This holds even ifψ (as defined in Fig. 2) is a fixed function,
because the training set is assumed to be i.i.d. Therefore,1

m

∑
M(i, f(xi)) is also an unbiased

estimator ofR̄(f). The cost-sensitive learning algorithm will try to minimize this empirical esti-
mate. The purpose of the random permutation at each step is tohopefully decrease the variance
of the overall estimate, by decreasing the dependencies between the different individual estimators.
We profess that a rigorous analysis of the variance of this estimator is missing from this work. Ide-
ally, we would like to show that, with high probability, the empirical estimate1

m

∑
M(i, f(xi)) is

ǫ-close to its expectation of̄R(f), uniformly for all classifiersf in our function class. This is a
challenging problem due to the complex dependencies in the estimator.

The learning algorithm used to solve this problem can (and should) use the hierarchical structure to
guide its search for a good classifier. Our reduction to an unstructured cost-sensitive problem should
not be misinterpreted as a recommendation not to use the structure in the learning process. For
example, following [10, 8], we could augment the SVM approach described in Eq. (4) by replacing
the unstructured regularizer

∑d

u=1 ‖fu‖
2 with the structured regularizer

∑d

u=1 ‖fu−fπ(u)‖
2, where

π(u) is the parent label ofu. [8] showed significant gains on hierarchical problems using this
regularizer.

6 Discussion

We started by taking a step back from the typical setup of a hierarchical classification machine
learning problem. As a consequence, our focus was on the fundamental aspects of the hierarchical
problem definition, rather than on the equally important algorithmic issues. Our discussion was
restricted to the simplistic model of single-label hierarchical classification with single-linked tax-
onomies, and our first goal going forward is to relax these assumptions.

We point out that many of the theorems proven in this paper depend on the value ofβ(f), which
is defined asminu:q(u)>0 p(u). Specifically, iff occasionally outputs a very rare label, thenβ(f)
is tiny and much of our analysis breaks down. This provides a strong indication that an empirical
estimate ofβ(f) would make a good regularization term in a hierarchical learning scheme. In other
words, we should deter the learning algorithm from choosinga classifier that predicts very rare
labels. As mentioned in the introduction, the label taxonomy provides the perfect mechanism for
backing off and predicting a more common and less risky ancestor of that label.

We believe that our work is significant in the broader contextof structured learning. Most structured
learning algorithms blindly trust the structure that they are given, and arbitrary design choices are
likely to appear in many types of structured learning. The idea of using the data distribution to
calibrate, correct, and balance the side-information extends to other structured learning scenarios.
The geometric-type estimation procedure outlined in this paper may play an important role in those
settings as well.
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