
A Smoothed Approximate Linear Program

Vijay V. Desai
IEOR, Columbia University

vvd2101@columbia.edu

Vivek F. Farias
MIT Sloan

vivekf@mit.edu

Ciamac C. Moallemi
GSB, Columbia University
ciamac@gsb.columbia.edu

Abstract

We present a novel linear program for the approximation of the dynamic
programming cost-to-go function in high-dimensional stochastic control
problems. LP approaches to approximate DP naturally restrict attention
to approximations that are lower bounds to the optimal cost-to-go func-
tion. Our program – the ‘smoothed approximate linear program’ – relaxes
this restriction in an appropriate fashion while remaining computation-
ally tractable. Doing so appears to have several advantages: First, we
demonstrate superior bounds on the quality of approximation to the op-
timal cost-to-go function afforded by our approach. Second, experiments
with our approach on a challenging problem (the game of Tetris) show that
the approach outperforms the existing LP approach (which has previously
been shown to be competitive with several ADP algorithms) by an order of
magnitude.

1 Introduction

Many dynamic optimization problems can be cast as Markov decision problems (MDPs) and
solved, in principle, via dynamic programming. Unfortunately, this approach is frequently
untenable due to the ‘curse of dimensionality’. Approximate dynamic programming (ADP)
is an approach which attempts to address this difficulty. ADP algorithms seek to compute
good approximations to the dynamic programing optimal cost-to-go function within the
span of some pre-specified set of basis functions. The approximate linear programming
(ALP) approach to ADP [1, 2] is one such well-recognized approach.
The program employed in the ALP approach is identical to the LP used for exact com-
putation of the optimal cost-to-go function, with further constraints limiting solutions to
the low-dimensional subspace spanned by the basis functions used. The resulting low di-
mensional LP implicitly restricts attention to approximations that are lower bounds on the
optimal cost-to-go function. While the structure of this program appears crucial in estab-
lishing approximation guarantees for the approach, the restriction to lower bounds leads
one to ask whether the ALP is the ‘right’ LP. In particular, could an appropriate relaxation
of the feasible region of the ALP allow for better approximations to the cost-to-go function
while remaining computationally tractable? Motivated by this question, the present paper
presents a new linear program for ADP we call the ‘smoothed’ ALP (or SALP).
The SALP may be viewed as a relaxation of the ALP wherein one is allowed to violate the
ALP constraints for any given state. A user defined ‘violation budget’ parameter controls
the ‘expected’ violation across states; a budget of 0 thus yields the original ALP. We specify
a choice of this violation budget that yields a relaxation with attractive properties. In
particular, we are able to establish strong approximation guarantees for the SALP; these
guarantees are substantially stronger than the corresponding guarantees for the ALP.
The number of constraints and variables in the SALP scale with the size of the MDP
state space. We nonetheless establish sample complexity bounds that demonstrate that an

1

appropriate ‘sampled’ SALP provides a good approximation to the SALP solution with a
tractable number of sampled MDP states. This sampled program is no more complex than
the ‘sampled’ ALP and, as such, we demonstrate that the SALP is essentially no harder to
solve than the ALP.
We present a computational study demonstrating the efficacy of our approach on the game
of Tetris. The ALP has been demonstrated to be competitive with several ADP approaches
for Tetris (see [3]). In detailed comparisons with the ALP, we estimate that the SALP
provides an order of magnitude improvement over controllers designed via that approach
for the game of Tetris.

2 Problem Formulation

Our setting is that of a discrete-time, discounted infinite-horizon, cost-minimizing MDP
with a finite state space X and finite action space A. Given the state and action at time
t, xt and at, a per-stage cost g(xt, at) is incurred. The subsequent state xt+1 is determined
according to the transition probability kernel Pat(xt, ·). A stationary policy µ : X → A is
a mapping that determines the action at each time as a function of the state. Given each
initial state x0 = x, the expected discounted cost (cost-to-go function) of the policy µ is
given by

Jµ(x) , Eµ

[∞∑

t=0
αtg(xt, µ(xt))

∣∣∣∣∣ x0 = x

]
.

where, α ∈ (0, 1) is the discount factor. Denote by Pµ ∈ RX×X the transition probability
matrix for the policy µ, whose (x, x′)th entry is Pµ(x)(x, x′). Denote by gµ ∈ RX the vector
whose xth entry is g(x, µ(x)). Then, the cost-to-go function Jµ is the unique solution to the
equation TµJ = J , where the operator Tµ is defined by TµJ = gµ + αPµJ .
The Bellman operator T can be defined according to TJ = minµ TµJ . Bellman’s equation
is then the fixed point equation, TJ = J . It is readily shown that the optimal cost-to-go
function J∗ is the unique solution to Bellman’s equation and that a corresponding optimal
policy µ∗ is greedy with respect to J∗; i.e., µ∗ satisfies TJ∗ = Tµ∗J

∗.
Bellman’s equation may be solved exactly via the following linear program:

(1)
maximize

J
ν>J

subject to J ≤ TJ.

Here, ν ∈ RX is a vector with positive components that are known as the state-relevance
weights. The above program is indeed an LP since the constraint J(x) ≤ (TJ)(x) is equiva-
lent to the set of linear constraints J(x) ≤ g(x, a) +α

∑
x′∈X Pa(x, x′)J(x′), ∀ a ∈ A. We

refer to (1) as the exact LP.
Note that if a vector J satisfies J ≤ TJ , then J ≤ T kJ (by monotonicity of the Bellman
operator), and thus J ≤ J∗ (since the Bellman operator is a contraction with unique fixed
point J∗). Then, every feasible point for (1) is a component-wise lower bound to J∗, and
J∗ is the unique optimal solution to the exact LP (1).
For problems where X is prohibitively large, an ADP algorithm seeks to find a good ap-
proximation to J∗. Specifically, one considers a collection of basis functions {φ1, . . . , φK}
where each φi : X → R. Defining Φ , [φ1φ2 . . . φK] to be a matrix with columns consisting
of basis functions, one seeks an approximation of the form Jr = Φr, with the hope that
Jr ∼ J∗. The ALP for this task is then simply

(2)
maximize

r
ν>Φr

subject to Φr ≤ TΦr.

The geometric intuition behind the ALP is illustrated in Figure 1(a). Supposed that rALP
is a vector that is optimal for the ALP. Then the approximate value function ΦrALP will
lie on the subspace spanned by the columns of Φ, as illustrated by the orange line. ΦrALP

2

will also satisfy the constraints of the exact LP, illustrated by the dark gray region; this
implies that ΦrALP ≤ J∗. In other words, the approximate cost-to-go function is necessarily
a point-wise lower bound to the true cost-to-go function in the span of Φ.

J = Φr

ΦrALP

J∗

ν
J(1)

J(2)

(a) ALP case.

J = Φr

ΦrSALP

J∗

ν
J(1)

J(2)

(b) SALP case.

Figure 1: A cartoon illustrating the feasible set and optimal solution for the ALP and
SALP, in the case of a two-state MDP. The axes correspond to the components of the value
function. A careful relaxation from the feasible set of the ALP to that of the SALP can
yield an improved approximation.

3 The Smoothed ALP

The J ≤ TJ constraints in the exact LP, which carry over to the ALP, impose a strong
restriction on the cost-to-go function approximation: in particular they restrict us to ap-
proximations that are lower bounds to J∗ at every point in the state space. In the case
where the state space is very large, and the number of basis functions is (relatively) small,
it may be the case that constraints arising from rarely visited or pathological states are
binding and influence the optimal solution. In many cases, our ultimate goal is not to find
a lower bound on the optimal cost-to-go function, but rather a good approximation to J∗.
In these instances, it may be the case that relaxing the constraints in the ALP so as not to
require a uniform lower bound may allow for better overall approximations to the optimal
cost-to-go function. This is also illustrated in Figure 1. Relaxing the feasible region of the
ALP in Figure 1(b) to the light gray region in Figure 1(b) would yield the point ΦrSALP as
an optimal solution. The relaxation in this case is clearly beneficial; it allows us to compute
a better approximation to J∗ than the point ΦrSALP. Can we construct a fruitful relaxation
of this sort in general? The smoothed approximate linear program (SALP) is given by:

(3)
maximize

r,s
ν>Φr

subject to Φr ≤ TΦr + s,
π>s ≤ θ, s ≥ 0.

Here, a vector s ∈ RX of additional decision variables has been introduced. For each state x,
s(x) is a non-negative decision variable (a slack) that allows for violation of the corresponding
ALP constraint. The parameter θ ≥ 0 is a non-negative scalar. The parameter π ∈ RX is
a probability distribution known as the constraint violation distribution. The parameter θ
is thus a violation budget: the expected violation of the Φr ≤ TΦr constraint, under the
distribution π, must be less than θ. The balance of the paper is concerned with establishing
that the SALP forms the basis of a useful ADP algorithm in large scale problems:

• We identify a concrete choice of violation budget θ and an idealized constraint
violation distribution π for which the SALP provides a useful relaxation in that the
optimal solution can be a better approximation to the optimal cost-to-go function.
This brings the cartoon improvement in Figure 1 to fruition for general problems.

3

• We show that the SALP is tractable (i.e it is well approximated by an appropri-
ate ‘sampled’ version) and present computational experiments for a hard problem
(Tetris) illustrating an order of magnitude improvement over the ALP.

4 Analysis

This section is dedicated to a theoretical analysis of the SALP. The overarching objective
of this analysis is to provide some assurance of the soundness of the proposed approach. In
addition, our analysis will serve as a crucial guide to practical implementation of the SALP.
Our analysis will present two types of results: First, we prove approximation guarantees
(Sections 4.1 and 4.2) that will indicate that the SALP computes approximations that
are of comparable quality to the projection of J∗ on the linear span of Φ. Second, we
show (Section 4.3) that an implementable ‘sampled’ version of the SALP may be used to
approximate the SALP with a tractable number of samples. All proofs can be found in the
technical appendix.
Idealized Assumptions: Given the broad scope of problems addressed by ADP algo-
rithms, analyses of such algorithms typically rely on an ‘idealized’ assumption of some sort.
In the case of the ALP, one either assumes the ability to solve a linear program with as many
constraints as there are states, or absent that, knowledge of a certain idealized sampling
distribution, so that one can then proceed with solving a ‘sampled’ version of the ALP.
Our analysis of the SALP in this section is predicated on the knowledge of an idealized
constraint violation distribution, which is this same idealized sampling distribution. In par-
ticular, we will require access to samples drawn according to the distribution πµ∗,ν given
by π>µ∗,ν , (1 − α)ν>(I − αPµ∗)−1. Here ν is an arbitrary initial distribution over states.
The distribution πµ∗,ν may be interpreted as yielding the discounted expected frequency of
visits to a given state when the initial state is distributed according to ν and the system
runs under the optimal policy µ∗. We note that the ‘sampled’ ALP introduced by de Farias
and Van Roy [2] requires access to states sampled according to precisely this distribution.

4.1 A Simple Approximation Guarantee

We present a first, simple approximation guarantee for the following specialization of the
SALP in (3):

(4)
maximize

r,s
ν>Φr

subject to Φr ≤ TΦr + s,
π>µ∗,νs ≤ θ, s ≥ 0.

Before we proceed to state our result, we define a useful function:

(5)
`(r, θ) , minimize

s,γ
γ

subject to Φr − TΦr ≤ s+ γ1,
π>µ∗,νs ≤ θ, s ≥ 0.

`(r, θ) is the minimum translation (in the direction of the vector 1) of an arbitrary weight
vector r so as to result in a feasible vector for (4). We will denote by s(r, θ) the s component
of the solution to (5). The following Lemma characterizes l(r, θ):
Lemma 1. For any r ∈ RK and θ ≥ 0:

(i) `(r, θ) is a bounded, decreasing, piecewise linear, convex function of θ.

(ii) `(r, θ) ≤ (1 + α)‖J∗ − Φr‖∞.

(iii) ∂
∂r `(r, 0) = − 1∑

x∈Ω(r)
πµ∗,ν(x) , where Ω(r) = argmaxx∈X Φr(x)− TΦr(x).

Armed with this definition, we are now in a position to state our first, crude approximation
guarantee:

4

Theorem 1. Let 1 be in the span of Φ and ν be a probability distribution. Let r̄ be an
optimal solution to the SALP (4). Moreover, let r∗ satisfy r∗ ∈ argminr ‖J∗ − Φr‖∞.
Then,

‖J∗ − Φr̄‖1,ν ≤ ‖J∗ − Φr∗‖∞ + l(r∗, θ) + 2θ
1− α .

The above theorem allows us to interpret `(r∗,θ)+2θ
1−α as the approximation error associated

with the SALP solution r̄. Consider setting θ = 0, in which case (4) is identical to the ALP.
In this case, we have from Lemma 1 that `(r∗, 0) ≤ (1 + α)‖J∗ − Φr∗‖∞, so that the right
hand side of our bound is at most 2

1−α‖J∗−Φr∗‖∞. This is precisely Theorem 2 in de Farias
and Van Roy [1]; we recover their approximation guarantee for the ALP. Next observe that,
from (iii), if the set Ω(r∗) is of small probability according to the distribution πµ∗,ν , we
expect that `(r∗, θ) will decrease dramatically as θ is increased from 0. In the event that
Φr∗(x) − TΦr∗(x) is large for only a small number of states (that is, the Bellman error
of the approximation produced by r∗ is large for only a small number of states), we thus
expect to have a choice of θ for which l(r∗, θ) + 2θ � l(r∗, 0). Thus, Theorem 1 reinforces
the intuition (shown via Figure 1) that the SALP will permit closer approximations to J∗
than the ALP.
The bound in Theorem 1 leaves room for improvement:

1. The right hand side of our bound measures projection error, ‖J∗ − Φr∗‖∞ in the
L∞-norm. Since it is unlikely that the basis functions Φ will provide a uniformly
good approximation over the entire state space, the right hand side of our bound
could be quite large.

2. The choice of state relevance weights can significantly influence the solution. While
we do not show this here, this choice allows us to choose regions of the state space
where we would like a better approximation of J∗. The right hand side of our
bound, however, is independent of ν.

3. Our guarantee does not suggest a concrete choice of the violation budget, θ.

The next section will present a substantially refined approximation bound.

4.2 A Better Approximation Guarantee

With the intent of deriving stronger approximation guarantees, we begin this section by
introducing a ‘nicer’ measure of the quality of approximation afforded by Φ. In particular,
instead of measuring ‖J∗−Φr∗‖ in the L∞ norm as we did for our previous bounds, we will
use a weighted max norm defined according to: ‖J‖∞,1/ψ , maxx∈X |J(x)|/ψ(x), where
ψ : X → [1,∞) is a given weighting function. The weighting function ψ allows us to weight
approximation error in a non-uniform fashion across the state space and in this manner
potentially ignore approximation quality in regions of the state space that ‘don’t matter’.
In addition to specifying the constraint violation distribution π as we did for our previous
bound, we will specify (implicitly) a particular choice of the violation budget θ. In particular,
we will consider solving the following SALP:

(6) maximize
r,s

ν>Φr − 2π>µ∗,νs
1−α

subject to Φr ≤ TΦr + s, s ≥ 0.

It is clear that (6) is equivalent to (4) for a specific choice of θ. We then have:

Theorem 2. Let Ψ , {y ∈ R|X | : y ≥ 1}. For every ψ ∈ Ψ, let β(ψ) = maxµ
∥∥∥Pµψψ

∥∥∥
∞

.
Then, for an optimal solution (rSALP, s̄) to (6), we have:

‖J∗ − ΦrSALP‖1,ν ≤ inf
r,ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ + 1)(αβ(ψ) + 1)
1− α

)
.

5

It is worth placing the result in context to understand its implications. For this, we recall
a closely related result shown by de Farias and Van Roy [1] for the ALP. In particular,
de Farias and Van Roy [1] showed that given an appropriate weighting (or in their context,
‘Lyapunov’) function ψ, one may solve an ALP, with ψ in the span of the basis functions
Φ; the solution to such an ALP then satisfies:

‖J∗ − Φr̄‖1,ν ≤ inf
r
‖J∗ − Φr‖∞,1/ψ

2ν>ψ
1− αβ(ψ)

provided β(ψ) ≤ 1/α. Selecting an appropriate ψ in their context is viewed to be an
important task for practical performance and often requires a good deal of problem specific
analysis; de Farias and Van Roy [1] identify appropriate ψ for several queueing models (note
that this is equivalent to identifying a desirable basis function). In contrast, the guarantee
we present optimizes over all possible ψ1. Thus, the approximation guarantee of Theorem 2
allows us to view the SALP as automating the critical procedure of identifying a good
Lyapunov function for a given problem.

4.3 Sample Complexity

Our analysis thus far has assumed we have the ability to solve the SALP, a program with
a potentially intractable number of constraints and variables. As it turns out, a solution to
the SALP is well approximated by the solution to a certain ‘sampled’ program which we now
describe: Let X̂ = {x1, x2, . . . , xS} be an ordered collection of S states drawn independently
from X according to the distribution πµ∗,ν . Let us consider solving the following program
which we call the sampled SALP:

(7)
maximize

r,s
ν>Φr − 2

(1−α)S
∑
x∈X̂ s(x)

subject to (Φr)(x) ≤ (TΦr)(x) + s(x), ∀ x ∈ X̂ ,
r ∈ N , s ≥ 0.

Here N ∈ Rm is a parameter set chosen to contain the optimal solution to the SALP (6),
rSALP. Notice that (7) is a linear program with S variables and S|A| constraints. For a
moderate number of samples S, this is is easily solved. We will provide a sample complexity
bound that indicates that for a number of samples S that scales linearly with the dimension
of Φ, K, and that need not depend on the size of the state space, the solution to the sampled
SALP satisfies, with high probability, the approximation guarantee presented for the SALP
solution in Theorem 2.
Let us define the constant B , supr∈N ‖(Φr − TΦr)+‖∞. This quantity is closely related
to the diameter of the region N . We then have:
Theorem 3. Under the conditions of Theorem 2, let rSALP be an optimal solution to the
SALP (6), and let r̂SALP be an optimal solution to the sampled SALP (7). Assume that
rSALP ∈ N . Further, given ε ∈ (0, B] and δ ∈ (0, 1/2], suppose that the number of sampled
states S satisfies

S ≥ 64B2

ε2

(
2(K + 2) log 16eB

ε
+ log 8

δ

)
.

Then, with probability at least 1− δ − 2−383δ128,

‖J∗ − Φr̂SALP‖1,ν ≤ inf
r∈N
ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ + 1)(αβ(ψ) + 1)
1− α

)
+ 4ε

1− α.

Theorem 3 establishes that the sampled SALP provides a close approximation to the solution
of the SALP, in the sense that the approximation guarantees we established for the SALP
are approximately valid for the solution to the sampled version with high probability. The
number of samples we require to accomplish this task is specified precisely via the theorem.
This number depends linearly on the number of basis functions and the diameter of the

1This includes those ψ that do not satisfy the Lyapunov condition β(ψ) ≤ 1/α.

6

feasible region, but is otherwise independent of the size of the state space for the MDP under
consideration. It is worth juxtaposing our sample complexity result with that available for
the ALP. In particular, we recall that the ALP has a large number of constraints but a small
number of variables; the SALP is thus, at least superficially, a significantly more complex
program. Exploiting the fact that the ALP has a small number of variables, de Farias
and Van Roy [2] establish a sample complexity bound for a sampled version of the ALP
analogous (7). The number of samples required for this sampled ALP to produce a good
approximation to the ALP can be shown to depend on the same problem parameters we
have identified here, viz. B and the number of basis functions K. The sample complexity in
that case is identical to the sample complexity bound established here up to constants and
an additional multiplicative factor of B/ε (for the sampled SALP). Thus, the two sample
complexity bounds are within polynomial terms of each other and we have established that
the SALP is essentially no harder to solve than the ALP.
This section places the SALP on solid theoretical ground by establishing strong approxima-
tion guarantees for the SALP that represent a substantial improvement over those available
for the ALP and sample complexity results that indicated that the SALP was implementable
via sampling. We next present a computational study that tests the SALP relative to other
ADP methods (including the ALP) on a hard problem (the game of Tetris).

5 Case Study: Tetris

Our interest in Tetris as a case study for the SALP algorithm is motivated by several facts.
Theoretical results suggest that design of an optimal Tetris player is a difficult problem
[4–6]. Tetris represents precisely the kind of large and unstructured MDP for which it is
difficult to design heuristic controllers, and hence policies designed by ADP algorithms are
particularly relevant. Moreover, Tetris has been employed by a number of researchers as a
testbed problem [3, 7–9]. We follow the formulation of Tetris as a MDP presented by Farias
and Van Roy [3]. The SALP methodology was applied as follows:
Basis functions. We employed the 22 basis functions originally introduced in [7].
State sampling. Given a sample size S, a collection X̂ ⊂ X of S states was sampled. These
samples were generated in an IID fashion from the stationary distribution of a (rather poor)
baseline policy2.
Optimization. Given the collection X̂ of sampled states, an increasing sequence of choices
of the violation budget θ ≥ 0 is considered. For each choice of θ, the optimization program

(8)

maximize
r,s

1
S

∑
x∈X̂ (Φr)(x)

subject to Φr(x) ≤ TΦr(x) + s(x), ∀ x ∈ X̂ ,
1
S

∑
x∈X̂ s(x) ≤ θ,

s(x) ≥ 0, ∀ x ∈ X̂ ,
was solved. This program is a version of the original SALP (3), but with sampled empirical
distributions in place of the state-relevance weights ν and the constraint violation distribu-
tion π. Note that (8) has K + S decision variables and S|A| linear constraints. Because
of the sparsity structure of the constraints, however, it is amenable to efficient solution via
barrier methods, even for large values of S.
Evaluation. Given a vector of weights obtained by solving (8), the performance of the
corresponding policy is evaluated via Monte Carlo simulation over 3, 000 games of Tetris.
Performance is measured in terms of the average number of lines cleared in a single game.
For each pair (S, θ), the resulting average performance (averaged over 10 different sets of
sampled states) is shown in Figure 2. It provides experimental evidence for the intuition
expressed in Section 3 and the analytic result of Theorem 1: Relaxing the constraints of
the ALP by allowing for a violation budget allows for better policy performance. As the
violation budget θ is increased from 0, performance dramatically improves. At θ = 0.16384,
the performance peaks, and we get policies that is an order of magnitude better than ALP,
and beyond that the performance deteriorates.

2Our baseline policy had an average performance of 113 points.

7

50 100 150 200 250 300
×103

0

2

4

×103

Sample Size S

Av
er

ag
e

Pe
rf

or
m

an
ce

θ = 0.65536
θ = 0.16384
θ = 0.02048
θ = 0.01024
θ = 0.00256
θ = 0 (ALP)

Figure 2: Average performance of SALP for different values of the number of sampled states
S and the violation budget θ.

Table 1 summarizes the performance of best policies obtained by various ADP algorithms.
Note that all of these algorithms employ the same basis function architecture. The ALP and
SALP results are from our experiments, while the other results are from the literature. The
best performance results of SALP is better by a factor of 2 in comparison to the competitors.

Algorithm Best Performance CPU Time
ALP 897 hours

TD-Learning [7] 3,183 minutes
ALP with bootstrapping [3] 4,274 hours

TD-Learning [8] 4,471 minutes
Policy gradient [9] 5,500 days

SALP 10,775 hours

Table 1: Comparison of the performance of the best policy found with various ADP methods.

Note that significantly better policies are possible with this basis function architecture than
any of the ADP algorithms in Table 1 discover. Using a heuristic optimization method,
Szita and Lőrincz [10] report policies with a remarkable average performance of 350,000.
Their method is computationally intensive, however, requiring one month of CPU time. In
addition, the approach employs a number of rather arbitrary Tetris specific ‘modifications’
that are ultimately seen to be critical to performance - in the absence of these modifications,
the method is unable to find a policy for Tetris that scores above a few hundred points.

6 Future Directions

There are a number of interesting directions that remain to be explored. First, note that the
bounds derived in Sections 4.1 and 4.2 are approximation guarantees, which provide bounds
on the approximation error given by the SALP approach versus the best approximation pos-
sible with the particular set of basis functions. In preliminary work, we have also developed
performance guarantees. These provide bounds on the performance of the resulting SALP
policies, as a function of the basis architecture. Second, note that sample path variations
of the SALP are possible. Rather than solving a large linear program, such an algorithm
would optimize a policy in an online fashion along a single system trajectory. This would be
in a manner reminiscent of stochastic approximation algorithms like TD-learning. However,
a sample path SALP variation would inherit all of the theoretical bounds developed here.
The design and analysis of such an algorithm is an exciting future direction.

8

References
[1] D. P. de Farias and B. Van Roy. The linear programming approach to approximate

dynamic programming. Operations Research, 51(6):850–865, 2003.
[2] D. P. de Farias and B. Van Roy. On constraint sampling in the linear programming

approach to approximate dynamic programming. Mathematics of Operations Research,
293(3):462–478, 2004.

[3] V. F. Farias and B. Van Roy. Tetris: A study of randomized constraint sampling. In
Probabilistic and Randomized Methods for Design Under Uncertainty. Springer-Verlag,
2006.

[4] J. Brzustowski. Can you win at Tetris? Master’s thesis, University of British Columbia,
1992.

[5] H. Burgiel. How to lose at Tetris. Mathematical Gazette, page 194, 1997.
[6] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even to approx-

imate. In Proceedings of the 9th International Computing and Combinatorics Confer-
ence, 2003.

[7] D. P. Bertsekas and S. Ioffe. Temporal differences–based policy iteration and applica-
tions in neuro–dynamic programming. Technical Report LIDS–P–2349, MIT Labora-
tory for Information and Decision Systems, 1996.

[8] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

[9] S. Kakade. A natural policy gradient. In Advances in Neural Information Processing
Systems 14, Cambridge, MA, 2002. MIT Press.

[10] I. Szita and A. Lőrincz. Learning Tetris using the noisy cross-entropy method. Neural
Computation, 18:2936–2941, 2006.

[11] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100:78–150, 1992.

9

