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Abstract

A fundamental objective in reinforcement learning is theéntenance of a proper
balance between exploration and exploitation. This prolddecomes more chal-
lenging when the agent can only partially observe the stités environment.

In this paper we propose a dual-policy method for jointlyriféiag the agent be-
havior and the balance between exploration exploitatiomairtially observable
environments. The method subsumes traditional explaraitowhich the agent
takes actions to gather information about the environnaat,active learning, in
which the agent queries an oracle for optimal actions (witlassociated cost for
employing the oracle). The form of the employed explorat®dictated by the

specific problem. Theoretical guarantees are providederoimg the optimality

of the balancing of exploration and exploitation. The eff@mess of the method
is demonstrated by experimental results on benchmark emal

1 Introduction

A fundamental challenge facing reinforcement learning )(Rlgorithms is to maintain a proper
balance between exploration and exploitation. The pol&sighed based on previous experiences
is by construction constrained, and may not be optimal asualtref inexperience. Therefore, it
is desirable to take actions with the goal of enhancing eégpee. Although these actions may not
necessarily yield optimalear-ternreward toward the ultimate goal, they could, over a longZun;j
yield improvedlong-termreward. The fundamental challenge is to achieve an optiraknice
between exploration and exploitation; the former is panfed with the goal of enhancing experience
and preventing premature convergence to suboptimal behawvid the latter is performed with the
goal of employing available experience to define perceiygoh@l actions.

For a Markov decision process (MDP), the problem of balageixploration and exploitation has
been addressed successfully by fiie[4, 5] and R-max [2] algorithms. Many important applica-
tions, however, have environments whose states are notletetypobserved, leading to partially
observable MDPs (POMDPs). Reinforcement learning in POBBRhallenging, particularly in
the context of balancing exploration and exploitation. &gavork targeted on solving the explo-
ration vs. exploitation problem is based on an augmented BBMith a product state space over
the environment states and the unknown POMDP parameter3®§, however, entails solving a
complicated planning problem, which has a state space tbatsgexponentially with the number
of unknown parameters, making the problem quickly intraletén practice. To mitigate this com-
plexity, active learning methods have been proposed for B8/ which borrow similar ideas from
supervised learning, and apply them to selectively quergranle (domain expert) for the optimal
action [3]. Active learning has found success in many callabve human-machine tasks where
expert advice is available.

In this paper we propose a dual-policy approach to balanglertion and exploitation in POMDPS,
by simultaneously learning two policies with partially sba@ internal structure. The first policy,
termed theprimary policy, defines actions based on previous experience; the secting permed



the auxiliary policy, is a meta-level policy maintaining a proper balance betweeloration and
exploitation. We employ the regionalized policy repreatioh (RPR) [6] to parameterize both
policies, and perform Bayesian learning to update the pglmsteriors. The approach applies in
either of two casesi)the agent explores by randomly taking the actions that haee insufficiently
tried before (traditional exploration), aif( the agent explores by querying an oracle for the optimal
action (active learning). In the latter case, the agent$essed a query cost from the oracle, in
addition to the reward received from the environment. Ei(heor (ii) is employed as an exploration
vehicle, depending upon the application.

The dual-policy approach possesses interesting conveggaoperties, similar to those of §5]
and Rmax [2]. However, our approach assumes the envirorisiarROMDP while E and Rmax
both assume an MDP environment. Another distinction is dli@tapproach learns the agent policy
directly from episodes, without estimating the POMDP modgiis is in contrast to £and Rmax
(both learn MDP models) and the active-learning methodJifviBich learns POMDP models).

2 Regionalized Policy Representation

We first provide a brief review of the regionalized policy regpentation, which is used to parame-
terize the primary policy and the auxiliary policy as disses above. The material in this section is
taken from [6], with the proofs omitted here.

Definition 2.1 A regionalized policy representation is a tuplé,(©, Z, W, u, 7). TheA andO are
respectively a finite set of actions and observations. Ztiga finite set of belief regions. TH& is
the belief-region transition function with’(z, a, o, z") denoting the probability of transiting from
z to 2z’ when taking actiom in z results in observing’. They is the initial distribution of belief
regions withu(z) denoting the probability of initially being in. Ther are the region-dependent
stochastic policies withr(z, a) denoting the probability of taking actianin z.

We denoted = {1,2,...,|A|}, where|A| is the cardinality ofd. Similarly, O = {1,2,...,]|0|}
andZ = {1,2,...,|Z]}. We abbreviatéag, a,...,ar) asag.r and similarly,(o1,02,...,ar)
asoy.r and(zg, 21, ..., 2r) aSzo.r, where the subscripts indexes discrete time steps. Therpist
hte = {ap.1—1,01.+} is defined as a sequence of actions performed and obsewatiogived up to
t. Let® = {m, u, W} denote the RPR parameters. Given the RPR yields a joint probability
distribution ofzg.; andag.; as follows

p(ao:t, ZO:t|01:t7 9) = M(20)7(207 aO)Hj—;lw(zT—la ar—1,0r, ZT)T‘—(ZTﬁ a’T) (1)

By marginalizingzo.; out in (1), we obtainp(ao.+|o1.¢,©). Furthermore, the history-dependent
distribution of action choices is obtained as follows:

p(a‘r|h‘r7 9) = p(a0:7-|01:7-a 9)[p(a0:7—1|01:r—17 6)]_1

which gives a stochastic policy for choosing the action The action choice depends solely on the
historical actions and observations, with the unobsee/aélief regions marginalized out.

2.1 Learning Criterion

Bayesian learning of the RPR is based on the experiencesctadl from the agent-environment
interaction. Assuming the interaction is episodic, i.ebreaks into subsequences called episodes
[10], we represent the experiences by a set of episodes.

Definition 2.2 An episode is a sequence of agent-environment interactienminated in
an absorbing state that transits to itself with zero rewardAn episode is denoted by
(afr§oyakry .- of ok rk ), where the subscripts are discrete timedndexes the episodes, and
a, andr are respectlvely observatlons actions, and immediataurgsv

Definition 2.3 (The RPR Optimality Criterion) LeP") = {(afrfotalr - o, ak vk )M,
be a set of episodes obtained by an agent mteractlng Wltreﬂwonment by f’BIIowmg policy
II to select actions, wherH is an arbitrary stochastic policy with action-selectingstlibutions
p(asht) > 0,V actionay, ¥ history h;. The RPR optimality criterion is defined as
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whereh! = afolak - - - o is the history of actions and observations up to tintethe k-th episode,

0 < v < listhe discount, an® denotes the RPR parameters.

Throughout the paper, we chH(D(K); ©) the empirical value function o®. It is proven in [6]
thatlimg ., V(D¥); ©) is the expected sum of discounted rewards by following thR RBlicy
parameterized b§ for an infinite number of steps. Therefore, the RPR resuftiog maximization

of ?(D(K); ©) approaches the optimal &is large (assumingZ| is appropriate). In the Bayesian
setting discussed below, we use a noninformative prioefodieading to a posterior &b peaked at
the optimal RPR, therefore the agent is guaranteed to saimpleptimal or a near-optimal policy
with overwhelming probability.

2.2 Bayesian Learning

Let Gy(O) represent the prior distribution of the RPR parameters. ¥ffae the posterior o as

<®|D<K> Go) 2 V(D);0)Go(8) [V (D)) 3)
whereV (D)) = [ V(DK); ©)G,(©)dO is the marginal empirical value. Note thatD(X); ©)

is an emplrlcal value functlon thus (3) is a non-standarl afsBayes rule. However, (3) indeed
gives a distribution whose shape incorporates both the and the empirical information.

Since each term iﬁ’(D(K); ©) is a product of multinomial distributions, it is natural thanse the
prior as a product of Dirichlet distributions,

Go(©) = p(u|v)p(n|p)p(W|w) 4)
where p(ulv) = Dir(u(1), - u(|Z)|v), plrlp) = TL.Z)Dir(r(i,1), -, 7(i, |~A|)‘Pi)a
p(Wlw) = HIA‘ ‘OI IZ‘ Dir(W(z’ a,0,1),--+ , W(i,a,o, |Z|)‘wi7a7o); pi = {Pi,m}lﬁ:l’

v = {vi}‘iﬂ, andw; 4,0 = {wZ o OJ}‘ZI are hyper-parameters. With the prior thus chosen, the

posterior in (3) is a large mixture of Dmchlet productsdatherefore posterior analysis by Gibbs
sampling is inefficient. To overcome this, we employ theatonal Bayesian technique [1] to obtain

a variational posterior by maximizing a lower bounditof V(DE); ©)G(0)do,
LB({gf}.9(6)) = In [V(D"); ©)Go(€)d0 — KL({4f(z6:1)9() | {v (=54 Olatiss of)})

where{q}'}, g(©) are variational distributions satisfying (z§.,) > 1, ¢(©) > 1, [ ¢(©)d® = 1,

K T, Z trkp(ak ., lo
andz 37, 2.5 ZID_‘_, iy G (26) = Lvf = Htjp '(Z(k&i')&{) D) and KL(g||p) denotes

the KuIIback Leibler (KL) dlstance between probability aserreg andp.

The factorized form{¢;(z0.:)g(©)} represents an approximation of the weighted joint posterfio

© andz’s when the lower bound reaches the maximum, and the comeépgg(©) is called the
variational approximate posterior 6f. The lower bound maximization is accomplished by solving
{a:(z0:t)} andg(©) alternately, keeping one fixed while solving for the otheheTsolutions are
summarized in Theorem 2.4; the proofis in [6].

Theorem 2.4 Given the initializatiornp = p, U = v, ¥ = w, iterative applicauon of the following
updates produces a sequence of monotonically increasingridounds LB{¢r}, 9(©)), which
converges to a maxima. The update gff } is

q§ (Zg:t) = Ufp(zg:t|a§:tv Olf:ta 6)

where® = {% fi,W} is a set of under-normalized probability mass functionsgh(i, m) =
[Al
),

¥ Bim) = (il Pim) | [i(7) = ¥ @) =020 and W (i, a, 0, 5) = e¥@ho0.0)Y(E25 Diaros

andv is the digamma function. Thg©) has the same form as the priék, in (4), except that the
hyper-parameter are updated as

U = Uz+2k 1215 0%@0()
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Pia = Piat g 12 Toat¢tr()(ra)

Wiaoj = wzaoﬂ‘Zk 12 = 1Ut§tr 1(4,5)d(a ’;—1700)5(01;’0)
Whereff.r(l,j):p( 7]?_25ZT+1_-]|0‘025301 it ) ¢t T( ) (Z _Z|a0taolfta®)'and
~ -1
Uf = [7 T p(%:t|01:tv®ﬂ [HT:OP (a§|h§) (D(K)|® ] (5)

3 Dual-RPR: Joint Policy for the Agent Behavior and the Trade Off
Between Exploration and Exploitation

Assume that the agent uses the RPR described in Section Z¢ongits behavior in the unknown
POMDP environment (the primary policy). Bayesian learréngploys the empirical value function
V(D(K); ©) in (2) in place of a likelihood function, to obtain the posterof the RPR parameters
©. The episode®*) may be obtained from the environment by following an arbjtistochastic
policy IT with p™(a|h) > 0, ¥V a, ¥ h. Although any suchil guarantees optimality of the resulting
RPR, the choice ofl affects the convergence speed. A good choicH afvoids episodes that do
not bring new information to improve the RPR, and thus thenadees not have to see all possible
episodes before the RPR becomes optimal.

In batch learning, all episodes are collected before thenieg begins, and thuH is pre-chosen
and does not change during the learning [6]. In online legyowever, the episodes are collected
during the learning, and the RPR is updated upon complefi@ach episode. Therefore there is
a chance to exploit the RPR to avoid repeated learning indheespart of the environment. The
agent should recognize belief regions it is familiar withdaxploit the existing RPR policy there;
in belief regions inferred as new, the agent should expldtes balance between exploration and
exploitation is performed with the goal of accumulating@&along-run reward.

We consider online learning of the RPR (as the primary pplacyd choosél as a mixture of two
policies: one is the current RRR(exploitation) and the other is an exploration poli€y. This gives
the action-choosing probabilipf (a|h) = p(y = 0|h)p(alh,©,y = 0)+p(y = 1|h)p(alh, .,y =
1), wherey = 0 (y = 1) indicates exploitation (exploration). The problem of obimg goodTI then
reduces to a proper balance between exploitation and etjaor the agent should expldit when
doing so is highly rewarding, while followin, to enhance experience and impréye

An auxiliary RPRis employed to represent the policy for balancing exploraind exploitation,
i.e., the history-dependent distributigiiy|h). The auxiliary RPR shares the parametgusiV }
with the primary RPR, but withr = {r(z,a) : a € A,z € Z} replaced by = {\(z,y) : y =
0or 1,z € Z}, where)(z,y) is the probability of choosing exploitatiory (= 0) or exploration
(y = 1) in belief regionz. Let A have the prior

p(Au) = 1I2} Beta( (i, O),/\(i,l)‘uo,ul). (6)

In order to encourage exploration when the agent has litpjeigence, we choosg = 1 andu; > 1

so that, at the beginning of learning, the auxiliary RPR gsvsuggests exploration. As the agent
accumulates episodes of experience, it comes to know drcpee of the environment in which the
episodes have been collected. This knowledge is reflectdgbinuxiliary RPR, which, along with
the primary RPR, is updated upon completion of each new dpiso

Since the environment is a POMDP, the agent’s knowledgeldhmurepresented in the space of
belief states. However, the agent cannot directly accessdhief states, because computation of
belief states requires knowing the true POMDP model, whsalot available. Fortunately, the RPR
formulation provides a compact representatiorfof= {h}, the space of histories, where each
historyh corresponds to a belief state in the POMDP. Within the RPRidation, is represented
internally as the set of distributions over belief regiang Z, which allows the agent to access
‘H based on a subset of samples fréim Let Hy,own b€ the part ofH that has become known to
the agent, i.e., the primary RPR is optimal’fi...wn @and thus the agent should begin to exploit
upon enterindxnown- AS Will be clear belowHy,own can be identified by ,own = {h : p(y =
0|h,©, \) = 1}, if the posterior of\ is updated by

Uio = o+ Sophey Dorko St ook el (i), (7)
Uiy = max (nur— S, SRS ykate ol (i), (8)

4



wheren is a small positive number, antf is the same in (5) except thaf is replaced byn?, the
meta-reward received atin episodek. We havem! = r,... if the goal is reached at timein
episodek, andm? = 0 otherwise, where,,.;. > 0 is a constant. WheH, is provided by an oracle
(active learning), a query cost> 0 is taken into account in (8), by subtractiagrom u,. Thus, the
probability of exploration is reduced each time the agerkesa query to the oracle (i.g. = 1).
After a certain number of queries; ; becomes the small positive numbgfit never becomes zero
due to the max operator), at which point the agent stops qugeiny belief region: = 1.

In (7) and (8), exploitation always receives a “credit”, \ghéxploration never receives credit (ex-
ploration is actually discredited whdih, is an oracle). This update makes sure that the chance
of exploitation monotonically increases as the episodesraalate. Exploration receives no credit
because it has been pre-assigned a credit iq the prior, and the chance of exploration should
monotonically decrease with the accumulation of episo@lkse.parametes; represents the agent’s
prior for the amount of needed exploration. When 0, u; is discredited by the cost and the agent
needs a larget; (than whenc = 0) to obtain the same amount of exploration. The fact that the
amount of exploration monotonically increases withimplies that, one can always find a large
enoughu, to ensure that the primary RPR is optimalfifinown = {h : p(y = 0/h,0,\) ~ 1}.
However, an unnecessarily large makes the agent over-explore and leads to slow convergence.
Let ui"® denote the minimuna; that ensures optimality ity own. We assumei exists in the
analysis below. The possible rangeugfi™ is examined in the experiments.

4 Optimality and Convergence Analysis

Let M be the true POMDP model. We first introduce an equivalentesgion for the empirical
value functionin (2),

‘7(5';“[();9) = 25<TK> Z?ZOVtrtp(aO:ta01:t77t|yo:t =0,0,M), 9

where the first summation is over all elementsfﬁ() C &p, andér = {(ao.7, 01.7,70:7) ¢ At €
Ao € Ot =0,1,---,T} is the complete set of episodes of lengthin the POMDP, with no
repeated elements. The conditigyy = 0, which is an an abbreviationfgr, =0V =0,1,--- ¢,

indicates that the agent always follows the RFR (ere. NoteIA/(g}K); 0) is the empirical value
function of© defined org{™®), as isV (DX); ©) on DX), WhenT = oo 1, the two are identical
up to a difference in acquiring the episode”s}K) is a simple enumeration of distinct episodes

while D5) may contain identical episodes. The multiplicity of an episinD¥) results from the
sampling process (by following a policy to interact with #@vironment). Note that the empirical

value function defined usin@(TK) is interesting only for theoretical analysis, because tiaduation
requires knowing the true POMDP model, not available in ficac We define the optimistic value
function

T 1
‘/j(g’_g“K)v @7)\7 HC) :Z Z 7t Z (Tt+ (Rmax_ Tt)\/s—:o l/r)P(a():t, O1:¢, Tt y0zt|@7)\aMch) (10)
g;m t=0 yo,,yt=0

where Vi _,y, indicates that the agent receivesif and only if y. = 0 at all time steps =

1,2,--- ,t; otherwise, it receiveR,,.x att, which is an upper bound of the rewards in the environ-

ment. Similarly we can defin%(D(K% 0, A\, I1,), the equivalent expression ﬂ?y (EéK); O, \11,).
The following lemma is proven in the Appendix.

Lemma 4.1 Let 17(5:(FK); 0), ?f(EZ(FK); ©,\,11,), and Rn.x be defined as above. Let
chlpom(é‘:(FK), 0, \,I1,) be the probability of executing the exploration polidy at least once in
some episode iﬁ}K), under the auxiliary RPRO, \) and the exploration polic¥l.. Then

11—~ ~ ~
Posipore (€5, O, 0, TLe) > 77— V(€55 0) = Vy(€5: 0, IL).

max

1An episode almost always terminates in finite time steps actjiwe and the agent stays in the absorbing
state with zero reward for the remaining infinite steps adteepisode is terminated [10]. The infinite horizon
is only to ensure theoretically all episodes have the samedrolength.



Proposition 4.2 Let © be the optimal RPR oﬁéoK) and ©* be the optimal RPR in the complete
POMDP environment. Let the auxiliary RPR hyper-parametgyde updated according to (7) and

(8), withu; > wn, LetII. be the exploration policy and > 0. Then either (a)V(SOO; 0) >
V(Exo; ©%) — €, or (b) the probability that the auxiliary RPR suggests exig I1, in some episode
unseen i€ %) is at Ieast%.

Proof: It is sufficient to show that if (a) does not hold, then (b) mbetd. Let us assume
V(€s;©) < V(Eso;©%) — €. Because is optimal ine%), XA/(EéoK); Q) > IA/(&EOK); ©*), which
implies 17(8&\3}{);@) < 17(5&\)[();6*) — . whereeQd™ = &, \ e, We show below that
KAG»(E(QK); O,\11,) > 17(5&\)}(); ©™*) which, together with Lemma 4.1, implies

1— ~ ~
chlporc(g(%K)a ®a /\7 Hc) Z —7 |:‘/j (E(QK)’ @7 )\a HC) - V(E(QK)’ @):|
127 [ - 1
> L [P(eien) - D(else)] » L)

max Rm ax

We now showIA/f(gééK);G,)\,He) > V(&%K);@*). By constructionl?f(EQK); 0, \,11,) is an
optimistic value function, in which the agent receiveg.. at any timet unless ify, = 0 att =
0,1,---,t. Howevery, = 0atr =0,1,--- ,timpliesthat{h, : 7 = 0,1, -+ ,t} C Hknown, BY
the premise) is updated according to (7) and (8) amd> wi", therefored is optimal inHown
(see the discussions following (7) and (8)), which impliss optimal in{h, : 7 = 0,1,--- ,t}.
Thus, the inequality holds. Q.E.D.

Proposition 4.2 shows that whenever the primary RPR achita&s accumulative reward than
the optimal RPR bye, the auxiliary RPR suggests exploration with a probabiégceeding
e(1 — v)R,L,.. Conversely, whenever the auxiliary RPR suggests exjptoratith a probability
smaller thare(1 —v)R.L , the primary RPR achievesnear optimality. This ensures that the agent

max’

is either receiving sufficient rewards or it is performindfisient exploration.

5 Experimental Results

Our experiments are based on Shuttle, a benchmark POMDRepr¢B], with the following setup.
The primary policy is a RPR withZ| = 10 and a prior in (4), with all hyper-parameters initially
set to one (which makes the initial prior non-informativ&he auxiliary policy is a RPR sharing
{p, W} with the primary RPR and having a prior faras in (6). The prior of\ is initially biased
towards exploration by using, = 1 andu; > 1. We consider various values af to examine
the different effects. The agent performs online learnimgon termination of each new episode,
the primary and auxiliary RPR posteriors are updated bygusia previous posteriors as the current
priors. The primary RPR update follows Theorem 2.4 with= 1 while the auxiliary RPR update
follows (7) and (8) for\ (it shares the same update with the primary RPR:fand). We perform
100 independent Monte Carlo runs. In each run, the agent stataihg from a random position
in the environment and stops learning whig,.; episodes are completed. We compare various
methods that the agent uses to balance exploration andiatjolo: () following the auxiliary RPR,
with various values ofi;, to adaptively switch between exploration and exploitati@) randomly
switching between exploration and exploitation with a fiesgloration rate..p1ore (various values
of Pexpiore are examined). When performing exploitation, the ageived the current primary RPR
(using the® that maximizes the posterior); when performing explomatibfollows an exploration
policy IT.. We consider two types dfl.: (i) taking random actions and ) following the policy
obtained by solving thérue POMDP using PBVI [8] with 2000 belief samples. In either gase
rmeta = 1 @andn = 0.001. In caseif), the PBVI policy is the oracle and incurs a query cost

We report: {) the sum of discounted rewards accrued within each episodegllearning; these
rewards result from both exploitation and exploratioii) the quality of the primary RPR upon
termination of each learning episode, represented by theafudiscounted rewards averaged over
251 episodes of following the primary RPR (using the standastirtg procedure for Shuttle: each
episode is terminated when either the goal is reached or @amax of 251 steps is taken); these
rewards result from exploitation alondii ( the exploration raté’pi0re in €ach learning episode,
which is the number of time steps at which exploration isqanked divided by the total time steps in



a given episode. In order to examine the optimality, the rd&an ()-(ii) has the corresponding op-
timal rewards subtracted, where the optimal rewards ai@rmdd by following the PBVI policy; the
difference are reported, with zero difference indicatipgimality and minus difference indicating
sub-optimality. All results are averaged over the 100 M@deo runs. The results are summarized
in Figure 1 wherI, takes random actions and in Figure 2 whénis an oracle (the PBVI policy).
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Figure 1: Results on Shuttle with a random exploration policy, with.t.1 = 3000. Left: accumulative
discounted reward accrued within each learning episode the corresponding optimal reward subtracted.
Middle: accumulative discounted rewards averaged 2¥erepisodes of following the primary RPR obtained
after each learning episode, again with the correspondbtignal reward subtracted. Right: the rate of explo-
ration in each learning episode. All results are averaged 990 independent Monte Carlo runs.
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Figure 2: Results on Shuttle with an oracle exploration policy inmgrcostc = 1 (top row) andc = 3
(bottom row), andKiota1 = 100. Each figure in a row is a counterpart of the correspondingdiguFigure 1,
with the randonil. replaced by the oraclE.. See the captions there for details.

It is seen from Figure 1 that, with random exploration and= 2, the primary policy converges
to optimality and, accordinglyPexpiore drops to zero, after about00 learning episodes. When
up increases t@0, the convergence is slower: it does not occur (&aghiore > 0) until after
abound 2500 learning episodes. With increased to 200, the convergence does not happen and
Poxpiore > 0.2 within the first3000 learning episodes. These results verify our analysis iti&ec
3 and 4: {) the primary policy improves af..piore decreases;i| the agent explores when it is
not acting optimally and it is acting optimally when it stogsploring; {ii) there exists finite:;
such that the primary policy is optimal Fsxpiore = 0. Althoughw; = 2 may still be larger than
u™n it is small enough to ensure convergence withino episodes. We also observe from Figure
1 that: ) the agent explores more efficiently when it is adaptiveljtcved between exploration
and exploitation by the auxiliary policy, than when the shiis random; i{) the primary policy
cannot converge to optimality when the agent never expldiigsthe primary policy may converge



to optimality when the agent always takes random actiortst may need infinite learning episodes
to converge.

The results in Figure 2, withl, being an oracle, provide similar conclusions as those imrgig
1 whenlII, is random. However, there are two special observations f@ure 2: {) Pexplore IS
affected by the query cost with a largere, the agent performs less exploratiom) the convergence
rate of the primary policy is not significantly affected bgthuery cost. The reason fai)(is that the
oracle always provides optimal actions, thus over-expimnaloes not harm the optimality; as long
as the agent takes optimal actions, the primary policy ooatly improves if it is not yet optimal,
or it remains optimal if it is already optimal.

6 Conclusions

We have presented a dual-policy approach for jointly leggrihe agent behavior and the optimal
balance between exploitation and exploration, assumiagtiknown environmentis a POMDP. By
identifying a known part of the environmentin terms of higte (parameterized by the RPR), the ap-
proach adaptively switches between exploration and etgtion depending on whether the agent is
in the known part. We have provided theoretical guaranteehé agent to either explore efficiently
or exploit efficiently. Experimental results show good a&gnent with our theoretical analysis and
that our approach finds the optimal policy efficiently. Altlylh we empirically demonstrated the
existence of a small; to ensure efficient convergence to optimality, further tietioal analysis is
needed to find:*i», the tight lower bound ofi;, which ensures convergence to optimality with
just the right amount of exploration (without over-explioa). Finding the exact"™" is difficult
because of the partial observability. However, it is hopefiind a good approximation te*". In

the worst case, the agent can always choose to be optinlistign E*> and Rmax. An optimistic
agent uses a largg, which usually leads to over-exploration but ensures cayamce to optimality.
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Appendix

Proof of Lemma 4.1: We expand (10) as,
VHEFD 0,0 I1) = Zf(TK) St oV rep(aoe, 010, Telyo:e = 0,0, M)p(yor = 0|0, \)
+Z£¥Q ZZ:O ’YtRmax Zyo:t¢0p(a01t7 O1:t, Tt|y0:t7 67 M7 He)p(yoﬂ@, )\)
whereyo.; is an an abbreviation fay, =0V 7 =0, --- ,t andyo.: # 0is an an abbreviation fat 0 < 7 < ¢
satisfyingy- # 0. The sumZE(K) is over all episodes iﬁ;K). The difference between (9) and (11) is
T
v (£(K) V(e _ T ot — _
V(Er7,0)=VI(Er ;0,0 = Zf{TK) Y im0 Tep(ao:t, 01:4, mt[yor = 0,0, M) (1 — p(yo:+ = 0|0, \))
_ZE;K) ZZ;O 'YtRmax Zyo:t#op(ao:t, O1:t, 7"75|y017t7 97 My Hc)p(yO:t|®7 )\)‘
= ‘ZS(TK) ZZ;O ’YtTtp(ao:t, O1:t, 7’7:|y0:t =0, @7 M) Zyo:t¢0p(y0:t|@, )\)
_ZE;K) ZZ—':() 'YtRmax Zyo:t#op(ao:t, O1:t, 7"75|y017t7 97 My Hc)p(yO:t|®7 )\)‘
o R
Z Z’ytrt Z [p(a()ity Oliﬁrt'int = 07 @7 M) - ;ltax

g(F) t=0 Y0::#0
T

SOPRE im0 Rmax 30, 20P (4040, ) = 2 e Y 1—07 Rimax(1 = p(yo:e = 06, \))

p(ao:t, O1:t, Tt|y0:t, 0, M, Hc)] P(yO:t|@7 )\)

Rmax
< Zg(K) (1 - p(y()iT = 0|@7 )‘)) Z;I:O’YtRmax < Zg(K) (1 - p(yO:T = 0|®7 )‘))
T 1- vy T
wherey” . isasum over all sequencégo.. : 30 < 7 < ¢ satisfying y- # 0}. Q.E.D.
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