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Abstract

Synapses exhibit an extraordinary degree of short-term malleability, with release
probabilities and effective synaptic strengths changing markedly over multiple
timescales. From the perspective of a fixed computational operation in a net-
work, this seems like a most unacceptable degree of added variability. We sug-
gest an alternative theory according to which short-term synaptic plasticity plays a
normatively-justifiable role. This theory starts from the commonplace observation
that the spiking of a neuron is an incomplete, digital, report of the analog quan-
tity that contains all the critical information, namely its membrane potential. We
suggest that a synapse solves the inverse problem of estimating the pre-synaptic
membrane potential from the spikes it receives, acting as a recursive filter. We
show that the dynamics of short-term synaptic depression closely resemble those
required for optimal filtering, and that they indeed support high quality estima-
tion. Under this account, the local postsynaptic potential and the level of synap-
tic resources track the (scaled) mean and variance of the estimated presynaptic
membrane potential. We make experimentally testable predictions for how the
statistics of subthreshold membrane potential fluctuations and the form of spik-
ing non-linearity should be related to the properties of short-term plasticity in any
particular cell type.

1 Introduction

Far from being static relays, synapses are complex dynamical elements. The effect of a spike from a
presynaptic neuron on its postsynaptic partner depends on the history of the activity of both pre- and
postsynaptic neurons, and thus the efficacy of a synapse undergoes perpetual modification. These
changes in efficacy can last from hundreds of milliseconds or minutes (short-term plasticity) to hours
or months (long-term plasticity). Short-term plasticity typically only depends on the firing pattern
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of the presynaptic cell [1]; short term depression gradually diminishes the postsynaptic effects of
presynaptic spikes that arrive in quick succession (Fig. 1A). Given the prominence and ubiquity of
synaptic depression in cortical (and subcortical) synapses [2], it is pressing to identify its computa-
tional role(s).

There have thus been various important suggestions for the functional significance of synaptic de-
pression, including – just to name a few – low-pass filtering of inputs [3], rendering postsynaptic
responses insensitive to the absolute intensity of presynaptic activity [4, 5], and decorrelating input
spike sequences [6]. However, important though they must be for select neural systems, these sug-
gestions have a piecemeal flavor – for instance, chaining together stages of low-pass filtering would
lead to trivial responding.

Here, we propose a theory according which synaptic depression solves a computational problem that
is faced by any neural population in which neurons represent and compute with analog quantities,
but communicate with discrete spikes. For convenience, we assume this analog quantity to be the
membrane potential, but, via a non-linear transformation [7], it could equally well be an analog firing
rate. That is, we assume that network computations require the evolution of the membrane potential
of a neuron to be a function of the membrane potentials of its presynaptic partners. However, such
a neuron does not have (at least not directly, see [8] for an example of indirect interaction) access
to these membrane potentials, but rather only to the spikes to which they lead, and so it faces a key
estimation problem.

Thus, much as in the vein of standard textbook presentations, the operation of a neuron can be
logically broken down into three concurrent processes, each running in its dedicated functional
compartment: 1) the neuron’s afferent synapses (e.g. spines) estimate the membrane potential of its
presynaptic partners, scaled according to the rules of the network computation; 2) the neuron’s soma-
dendritic compartment follows the membrane potential-dependent dynamics and post-synaptic in-
tegration also determined by the computation; and 3) its axon generates action potentials that are
broadcasted to its efferent synapses (and possibly back to the other compartments, eg. for long-term
plasticity). It is in the indispensable first estimation step that we suggest synaptic depression to be
involved.

In Section 2 we formalise the problem of estimating presynaptic membrane potentials as an instance
of Bayesian inference, and derive an online recursive estimator for it. Given suitable assumptions
about presynaptic membrane potential dynamics and spike generation, this optimal estimator can be
written in closed form exactly [9, 10]. In Section 3, we introduce a canonical model of postsynap-
tic membrane potential and synaptic depression dynamics, and show how it relates to the optimal
estimator derived earlier. In Section 4, we present results from numerical simulations showing the
quality with which synaptic depression can approximate the performance of the optimal estimator,
and how much is gained relative to a static synapse without synaptic depression. Finally, in Section
5, we sum up, suggest experimentally testable predictions, and discuss possible extensions of this
work, eg. to incorporate other forms of short-term synaptic plasticity.

2 Bayesian estimation of presynaptic membrane potentials

The Bayesian estimation problem that needs to be solved by a synapse involves inferring the poste-
rior distribution p (ut|s1..t) over the presynaptic membrane potential ut at time step t (for discretized
time), given the spikes seen from the presynaptic cell up to that time step, s1..t. We first define a
statistical (generative) model of presynaptic membrane potential fluctuations and spiking, and then
derive the estimator that is appropriate for it.

The generative model involves two simplifying assumptions (Fig. 1B). First we assume that presy-
naptic membrane potential dynamics are Markovian

p(ut|u1..t−1) = p(ut|ut−1) (1)

In particular, we assume that the presynaptic membrane potential evolves as an Ornstein-Uhlenbeck
(OU) process, given (again, in discretized time) by

ut = ut−1 − θ(ut−1 − ur)∆t+Wt

√
∆t, Wt

iid∼ N (Wt; 0, σ2
W) (2)
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Figure 1: A. Synaptic depression: postsynaptic responses to a train of presynaptic action poten-
tials (not shown) at 40 Hz. (Reproduced from [11], adapted from [12].) B. Graphical model of
the process generating presynaptic subthreshold membrane potential fluctuations, u, and spikes, s.
The membrane potential evolves according to a first-order Markov process, the Ornstein-Uhlenbeck
(OU) process (Eqs. 1-2). The probability of generating a spike at time t (st = 1) depends only on
the current membrane potential, ut, and is determined by a non-linear Poisson (NP) model (Eqs. 3-
5). C. Sample membrane potential trace (red line) and spike timings (vertical black dotted lines)
generated by the OU-NP process; with ur = 0 mV, θ−1 = 100 ms, σ2

W = 0.02 mV2/ms →
σ2

OU = 1 mV2, β−1 = 1 mV, and g0 = 10 Hz.

where 1/θ is the time constant with which the membrane potential decays back to its resting value,
ur, and ∆t is the size of the discretized time bins. Because both θ and σW are assumed to be
constant, the variance of the presynaptic membrane potential, σ2

OU = σ2
W/2θ, is stationary.

The second assumption is that spiking activity at any time only depends on the membrane potential
at that time:

p(st|u1..t) = p(st|ut) (3)

In particular, we assume that the spike generating mechanism is an inhomogeneous Poisson process
(Fig. 1C). Thus, at time step t, the neuron emits a spike (st = 1) with probability g(ut)∆t, and
therefore the spiking probability p(st|ut) given the membrane potential can be written as:

p(st|ut) = [g(ut)∆t]
st [1− g(u)∆t](1−st) (4)

We further assume that the transfer function, g(u), is exponential1:

g(u) = g0 exp(βu) (5)

where β determines the stochasticity of spiking. In the limit β → ∞ the spiking process is deter-
ministic, i.e. if the membrane potential, u, is bigger than zero, the neuron emits a spike, and if u < 0,
the neuron does not fire.

Estimating on-line the membrane potential of the presynaptic cell from its spiking history amounts
to computing the posterior probability distribution, p (ut|s1..t). Since equations 1 and 3 define a
hidden Markov model, the posterior can be written in a recursive form:

p(ut|s1..t) ∝ p(st|ut)
∫
p(ut|ut−1) p(ut−1| s1..t−1) dut−1 (6)

That is, the posterior at time step t, p(ut|s1..t), can be computed by combining information from the
current time step with the posterior obtained at the previous time step, p(ut−1|s1..t−1). Note that
even though inference can be performed recursively, and the hidden dynamics is linear-Gaussian
(Eq. 2), the (extended) Kalman filter cannot be used here for inference because the measurement
does not involve additive Gaussian noise, but rather comes from the stochasticity of the spiking
process (Eqs. 4-5).

1Note that the exponential gain function is a convenient choice since the product of a Gaussian and an expo-
nential gives again an (unnormalised) Gaussian (see Supplementary Information). Furthermore, the exponential
gain function has also some experimental support [13].
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Performing recursive inference (filtering), as described by equation 6, under the generative model de-
scribed by equations 1-5 results in a posterior distribution that is Gaussian, ut|s1..t ∼ N (ut;µ, σ2)
(see Supplementary Information). The mean and variance of this Gaussian evolve (in continuous
time, by taking the limit ∆t→ 0) as:

µ̇ = −θ(µ− ur) + βσ2(S(t)− γ) (7)

σ̇2 = −2θ
(
σ2 − σ2

OU

)
− γβ2σ4 (8)

with the normalisation factor given by

γ = 〈g0 exp(βu)〉ut|s1..t
= g0 exp

(
βµ+

β2σ2

2

)
(9)

where S(t) is the spike train of the presynaptic cell (represented as a sum of Dirac delta functions).
(A similar, but not identical, derivation can be found in [9]).

Equation 7 indicates that each time a spike is observed, the estimated membrane potential should
increase proportionally to the uncertainty (variance) about the current estimate. This estimation
uncertainty then decreases each time a spike is observed (Eqs. 8-9). As Fig. 2A shows, the higher the
presynaptic membrane potential is, the more spikes are emitted (because the instantaneous firing rate
is a monotonic function of membrane potential, see Eq. 5), and therefore the smaller the posterior
variance becomes. Therefore the estimation error is smaller for higher membrane potential (see
Fig. 2B). Conversely, in the absence of spikes, the estimated membrane potential decreases while the
variance increases back to its asymptotic value. Fig. 2C shows that the representation of uncertainty
about the membrane potential by σ2 is self-consistent because it is predictive of the error of the
mean estimator, µ.

The first term on the r.h.s of equation 7 comes from the prior knowledge about the membrane poten-
tial dynamics. The second term comes from the likelihood of the spiking observations. Those two
contributions can be isolated independently by taking two different limits that we will consider in
the next two subsections.

2.1 Small noise limit

In the limit of small variance of the noise driving the OU process, i.e., σ2
W = εσ2

W0
with ε → 0,

the asymptotic uncertainty σ2
∞ scales with ε: σ2

∞ = εσ2
W0
/2θ (c.f. Eq. 8 with σ̇2 = 0). Then the

dynamics of µ becomes driven only by the prior mean membrane potential ur:

µ̇ ' −θ (µ− ur) (10)

and so the asymptotic estimated membrane potential will tend to the prior mean membrane potential.
This is reasonable since in the small noise limit, the true membrane potential ut will effectively be
very close to ur. Furthermore the convergence time constant of the estimated membrane potential
should be matched to the time constant θ−1 of the OU process and this is indeed the case in Eq. 10.

2.2 Slow dynamics limit

A second interesting limit is where the time constant of the OU process becomes small, i.e., θ = εθ0
with ε → 0. In this case, the variance of the noise in the OU process must also scale with ε, i.e
σ2

W = εσ2
W0

, to prevent the process from being unbounded. The variance σ2
OU = σ2

W0
/2θ0 of the

OU process is therefore independent of ε. In this case, the asymptotic value of the posterior variance
becomes σ2

∞ =
√
εσW0/

√
βγ (c.f. Eq. 8 with σ̇2 = 0). In the limit of small ε, the first term of Eq. 7

scales with ε whereas the second term with
√
ε. We can therefore write:

√
γ

σW
µ̇ ' S(t)− γ (11)

Because the time constant θ−1 of the OU process is slow, the driving force that pulls the membrane
potential back to its mean value ur is weak. Therefore the membrane potential estimation dynamics
should rely on the observed spikes rather than on the prior information ur. This is apparent in Eq. 11.

Furthermore, the time constant τ =
√
γ/ε/σW0 is not fixed but is a function of the mean estimated

membrane potential µ. Thus, if the initial estimate µ0 = µ(0) is below the target value ur, γ
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Figure 2: The performance of the optimal on-line estimator. A. Red line: presynaptic membrane
potential, u, as a function of time, vertical dotted lines: spikes emitted. Dot-dashed black line:
on-line estimator µ given by Eq. (7), gray shading: µ ± σ, with σ given by Eq. (8). B. Estimation
error (µ− u)2 as a function of the membrane potential u of the OU process. Black dots: estimation
error and true membrane potential in individual time steps, red line: third order polynomial fit. C
Black bars: histogram of normalized estimation error z = (µ− u)/σ. Red line: normal distribution
N (z; 0, 1). Parameters were as in Fig. 1, except for β−1 = 0.5 mV .

will be small and hence the time constant τ will be small as well. As a consequence, each spike
will greatly increase the estimate and therefore speed up the approach of this estimate to the true
value. As µ gets closer to the true membrane potential, the time constant increases, leading to an
appropriately accurate estimate of the membrane potential. This dynamical time constant therefore
helps the estimation avoid the traditional speed vs accuracy trade-off (short time constant are fast
but give a noisy estimation; longer time constant are slow but yield a more accurate estimation), by
combining the best of the two worlds.

3 Depressing synapses as estimators of presynaptic membrane potential

In section 2 we have shown that presynaptic spikes have a varying, context-dependent effect on
the optimal on-line estimator of presynaptic membrane potential. In this section we will show that
the variability that synaptic depression introduces in postsynaptic responses closely resembles the
variability of the optimal estimator.

A simple way to study the similarity between the optimal estimator and short-term plasticity is to
consider their steady state filtering properties. As we saw above, according to the optimal estimator,
the higher the input firing rate is, the smaller the posterior variance becomes, and therefore the
increment due to subsequent spikes should decrease. This is consistent with depressing synapses
for which the amount of excitatory postsynaptic current (EPSC) decreases when the stimulation
frequency is increased (see Fig. 3).
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Figure 3: A. Steady-state spiking increment βσ2 of the optimal estimator as a function of r = 〈S〉
(Eq. 8). B. Synaptic depression in the climbing fibre to Purkinje cell synapse: average (±s.e.m.)
normalised “steady-state” magnitude of EPSCs as a function of stimulation frequency. Reproduced
from [3].

Importantly, the similarity between the optimal membrane potential estimator and short-term plas-
ticity is not limited to stationary properties. Indeed, the actual dynamics of the optimal estimator
(Eqs. 7-9) can be well approximated by the dynamics of synaptic depression. In a canonical model
of short-term depression [14], the postsynaptic membrane potential, v, changes as

v̇ = −v − v0
τ

+ J Y xS(t), with ẋ =
1− x
τD

− Y xS(t) (12)

where J and Y are constants (synaptic weight and utilisation fraction), and x is a time varying ‘re-
source’ variable (e.g. the fraction of presynaptic vesicles ready to fuse to the membrane). Thus, v is
increased by each presynaptic spike, and in the absence of spikes it decays to its resting value, v0,
with membrane time constant τ . However, the effect of each spike on v is scaled by x which itself
is decreased after each spike and increases between spikes back towards one with time constant τD.
Thus, the postsynaptic potential, v, behaves much like the posterior mean of the optimal estimator,
µ, while the dynamics of the synaptic resource variable, x, closely resemble that of the posterior
variance of the optimal estimator, σ2. This qualitative similarity can be made more formal under
appropriate assumptions, for details see section 3 of supplementary information. Indeed, the ca-
pacity of a depressing synapse (with appropriate parameters) to estimate the presynaptic membrane
potential can be nearly as good as that of the optimal estimator (Fig. 4, top). Interestingly, although
the scaled variance σ2/σ2

∞ does not follow the resource variable dynamics x perfectly just after a
spike, these two quantities are virtually identical at the time of the next spike, i.e. when they are
used by the membrane potential estimators (Fig. 4, bottom).

4 Performance analysis

In order to quantify how well synaptic dynamics with depression perform in estimating presynap-
tic membrane potentials, we measure performance by the mean-squared error (MSE) between the
true membrane potential u and the estimated membrane potential, and compare the MSE of three
alternatives estimators.

The simplest model we consider is a static (non-depressing) synapse, in which v is given by Eq. 12
with constant x = 1. This estimator has only 3 tuneable parameters: τ , v0 and J (Y = 1 is fixed
without loss of generality). The second estimator we consider includes synaptic depression, i.e. x
is also allowed to vary (Eq. 12). This estimator contains 5 tuneable parameters ( v0, τ , Y , J , τD).
Finally, we consider the optimal estimator (Eqs. 7-9). This estimator has no tunable parameters.
Once the parameters of presynaptic membrane potential dynamics (σW, θ, ur) and spiking (β, g0)
are fixed, the optimal estimator is entirely determined. The comparison of the performance of these
three estimators is displayed on Fig. 5. The optimal estimator (black circles) is obviously a lower
bound on any type of estimator. For a wide range of parameter values, the depressing synapse
performs almost as well as the optimal estimator, and both perform better than the static synapse.
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Figure 4: Depressing synapses implement near-optimal estimation of presynaptic membrane poten-
tials. Top. Red line, and vertical dotted lines: membrane potential, u, and spikes, S, generated by
a simulated presynaptic cell (with parameters as in Fig. 1). Blue line: postsynaptic potential, v, in
a depressing synapse (Eq. 12) with all 5 parameters (J = 4.82, τ = 60.6 ms, v0 = −0.59 mV,
τd = 64 ms, Y = 0.17) tuned to minimize the mean squared estimation error, (u − v)2. Black line:
Posterior mean of the optimal on-line estimator, µ (Eq. 7). Bottom. Black: resource variable, x, in
the depressing synapse (Eq. 12). Blue: posterior variance of the optimal estimator, σ2 (Eq. 8).

In the slow dynamics limit (ε→ 0, see section 2.2), the estimation error of the optimal estimator can
even be approximated analytically (see Supplementary Information). In this limit, the error scales
with

√
σW and therefore scales with 4

√
ε. As can be seen on Fig. 5B, for small ε, the analytical

expression is consistent with the simulations.

5 Discussion

Synapses are a cornerstone of computation in networks, and are highly complex dynamical systems
involving more than a thousand different types of protein. One prominent feature of their dynamics
is significant short-term changes in efficacy; these belie the sort of single fixed, or slowly changing,
weights popular in most neural models. We interpreted short-term synaptic depression, a key feature
of synaptic dynamics, as solving the fundamental computational task of estimating the analog mem-
brane potential of the presynaptic cell from observed spikes. Steady-state and dynamical properties
of a Bayes-optimal estimator are well-matched by a canonical model of depression; using a fixed
synaptic efficacy instead leads to a highly suboptimal estimator.

Our theory is readily testable, since it suggests a precise relationship between quantities that have
been subject to extensive, separate, empirical study — namely the statistics of a neuron’s membrane
potential dynamics (captured by the parameters of Eq. (2)), the form of its spiking non-linearity
(described by Eq. (5)), and the synaptic depression it expresses in its efferent synapses. Accounting
for the observation that different efferent synapses of the same cell can express different forms
of short-term synaptic plasticity [15] remains a challenge; one obvious possibility is that different
synapses are estimating different aspects or functions of the membrane potential.

Our approach is almost dual to that explored in [16]. For that model, the spike generation mechanism
of the presynaptic neuron was modified such that even a simple read-out mechanism with fixed
efficacies could correctly decode the analogue quantity encoded presynaptically. By contrast, we
considered a standard model of spiking [17], and thereby derived an explanation for the evident fact
that synapses are not in fact fixed.
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Figure 5: A. Comparing the estimation error for different membrane potential estimators as a func-
tion of ε. (θ = εθ0, σ2

W = εσ2
W0

). Black: asymptotic error of the optimal estimator. Blue: depressing
synapse with its 5 tuneable parameters (see text) being optimised for each value of ε. Red: static
synapse with its 3 tuneable parameters (see text) being optimised. Total simulated time was 5 min.
Horizontal dot-dashed line: upper bound on the estimation error given by σOU = σW/

√
2θ = 1.

B. Analysing the estimation error of the optimal estimator in the slow dynamics limit (ε → 0).
Solid line: analytical approximation (Eq. 31 in the Supplementary Information), circles: simulation,
horizontal dot-dashed line: as in A.

There are several avenues to extend the present analysis. For example, it would be important to un-
derstand in more quantitative detail the mapping between the parameters of the process generating
the presynaptic membrane potential and spikes, and the parameters of synaptic depression that will
best realize the corresponding optimal estimator. We present some preliminary derivations in the
supplementary material that seem to yield at least the right ball-park values for optimal synaptic dy-
namics. This should also enable us to explore the particular parameter regimes in which depressing
synapses have the most (or least) advantage over static synapses in terms of estimation performance,
as in Fig. 5. We should also consider a meta-plasticity rule that suitably adapts the parameters of the
short-term dynamics in the light of the statistics of spiking.

Our assumption about the prior distribution of presynaptic membrane potential dynamics is highly
restrictive. A broader scheme that has previously been explored is that it follow a Gaussian process
model [18, 19] with a more general covariance function. Recursive estimation is often a reasonable
approximation in such cases, even for those covariance functions, for instance enforcing smooth-
ness, for which it cannot be exact. One interesting property of smooth trajectories is that a couple
of spikes arriving in quick succession may be diagnostic of an upward-going trend in membrane po-
tential which is best decoded with increasing, i.e., facilitating, rather than decreasing, postsynaptic
responses. Thus it may be possible to encompass other forms of short term plasticity within our
scheme.

The spike generation process can also be extended to incorporate refractoriness, bursting, and other
forms of non-Poisson behaviour, eg. as in [20]. Similarly, synaptic failures could also be considered.
We hope through our theory to be able to provide a teleological account of the rich complexities of
real synaptic inconstancy.
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