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Abstract

Ensemble classifiers such as bagging, boosting and model averaging are known
to have improved accuracy and robustness over a single model. Their potential,
however, is limited in applications which have no access to raw data but to the
meta-level model output. In this paper, we study ensemble learning with output
from multiple supervised and unsupervised models, a topic where little work has
been done. Although unsupervised models, such as clustering, do not directly
generate label prediction for each individual, they provide useful constraints for
the joint prediction of a set of related objects. We propose to consolidate a classi-
fication solution by maximizing the consensus among both supervised predictions
and unsupervised constraints. We cast this ensemble task as an optimization prob-
lem on a bipartite graph, where the objective function favors the smoothness of the
prediction over the graph, as well as penalizing deviations from the initial labeling
provided by supervised models. We solve this problem through iterative propaga-
tion of probability estimates among neighboring nodes. Our method can also be
interpreted as conducting a constrained embedding in a transformed space, or a
ranking on the graph. Experimental results on three real applications demonstrate
the benefits of the proposed method over existing alternatives1.

1 Introduction

We seek to integrate knowledge from multiple information sources. Traditional ensemble methods
such as bagging, boosting and model averaging are known to have improved accuracy and robustness
over a single model. Their potential, however, is limited in applications which have no access to raw
data but to the meta-level model output. For example, due to privacy, companies or agencies may
not be willing to share their raw data but their final models. So information fusion needs to be
conducted at the decision level. Furthermore, different data sources may have different formats, for
example, web video classification based on image, audio and text features. In these scenarios, we
have to combine incompatible information sources at the coarser level (predicted class labels) rather
than learn the joint model from raw data.

In this paper, we consider the general problem of combining output of multiple supervised and unsu-
pervised models to improve prediction accuracy. Although unsupervised models, such as clustering,
do not directly generate label predictions, they provide useful constraints for the classification task.
The rationale is that objects that are in the same cluster should be more likely to receive the same
class label than the ones in different clusters. Furthermore, incorporating the unsupervised clustering
models into classification ensembles improves the base model diversity, and thus has the potential
of improving prediction accuracy.

1More information, data and codes are available at http://ews.uiuc.edu/∼jinggao3/nips09bgcm.htm
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Figure 1: Groups
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Figure 2: Bipartite Graph
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Figure 3: Position of Consensus Maximization
Suppose we have a set of data points X = {x1, x2, . . . , xn} from c classes. There are m models
that provide information about the classification of X , where the first r of them are (supervised)
classifiers, and the remaining are (unsupervised) clustering algorithms. Consider an example where
X = {x1, . . . , x7}, c = 3 and m = 4. The output of the four models are:

M1 = {1, 1, 1, 2, 3, 3, 2} M2 = {1, 1, 2, 2, 2, 3, 1} M3 = {2, 2, 1, 3, 3, 1, 3} M4 = {1, 2, 3, 1, 2, 1, 1}
where M1 and M2 assign each object a class label, whereas M3 and M4 simply partition the objects
into three clusters and assign each object a cluster ID. Each model, no matter it is supervised or
unsupervised, partitions X into groups, and objects in the same group share either the same predicted
class label or the same cluster ID. We summarize the data, models and the corresponding output by
a bipartite graph. In the graph, nodes at the left denote the groups output by the m models with
some labeled ones from the supervised models, nodes at the right denote the n objects, and a group
and an object are connected if the object is assigned to the group by one of the models. For the
aforementioned toy example, we show the groups obtained from a classifier M1 and a clustering
model M3 in Figure 1, as well as the group-object bipartite graph in Figure 2.

The objective is to predict the class label of xi ∈ X , which agrees with the base classifiers’ pre-
dictions, and meanwhile, satisfies the constraints enforced by the clustering models, as much as
possible. To reach maximum consensus among all the models, we define an optimization problem
over the bipartite graph whose objective function penalizes deviations from the base classifiers’ pre-
dictions, and discrepancies of predicted class labels among nearby nodes. In the toy example, the
consensus label predictions for X should be {1, 1, 1, 2, 2, 3, 2}.

Related Work. We summarize various learning problems in Figure 3, where one dimension repre-
sents the goal – from unsupervised to supervised, and the other dimension represents the method –
single models, ensembles at the raw data, or ensembles at the output level. Our proposed method is
a semi-supervised ensemble working at the output level, where little work has been done.

Many efforts have been devoted to develop single-model learning algorithms, such as Support Vector
Machines and logistic regression for classification, K-means and spectral clustering for clustering.
Recent studies reveal that unsupervised information can also be utilized to improve the accuracy of
supervised learning, which leads to semi-supervised [29, 8] and transductive learning [21]. Although
our proposed algorithm works in a transductive setting, existing semi-supervised and transductive
learning methods cannot be easily applied to our problem setting and we discuss this in more de-
tail at the end of Section 2. Note that all methods listed in Figure 3 are for single task learning.
On the contrary, multi-task learning [6, 9] deals with multiple tasks simultaneously by exploiting
dependence among tasks, which has a different problem setting and thus is not discussed here.

In Figure 3, we divide ensemble methods into two categories depending on whether they require
access to raw data. In unsupervised learning, many clustering ensemble methods [12, 17, 25, 26]
have been developed to find a consensus clustering from multiple partitionings without accessing the
features. In supervised learning, however, only majority voting type algorithms work on the model
output level, and most well-known classification ensemble approaches [2, 11, 19] (eg. bagging,
boosting, bayesian model averaging) involve training diversified classifiers from raw data. Methods
such as mixture of experts [20] and stacked generalization [27] try to obtain a meta-learner on
top of the model output, however, they still need the labels of the raw data as feedbacks, so we
position them as an intermediate between raw data ensemble and output ensemble. In multi-view
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learning [4, 13], a joint model is learnt from both labeled and unlabeled data from multiple sources.
Therefore, it can be regarded as a semi-supervised ensemble requiring access to the raw data.

Summary. The proposed consensus maximization problem is a challenging problem that cannot
be solved by simple majority voting. To achieve maximum agreement among various models, we
must seek a global optimal prediction for the target objects. In Section 2, we formally define the
graph-based consensus maximization problem and propose an iterative algorithm to solve it. The
proposed solution propagates labeled information among neighboring nodes until stabilization. We
also present two different interpretations of the proposed method in Section 3, and discuss how
to incorporate feedbacks obtained from a few labeled target objects into the framework in Section
4. An extensive experimental study is carried out in Section 5, where the benefits of the proposed
approach are illustrated on 20 Newsgroup, Cora research papers, and DBLP publication data sets.

2 Methodology

Suppose we have the output of r classification algorithms and (m − r) clustering algorithms on a
data set X . For the sake of simplicity, we assume that each point is assigned to only one class or
cluster in each of the m algorithms, and the number of clusters in each clustering algorithm is c,
same as the number of classes. Note that cluster ID z may not be related to class z. So each base
algorithm partitions X into c groups and there are totally v = mc groups, where the first s = rc
groups are generated by classifiers and the remaining v − s groups are from clustering algorithms.
Before proceeding further, we introduce some notations that will be used in the following discussion:
Bn×m denotes an n×m matrix with bij representing the (ij)-th entry, and~bi· and~b·j denote vectors
of row i and column j, respectively. See Table 1 for a summary of important symbols.

We represent the objects and groups in a bipartite graph as shown in Figure 2, where the object nodes
x1, . . . , xn are on the right, the group nodes g1, . . . , gv are on the left. The affinity matrix An×v of
this graph summarizes the output of m algorithms on X:

aij = 1, if xi is assigned to group gj by one of the algorithms; 0, otherwise.

We aim at estimating the conditional probability of each object node xi belonging to c classes. As
a nuisance parameter, the conditional probabilities at each group node gj are also estimated. These
conditional probabilities are denoted by Un×c for object nodes and Qv×c for group nodes:

uiz = P̂ (y = z|xi) and qjz = P̂ (y = z|gj).

Since the first s = rc groups are obtained from supervised learning models, they have some initial
class label estimates denoted by Yv×c where

yjz = 1, if gj’s predicted label is z, j = 1, . . . , s; 0, otherwise.

Let kj =
∑c

z=1 yjz , and we formulate the consensus agreement as the following optimization
problem on the graph:

min
Q,U

f(Q,U) = min
Q,U

( n∑

i=1

v∑

j=1

aij ||~ui· − ~qj·||2 + α
v∑

j=1

kj ||~qj· − ~yj·||2
)

(1)

s.t. ~ui· ≥ ~0, |~ui·| = 1, i = 1 : n ~qj· ≥ ~0, |~qj·| = 1, j = 1 : v

where ||.|| and |.| denote a vector’s L2 and L1 norm respectively. The first term ensures that if an
object xi is assigned to group gj by one of the algorithm, their conditional probability estimates
must be close. When j = 1, . . . , s, the group node gj is from a classifier, so kj = 1 and the second
term puts the constraints that a group gj’s consensus class label estimate should not deviate much
from its initial class label prediction. α is the shadow price payment for violating the constraints.
When j = s + 1, . . . , v, gj is a group from an unsupervised model with no such constraints, and
thus kj = 0 and the weight of the constraint is 0. Finally, ~ui· and ~qj· are probability vectors, and
therefore each component must be greater than or equal to 0 and the sum equals to 1.

We propose to solve this problem using block coordinate descent methods as shown in Algorithm 1.
At the t-th iteration, if we fix the value of U , the objective function is a summation of v quadratic
components with respect to ~qj·. The corresponding Hessian matrix is diagonal with entries equal to
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Algorithm 1 BGCM algorithm

Input: group-object affinity matrix A, initial la-
beling matrix Y ; parameters α and ε;
Output: consensus matrix U ;
Algorithm:

Initialize U0,U1 randomly
t ← 1
while ||U t − U t−1|| > ε do

Qt = (Dv+αKv)−1(AT U t−1+αKvY )
U t = D−1

n AQt

return U t

Table 1: Important Notations

Symbol Definition
1, . . . , c class indexes
1, . . . , n object indexes
1, . . . , s indexes of groups from supervised models

s + 1, . . . , v indexes of groups from unsupervised models
An×v = [aij ] aij-indicator of object i in group j
Un×c = [uiz] uiz-probability of object i wrt class z
Qv×c = [qjz] qjz-probability of group j wrt class z
Yv×c = [yjz] yjz-indicator of group j predicted as class z

∑n
i=1 aij + αkj > 0. Therefore it is strictly convex and ∇~qj·f(Q,U (t−1)) = 0 gives the unique

global minimum of the cost function with respect to ~qj· in Eq. (2). Similarly, fixing Q, the unique
global minimum with respect to ~ui· is also obtained.

~q
(t)
j· =

∑n
i=1 aij~u

(t−1)
i· + αkj~yj·∑n

i=1 aij + αkj
~u

(t)
i· =

∑v
j=1 aij~q

(t)
j·∑v

j=1 aij
(2)

The update formula in matrix forms are given in Algorithm 1. Dv = diag
{
(
∑n

i=1 aij)
}

v×v
and

Dn = diag
{
(
∑v

j=1 aij)
}

n×n
act as the normalization factors. Kv = diag

{
(
∑c

z=1 yjz)
}

v×v
indi-

cates the existence of constraints on the group nodes. During each iteration, the probability estimate
at each group node (i.e., Q) receives the information from its neighboring object nodes while retains
its initial value Y , and in return the updated probability estimates at group nodes propagate the in-
formation back to its neighboring object nodes when updating U . It is straightforward to prove that
(Q(t), U (t)) converges to a stationary point of the optimization problem [3].

In [14], we proposed a heuristic method to combine heterogeneous information sources. In this pa-
per, we bring up the concept of consensus maximization and solve the problem over a bipartite graph
representation. Our proposed method is related to graph-based semi-supervised learning (SSL). But
existing SSL algorithms only take one supervised source (i.e., the labeled objects) and one unsu-
pervised source (i.e., the similarity graph) [29, 8], and thus cannot be applied to combine multiple
models. Some SSL methods [16] can incorporate results from an external classifier into the graph,
but obviously they cannot handle multiple classifiers and multiple unsupervised sources. To apply
SSL algorithms on our problem, we must first fuse all supervised models into one by some ensem-
ble approach, and fuse all unsupervised models into one by defining a similarity function. Such a
compression may lead to information loss, whereas the proposed method retains all the information
and thus consensus can be reached among all the based model output.

3 Interpretations

In this part, we explain the proposed method from two independent perspectives.

Constrained Embedding. Now we focus on the “hard” consensus solution, i.e., each point is
assigned to exactly one class. So U and Q are indicator matrices: uiz = 1 if the ensemble assigns
xi to class z, and 0 otherwise; similar for qjz’s. For group nodes from classification algorithms,
we will treat their entries in Q as known since they have been assigned a class label by one of the
classifiers, that is, qjz = yjz for 1 ≤ j ≤ s.

Because U represents the consensus, we should let group gj correspond to class z if majority of the
objects in group gj correspond to class z in the consensus solution. The optimization is thus:

min
Q,U

v∑

j=1

c∑
z=1

∣∣∣∣qjz −
∑n

i=1 aijuiz∑n
i=1 aij

∣∣∣∣ (3)

s.t.
c∑

z=1

uiz = 1∀i ∈ {1, . . . , n}
c∑

z=1

qjz = 1∀j ∈ {s+1, . . . , v} uiz ∈ {0, 1} qjz ∈ {0, 1} (4)

qjz = 1 ∀j ∈ {1, . . . , s} if gj’s label is z qjz = 0 ∀j ∈ {1, . . . , s} if gj’s label is not z (5)
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Here, the two indicator matrices U and Q can be viewed as embedding x1, . . . , xn (object nodes)
and g1, . . . , gv (group nodes) into a c-dimensional cube. Due to the constraints in Eq. (4), ~ui· and
~qj· reside on the boundary of the (c − 1)-dimensional hyperplane in the cube. ~a·j denotes the
objects group gj contains, ~qj· can be regarded as the group representative in this new space, and
thus it should be close to the group mean:

∑n
i=1 aij~ui·∑n

i=1 aij
. For the s groups obtained from classification

algorithms, we know their “ideal” embedding, as represented in the constraints in Eq. (5).

We now relate this problem to the optimization framework discussed in Section 2. aij can only take
value of 0 or 1, and thus Eq. (3) just depends on the cases when aij = 1. When aij = 1, no matter
qjz is 1 or 0, we have |qjz

∑n
i=1 aij −

∑n
i=1 aijuiz| =

∑n
i=1 |aij(qjz − uiz)|. Therefore,

∑
j:aij=1

c∑
z=1

∣∣∣∣qjz −
∑n

i=1 aijuiz∑n
i=1 aij

∣∣∣∣ =
∑

j:aij=1

c∑
z=1

∣∣qjz

∑n
i=1 aij −

∑n
i=1 aijuiz

∣∣
∑n

i=1 aij
=

∑
j:aij=1

c∑
z=1

∑n
i=1 |aij(qjz − uiz)|∑n

i=1 aij

Suppose the groups found by the base models have balanced size, i.e.,
∑n

i=1 aij = γ where γ is a
constant for ∀j. Then the objective function can be approximated as:

∑

j:aij=1

c∑
z=1

n∑

i=1

|aij(qjz − uiz)| =
n∑

i=1

∑

j:aij=1

aij

c∑
z=1

|qjz − uiz| =
n∑

i=1

v∑

j=1

aij

c∑
z=1

|qjz − uiz|

Therefore, when the classification and clustering algorithms generate balanced groups, with the same
set of constraints in Eq. (4) and Eq. (5), the constrained embedding problem in Eq. (3) is equivalent
to: min Q,U

∑n
i=1

∑v
j=1 aij

∑c
z=1 |qjz − uiz|. It is obvious that this is the same as the optimization

problem we propose in Section 2 with two relaxations: 1) We transform hard constraints in Eq. (5)
to soft constraints where the ideal embedding is expressed in the initial labeling matrix Y and the
price for violating the constraints is set to α. 2) uiz and qjz are relaxed to have values between 0 and
1, instead of either 0 or 1, and quadratic cost functions replace the L1 norms. So they are probability
estimates rather than class membership indicators, and we can embed them anywhere on the plane.

Though with these relaxations, we build connections between the constrained embedding framework
as discussed in this section with the one proposed in Section 2. Therefore, we can view our proposed
method as embedding both object nodes and group nodes into a hyperlane so that object nodes are
close to the group nodes they link to. The constraints are put on the group nodes from supervised
models to penalize the embedding that are far from the “ideal” ones.

Ranking on Consensus Structure. Our method can also be viewed as conducting ranking with re-
spect to each class on the bipartite graph, where group nodes from supervised models act as queries.
Suppose we wish to know the probability of any group gj belonging to class 1, which can be regarded
as the relevance score of gj with respect to example queries from class 1. Let wj =

∑n
i=1 aij . In

Algorithm 1, the relevance scores of all the groups are learnt using the following equation:

~q·1 = (Dv + αKv)−1(AT D−1
n A~q·1 + αKv~y·1) = Dλ(D−1

v AT D−1
n A)~q·1 + D1−λ~y·1

where the v × v diagonal matrices Dλ and D1−λ have (j, j) entries as wj

wj+αkj
and αkj

wj+αkj
.

Consider collapsing the original bipartite graph into a graph with group nodes only, then AT A is its
affinity matrix. After normalizing it to be a probability matrix, we have pij in P = D−1

v AT D−1
n A

represent the probability of jumping to node j from node i. The groups that are predicted to be in
class 1 by one of the supervised models have 1 at the corresponding entries in ~y·1, therefore these
group nodes are “queries” and we wish to rank the group nodes according to their relevance to them.

Comparing our ranking model with PageRank model [24], there are the following relationships: 1)
In PageRank, a uniform vector with entries all equal to 1 replaces ~y·1. In our model, we use ~y·1 to
show our preference towards the query nodes, so the resulting scores would be biased to reflect the
relevance regarding class 1. 2) In PageRank, the weights Dλ and D1−λ are fixed constants λ and
1 − λ, whereas in our model Dλ and D1−λ give personalized damping factors, where each group
has a damping factor λj = wj

wj+αkj
. 3) In PageRank, the value of link-votes are normalized by the

number of outlinks at each node, whereas our ranking model does not normalize pij on its outlinks,
and thus can be viewed as an un-normalized version of personalized PageRank [18, 28]. When each
base model generates balanced groups, both λj and outlinks at each node become constants, and the
proposed method simulates the standard personalized PageRank.
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Table 2: Data Sets Description
Data ID Category Labels #target #labeled

1 comp.graphics comp.os.ms-windows.misc sci.crypt sci.electronics 1408 160
2 rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey 1428 160

Newsgroup 3 sci.cypt sci.electronics sci.med sci.space 1413 160
4 misc.forsale rec.autos rec.motorcycles talk.politics.misc 1324 160
5 rec.sport.baseball rec.sport.hockey sci.crypt sci.electronics 1424 160
6 alt.atheism rec.sport.baseball rec.sport.hockey soc.religion.christian 1352 160
1 Operating Systems Programming Data Structures Algorithms and Theory 603 60
2 Databases Hardware and Architecture Networking Human Computer Interaction 897 80Cora
3 Distributed Memory Management Agents Vision and Pattern Recognition 1368 100
4 Graphics and Virtual Reality Object Oriented Planning Robotics Compiler Design Software Development 875 100

DBLP 1 Databases Data Mining Machine Learning Information Retrieval 3836 400

The relevance scores with respect to class 1 for group and object nodes will converge to

~q·1 = (Iv −DλD−1
v AT D−1

n A)−1D1−λ~y·1 ~u·1 = (In −D−1
n ADλD−1

v AT )−1D−1
n AD1−λ~y·1

respectively. Iv and In are identity matrices with size v × v and n× n. The above arguments hold
for the other classes as well, and thus each column in U and Q represents the ranking of the nodes
with respect to each class. Because each row sums up to 1, they are conditional probability estimates
of the nodes belonging to one of the classes.

4 Incorporating Labeled Information

Thus far, we propose to combine the output of supervised and unsupervised models by consensus.
When the true labels of the objects are unknown, this is a reliable approach. However, incorporating
labels from even a small portion of the objects may greatly refine the final hypothesis. We assume
that labels of the first l objects are known, which is encoded in an n× c matrix F :

fiz = 1, xi’s observed label is z, i = 1, . . . , l; 0, otherwise.

We modify the objection function in Eq. (1) to penalize the deviation of ~ui· of labeled objects from
the observed label:

f(Q, U) =
n∑

i=1

v∑

j=1

aij ||~ui· − ~qj·||2 + α
v∑

j=1

kj ||~qj· − ~yj·||2 + β
n∑

i=1

hi||~ui· − ~fi·||2 (6)

where hi =
∑c

z=1 fiz . When i = 1, . . . , l, hi = 1, so we enforce the constraints that an object xi’s
consensus class label estimate should be close to its observed label with a shadow price β. When
i = l + 1, . . . , n, xi is unlabeled. Therefore, hi = 0 and the constraint term is eliminated from the
objective function. To update the condition probability for the objects, we incorporate their prior
labeled information:

~u t
i· =

∑v
j=1 aij~q

t
j· + βhi

~fi·∑v
j=1 aij + βhi

(7)

In matrix forms, it would be U t = (Dn + βHn)−1(AQt + βHnF ) with Hn =
diag

{
(
∑c

z=1 fiz)
}

n×n
. Note that the initial conditional probability of a labeled object is 1 at its

observed class label, and 0 at all the others. However, this optimistic estimate will be changed
during the updates, with the rationale that the observed labels are just random samples from some
multinomial distribution. Thus we only use the observed labels to bias the updating procedure,
instead of totally relying on them.

5 Experiments

We evaluate the proposed algorithms on eleven classification tasks from three real world applica-
tions. In each task, we have a target set on which we wish to predict class labels. Clustering
algorithms are performed on this target set to obtain the grouping results. On the other hand, we
learn classification models from some training sets that are in the same domain or a relevant domain
with respect to the target set. These classification models are applied to the target set as well. The
proposed algorithm generates a consolidated classification solution for the target set based on both
classification and clustering results. We elaborate details of each application in the following.
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Table 3: Classification Accuracy Comparison on a Series of Data Sets
20 Newsgroups Cora DBLPMethods

1 2 3 4 5 6 1 2 3 4 1
M1 0.7967 0.8855 0.8557 0.8826 0.8765 0.8880 0.7745 0.8858 0.8671 0.8841 0.9337
M2 0.7721 0.8611 0.8134 0.8676 0.8358 0.8563 0.7797 0.8594 0.8508 0.8879 0.8766
M3 0.8056 0.8796 0.8658 0.8983 0.8716 0.9020 0.7779 0.8833 0.8646 0.8813 0.9382
M4 0.7770 0.8571 0.8149 0.8467 0.8543 0.8578 0.7476 0.8594 0.7810 0.9016 0.7949

MCLA 0.7592 0.8173 0.8253 0.8686 0.8295 0.8546 0.8703 0.8388 0.8892 0.8716 0.8953
HBGF 0.8199 0.9244 0.8811 0.9152 0.8991 0.9125 0.7834 0.9111 0.8481 0.8943 0.9357

BGCM 0.8128 0.9101 0.8608 0.9125 0.8864 0.9088 0.8687 0.9155 0.8965 0.9090 0.9417
2-L 0.7981 0.9040 0.8511 0.8728 0.8830 0.8977 0.8066 0.8798 0.8932 0.8951 0.9054
3-L 0.8188 0.9206 0.8820 0.9158 0.8989 0.9121 0.8557 0.9086 0.9202 0.9141 0.9332

BGCM-L 0.8316 0.9197 0.8859 0.9240 0.9016 0.9177 0.8891 0.9181 0.9246 0.9206 0.9480
STD 0.0040 0.0038 0.0037 0.0040 0.0027 0.0030 0.0096 0.0027 0.0052 0.0044 0.0020

20 Newsgroup categorization. We construct six learning tasks, each of which involves four classes.
The objective is to classify newsgroup messages according to topics. We used the version [1] where
the newsgroup messages are sorted by date, and separated into training and test sets. The test sets
are our target sets. We learn logistic regression [15] and SVM models [7] from the training sets, and
apply these models, as well as K-means and min-cut clustering algorithms [22] on the target sets.

Cora research paper classification. We aim at classifying a set of research papers into their areas
[23]. We extract four target sets, each of which includes papers from around four areas. The train-
ing sets contain research papers that are different from those in the target sets. Both training and
target sets have two views, the paper abstracts, and the paper citations. We apply logistic regression
classifiers and K-means clustering algorithms on the two views of the target sets.

DBLP data. We retrieve around 4,000 authors from DBLP network [10], and try to predict their
research areas. The training sets are drawn from a different domain, i.e., the conferences in each
research field. There are also two views for both training and target sets, the publication network, and
the textual content of the publications. The amount of papers an author published in the conference
can be regarded as link feature, whereas the pool of titles that an author published is the text feature.
Logistic regression and K-means clustering algorithms are used to derive the predictions on the
target set. We manually label the target set for evaluation.

The details of each learning task are summarized in Table 2. On each target set, we apply four
models M1 to M4, where the first two are classification models and the remaining two are clus-
tering models. We denote the proposed method as Bipartite Graph-based Consensus Maximization
(BGCM), which combines the output of the four models. As shown in Figure 3, only clustering
ensembles, majority voting methods, and the proposed BGCM algorithm work at the meta output
level where raw data are discarded and only prediction results from multiple models are available.
However, majority voting can not be applied when there are clustering models because the cor-
respondence between clusters and classes is unknown. Therefore, we compare BGCM with two
clustering ensemble approaches (MCLA [26] and HBGF [12]), which ignore the label information
from supervised models, regard all the base models as unsupervised clustering, and integrate the
output of the base models. So they only give clustering solutions, not classification results.

To evaluate classification accuracy, we map the output of all the clustering algorithms (the base
models, and the ensembles) to the best possible class predictions with the help of hungarian method
[5], where cluster IDs are matched with class labels. Actually, it is “cheating” because the true class
labels are used to do the mapping, and thus it should be able to generate the best accuracy from
these unsupervised models. As discussed in Section 4, we can incorporate a few labeled objects,
which are drawn from the same domain of the target set, into the framework and improve accuracy.
This improved version of the BGCM algorithm is denoted as BGCM-L, and the number of labeled
objects used in each task is shown in Table 2. On each task, we repeat the experiments 50 times,
each of which has randomly chosen target and labeled objects, and report the average accuracy. Due
to space limit, we only show the standard deviation (STD) for BGCM-L method. The baselines
share very similar standard deviation with the reported one on each task.

Accuracy. In Table 3, we summarized the classification accuracy of all the baselines and the pro-
posed approach on the target sets of eleven tasks. The two single classifiers (M1 and M2), and the
two clustering single models (M3 and M4) usually have low accuracy. By combining all the base
models, the clustering ensemble approaches (MCLA and HBGF) can improve the performance over
each single model. However, these two methods are not designed for classification, and the reported
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Figure 4: Sensitivity Analysis

accuracy is the upper bound of their “true” accuracy. The proposed BGCM method always outper-
forms the base models, and achieves better or comparable performances compared with the upper
bound of the baseline ensembles. By incorporating a small portion (around 10%) of labeled objects,
the BGCM-L method further improves the performances. The consistent increase in accuracy can
be observed in all the tasks, where the margin between the accuracy of the best single model and
that of the BGCM-L method is from 2% to 10%. Even when taking variance into consideration, the
results demonstrate the power of consensus maximization in accuracy improvements.

Sensitivity. As shown in Figure 4 (a) and (b), the proposed BGCM-L method is not sensitive to the
parameters α and β. To make the plots clear, we just show the performance on the first task of each
application. α and β are the shadow prices paid for deviating from the estimated labels of groups
and observed labels of objects, so they should be greater than 0. α and β represent the confidence
of our belief in the labels of the groups and objects compared with 1. The labels of group nodes are
obtained from supervised models and may not be correct, therefore, a smaller α usually achieves
better performance. On the other hand, the labels of objects can be regarded as groundtruths, and
thus the larger β the better. In experiments, we find that when α is below 4, and β greater than 4,
good performance can be achieved. We let α = 2 and β = 8 to get the experimental results shown
in Table 3. Also, we fix the target set as 80% of all the objects, and use 1% to 20% as the labeled
objects to see how the performance varies, and the results are summarized in Figure 4 (c). In general,
more labeled objects would help the classification task where the improvements are more visible on
Cora data set. When the percentage reaches 10%, BGCM-L’s performance becomes stable.

Number of Models. We vary the number of base models incorporated into the consensus frame-
work. The BGCM-L method on two models is denoted as 2-L, where we average the performance
of the combined model obtained by randomly choosing one classifier and one clustering algorithm.
Similarly, the BGCM-L method on three models is denoted as 3-L. From Table 3, we can see that
BGCM-L method using all the four models outperforms the method incorporating only two or three
models. When the base models are independent and each of them obtains reasonable accuracy,
combining more models would benefit more because the chances of reducing independent errors
increase. However, when the new model cannot provide additional information to the current pool
of models, incorporating it may not improve the performance anymore. In the future, we plan to
identify this upper bound through experiments with more input sources.

6 Conclusions

In this work, we take advantage of the complementary predictive powers of multiple supervised
and unsupervised models to derive a consolidated label assignment for a set of objects jointly. We
propose to summarize base model output in a group-object bipartite graph, and maximize the con-
sensus by promoting smoothness of label assignment over the graph and consistency with the initial
labeling. The problem is solved by propagating labeled information between group and object nodes
through their links iteratively. The proposed method can be interpreted as conducting an embedding
of object and group nodes into a new space, as well as an un-normalized personalized PageRank.
When a few labeled objects are available, the proposed method uses them to guide the propagation
and refine the final hypothesis. In the experiments on 20 newsgroup, Cora and DBLP data, the
proposed consensus maximization method improves the best base model accuracy by 2% to 10%.
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