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Abstract

A fundamental objective in reinforcement learning is the maintenance of a proper
balance between exploration and exploitation. This problem becomes more chal-
lenging when the agent can only partially observe the statesof its environment.
In this paper we propose a dual-policy method for jointly learning the agent be-
havior and the balance between exploration exploitation, in partially observable
environments. The method subsumes traditional exploration, in which the agent
takes actions to gather information about the environment,and active learning, in
which the agent queries an oracle for optimal actions (with an associated cost for
employing the oracle). The form of the employed explorationis dictated by the
specific problem. Theoretical guarantees are provided concerning the optimality
of the balancing of exploration and exploitation. The effectiveness of the method
is demonstrated by experimental results on benchmark problems.

1 Introduction

A fundamental challenge facing reinforcement learning (RL) algorithms is to maintain a proper
balance between exploration and exploitation. The policy designed based on previous experiences
is by construction constrained, and may not be optimal as a result of inexperience. Therefore, it
is desirable to take actions with the goal of enhancing experience. Although these actions may not
necessarily yield optimalnear-termreward toward the ultimate goal, they could, over a long horizon,
yield improvedlong-termreward. The fundamental challenge is to achieve an optimal balance
between exploration and exploitation; the former is performed with the goal of enhancing experience
and preventing premature convergence to suboptimal behavior, and the latter is performed with the
goal of employing available experience to define perceived optimal actions.

For a Markov decision process (MDP), the problem of balancing exploration and exploitation has
been addressed successfully by theE3 [4, 5] and R-max [2] algorithms. Many important applica-
tions, however, have environments whose states are not completely observed, leading to partially
observable MDPs (POMDPs). Reinforcement learning in POMDPs is challenging, particularly in
the context of balancing exploration and exploitation. Recent work targeted on solving the explo-
ration vs. exploitation problem is based on an augmented POMDP, with a product state space over
the environment states and the unknown POMDP parameters [9]. This, however, entails solving a
complicated planning problem, which has a state space that grows exponentially with the number
of unknown parameters, making the problem quickly intractable in practice. To mitigate this com-
plexity, active learning methods have been proposed for POMDPs, which borrow similar ideas from
supervised learning, and apply them to selectively query anoracle (domain expert) for the optimal
action [3]. Active learning has found success in many collaborative human-machine tasks where
expert advice is available.

In this paper we propose a dual-policy approach to balance exploration and exploitation in POMDPs,
by simultaneously learning two policies with partially shared internal structure. The first policy,
termed theprimary policy, defines actions based on previous experience; the second policy, termed
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the auxiliary policy, is a meta-level policy maintaining a proper balance between exploration and
exploitation. We employ the regionalized policy representation (RPR) [6] to parameterize both
policies, and perform Bayesian learning to update the policy posteriors. The approach applies in
either of two cases: (i) the agent explores by randomly taking the actions that havebeen insufficiently
tried before (traditional exploration), or (ii ) the agent explores by querying an oracle for the optimal
action (active learning). In the latter case, the agent is assessed a query cost from the oracle, in
addition to the reward received from the environment. Either (i) or (ii ) is employed as an exploration
vehicle, depending upon the application.

The dual-policy approach possesses interesting convergence properties, similar to those of E3 [5]
and Rmax [2]. However, our approach assumes the environmentis a POMDP while E3 and Rmax
both assume an MDP environment. Another distinction is thatour approach learns the agent policy
directly from episodes, without estimating the POMDP model. This is in contrast to E3 and Rmax
(both learn MDP models) and the active-learning method in [3] (which learns POMDP models).

2 Regionalized Policy Representation

We first provide a brief review of the regionalized policy representation, which is used to parame-
terize the primary policy and the auxiliary policy as discussed above. The material in this section is
taken from [6], with the proofs omitted here.

Definition 2.1 A regionalized policy representation is a tuple (A,O,Z,W, µ, π). TheA andO are
respectively a finite set of actions and observations. TheZ is a finite set of belief regions. TheW is
the belief-region transition function withW (z, a, o′, z′) denoting the probability of transiting from
z to z′ when taking actiona in z results in observingo′. Theµ is the initial distribution of belief
regions withµ(z) denoting the probability of initially being inz. Theπ are the region-dependent
stochastic policies withπ(z, a) denoting the probability of taking actiona in z.

We denoteA = {1, 2, . . . , |A|}, where|A| is the cardinality ofA. Similarly,O = {1, 2, . . . , |O|}
andZ = {1, 2, . . . , |Z|}. We abbreviate(a0, a1, . . . , aT ) asa0:T and similarly,(o1, o2, . . . , aT )
aso1:T and(z0, z1, . . . , zT ) asz0:T , where the subscripts indexes discrete time steps. The history
ht = {a0:t−1, o1:t} is defined as a sequence of actions performed and observations received up to
t. Let Θ = {π, µ,W} denote the RPR parameters. Givenht, the RPR yields a joint probability
distribution ofz0:t anda0:t as follows

p(a0:t, z0:t|o1:t,Θ) = µ(z0)π(z0, a0)
∏t

τ=1W (zτ−1, aτ−1, oτ , zτ )π(zτ , aτ ) (1)

By marginalizingz0:t out in (1), we obtainp(a0:t|o1:t,Θ). Furthermore, the history-dependent
distribution of action choices is obtained as follows:

p(aτ |hτ ,Θ) = p(a0:τ |o1:τ ,Θ)[p(a0:τ−1|o1:τ−1,Θ)]−1

which gives a stochastic policy for choosing the actionaτ . The action choice depends solely on the
historical actions and observations, with the unobservable belief regions marginalized out.

2.1 Learning Criterion

Bayesian learning of the RPR is based on the experiences collected from the agent-environment
interaction. Assuming the interaction is episodic, i.e., it breaks into subsequences called episodes
[10], we represent the experiences by a set of episodes.

Definition 2.2 An episode is a sequence of agent-environment interactionsterminated in
an absorbing state that transits to itself with zero reward.An episode is denoted by
(ak0r

k
0o
k
1a
k
1r
k
1 · · · okTk

akTk
rkTk

), where the subscripts are discrete times,k indexes the episodes, ando,
a, andr are respectively observations, actions, and immediate rewards.

Definition 2.3 (The RPR Optimality Criterion) LetD(K) = {(ak0r
k
0o
k
1a
k
1r
k
1 · · · o

k
Tk
akTk

rkTk
)}Kk=1

be a set of episodes obtained by an agent interacting with theenvironment by following policy
Π to select actions, whereΠ is an arbitrary stochastic policy with action-selecting distributions
pΠ(at|ht) > 0, ∀ actionat, ∀ historyht. The RPR optimality criterion is defined as

V̂ (D(K); Θ)
def.
= 1

K

∑K

k=1

∑Tk

t=0 γ
trkt

Q
t
τ=0 p(a

k
τ |h

k
τ ,Θ)Q

t
τ=0 p

Π(ak
τ |h

k
τ)

(2)

2



wherehkt = ak0o
k
1a
k
1 · · · o

k
t is the history of actions and observations up to timet in thek-th episode,

0 < γ < 1 is the discount, andΘ denotes the RPR parameters.

Throughout the paper, we call̂V (D(K); Θ) the empirical value function ofΘ. It is proven in [6]
that limK→∞ V̂ (D(K); Θ) is the expected sum of discounted rewards by following the RPR policy
parameterized byΘ for an infinite number of steps. Therefore, the RPR resultingfrom maximization
of V̂ (D(K); Θ) approaches the optimal asK is large (assuming|Z| is appropriate). In the Bayesian
setting discussed below, we use a noninformative prior forΘ, leading to a posterior ofΘ peaked at
the optimal RPR, therefore the agent is guaranteed to samplethe optimal or a near-optimal policy
with overwhelming probability.

2.2 Bayesian Learning

LetG0(Θ) represent the prior distribution of the RPR parameters. We define the posterior ofΘ as

p(Θ|D(K), G0)
def.
= V̂ (D(K); Θ)G0(Θ)[V̂ (D(K))]−1 (3)

whereV̂ (D(K)) =
∫
V̂ (D(K); Θ)G0(Θ)dΘ is the marginal empirical value. Note thatV̂ (D(K); Θ)

is an empirical value function, thus (3) is a non-standard use of Bayes rule. However, (3) indeed
gives a distribution whose shape incorporates both the prior and the empirical information.

Since each term in̂V (D(K); Θ) is a product of multinomial distributions, it is natural to choose the
prior as a product of Dirichlet distributions,

G0(Θ) = p(µ|υ)p(π|ρ)p(W |ω) (4)

where p(µ|υ) = Dir
(
µ(1), · · · , µ(|Z|)

∣∣υ
)
, p(π|ρ) =

∏|Z|
i=1Dir

(
π(i, 1), · · · , π(i, |A|)

∣∣∣ρi
)
,

p(W |ω) =
∏|A|
a=1

∏|O|
o=1

∏|Z|
i=1Dir

(
W (i, a, o, 1), · · · ,W (i, a, o, |Z|)

∣∣ωi,a,o
)
; ρi = {ρi,m}

|A|
m=1,

υ = {υi}
|Z|
i=1, andωi,a,o = {ωi,a,o,j}

|Z|
j=1 are hyper-parameters. With the prior thus chosen, the

posterior in (3) is a large mixture of Dirichlet products, and therefore posterior analysis by Gibbs
sampling is inefficient. To overcome this, we employ the variational Bayesian technique [1] to obtain
a variational posterior by maximizing a lower bound toln

∫
V̂ (D(K); Θ)G0(Θ)dΘ,

LB({qkt }, g(Θ)) = ln

∫
V̂ (D(K); Θ)G0(Θ)dΘ − KL({qkt(z

k
0:t)g(Θ)}||{νkt p(z

k
0:t,Θ|ak0:t, o

k
1:t)})

where{qkt }, g(Θ) are variational distributions satisfyingqkt (z
k
0:t) ≥ 1, g(Θ) ≥ 1,

∫
g(Θ)dΘ = 1,

and 1
K

∑K
k=1

∑Tk

t=1

∑|Z|

zk
0 ,··· ,z

k
t =1

qkt (z
k
0:t) = 1; νkt =

γtrk
t p(a

k
0:t|o

k
1:t)Q

t
τ=0 p

Π(ak
τ |h

k
τ )bV (D(K))

and KL(q‖p) denotes

the Kullback-Leibler (KL) distance between probability measureq andp.

The factorized form{qt(z0:t)g(Θ)} represents an approximation of the weighted joint posterior of
Θ andz’s when the lower bound reaches the maximum, and the correspondingg(Θ) is called the
variational approximate posterior ofΘ. The lower bound maximization is accomplished by solving
{qt(z0:t)} andg(Θ) alternately, keeping one fixed while solving for the other. The solutions are
summarized in Theorem 2.4; the proof is in [6].

Theorem 2.4 Given the initialization̂ρ = ρ, υ̂ = υ, ω̂ = ω, iterative application of the following
updates produces a sequence of monotonically increasing lower bounds LB({qkt }, g(Θ)), which
converges to a maxima. The update of{qkt } is

qkz (z
k
0:t) = σkt p(z

k
0:t|a

k
0:t, o

k
1:t, Θ̃)

whereΘ̃ = {π̃, µ̃, W̃} is a set of under-normalized probability mass functions, with π̃(i,m) =

eψ(bρi,m)−ψ(
P|A|

m=1 bρi,m), µ̃(i) = eψ(bυi)−ψ(
P|Z|

i=1 bυi), andW̃ (i, a, o, j) = eψ(bωi,a,o,j)−ψ(
P|A|

j=1 bωi,a,o,j),
andψ is the digamma function. Theg(Θ) has the same form as the priorG0 in (4), except that the
hyper-parameter are updated as

υ̂i = υi +
∑K

k=1

∑Tk

t=0σ
k
t φ

k
t,0(i)
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ρ̂i,a = ρi,a +
∑K

k=1

∑Tk

t=0

∑t

τ=0σ
k
t φ

k
t,τ (i)δ(a

k
τ , a)

ω̂i,a,o,j = ωi,a,o,j+
∑K

k=1

∑Tk

t=0

∑t

τ=1σ
k
t ξ
k
t,τ−1(i, j)δ(a

k
τ−1, a)δ(o

k
τ , o)

whereξkt,τ (i, j) = p(zkτ = i, zkτ+1 = j|ak0:t, o
k
1:t, Θ̃), φkt,τ (i) = p(zkτ = i|ak0:t, o

k
1:t, Θ̃), and

σkt =
[
γtrkt p(a

k
0:t|o

k
1:t, Θ̃)

][∏t

τ=0 p
Π(akτ |h

k
τ )V̂ (D(K)|Θ̃)

]−1
(5)

3 Dual-RPR: Joint Policy for the Agent Behavior and the Trade-Off
Between Exploration and Exploitation

Assume that the agent uses the RPR described in Section 2 to govern its behavior in the unknown
POMDP environment (the primary policy). Bayesian learningemploys the empirical value function
V̂ (D(K); Θ) in (2) in place of a likelihood function, to obtain the posterior of the RPR parameters
Θ. The episodesD(K) may be obtained from the environment by following an arbitrary stochastic
policy Π with pΠ(a|h) > 0, ∀ a, ∀ h. Although any suchΠ guarantees optimality of the resulting
RPR, the choice ofΠ affects the convergence speed. A good choice ofΠ avoids episodes that do
not bring new information to improve the RPR, and thus the agent does not have to see all possible
episodes before the RPR becomes optimal.

In batch learning, all episodes are collected before the learning begins, and thusΠ is pre-chosen
and does not change during the learning [6]. In online learning, however, the episodes are collected
during the learning, and the RPR is updated upon completion of each episode. Therefore there is
a chance to exploit the RPR to avoid repeated learning in the same part of the environment. The
agent should recognize belief regions it is familiar with, and exploit the existing RPR policy there;
in belief regions inferred as new, the agent should explore.This balance between exploration and
exploitation is performed with the goal of accumulating a large long-run reward.

We consider online learning of the RPR (as the primary policy) and chooseΠ as a mixture of two
policies: one is the current RPRΘ (exploitation) and the other is an exploration policyΠe. This gives
the action-choosing probabilitypΠ(a|h) = p(y = 0|h)p(a|h,Θ, y = 0)+p(y = 1|h)p(a|h,Πe, y =
1), wherey = 0 (y = 1) indicates exploitation (exploration). The problem of choosing goodΠ then
reduces to a proper balance between exploitation and exploration: the agent should exploitΘ when
doing so is highly rewarding, while followingΠe to enhance experience and improveΘ.

An auxiliary RPRis employed to represent the policy for balancing exploration and exploitation,
i.e., the history-dependent distributionp(y|h). The auxiliary RPR shares the parameters{µ,W}
with the primary RPR, but withπ = {π(z, a) : a ∈ A, z ∈ Z} replaced byλ = {λ(z, y) : y =
0 or 1, z ∈ Z}, whereλ(z, y) is the probability of choosing exploitation (y = 0) or exploration
(y = 1) in belief regionz. Letλ have the prior

p(λ|u) =
∏|Z|
i=1Beta

(
λ(i, 0), λ(i, 1)

∣∣∣u0, u1

)
. (6)

In order to encourage exploration when the agent has little experience, we chooseu0 = 1 andu1 > 1
so that, at the beginning of learning, the auxiliary RPR always suggests exploration. As the agent
accumulates episodes of experience, it comes to know a certain part of the environment in which the
episodes have been collected. This knowledge is reflected inthe auxiliary RPR, which, along with
the primary RPR, is updated upon completion of each new episode.

Since the environment is a POMDP, the agent’s knowledge should be represented in the space of
belief states. However, the agent cannot directly access the belief states, because computation of
belief states requires knowing the true POMDP model, which is not available. Fortunately, the RPR
formulation provides a compact representation ofH = {h}, the space of histories, where each
historyh corresponds to a belief state in the POMDP. Within the RPR formulation,H is represented
internally as the set of distributions over belief regionsz ∈ Z, which allows the agent to access
H based on a subset of samples fromH. Let Hknown be the part ofH that has become known to
the agent, i.e., the primary RPR is optimal inHknown and thus the agent should begin to exploit
upon enteringHknown. As will be clear below,Hknown can be identified byHknown = {h : p(y =
0|h,Θ, λ) ≈ 1}, if the posterior ofλ is updated by

ûi,0 = u0 +
∑K

k=1

∑Tk

t=0

∑t

τ=0σ
k
t φ

k
t,τ (i), (7)

ûi,1 = max
(
η, u1 −

∑K

k=1

∑Tk

t=0

∑t

τ=0y
k
t γ

tc φkt,τ (i)
)
, (8)
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whereη is a small positive number, andσkt is the same in (5) except thatrkt is replaced bymk
t , the

meta-reward received att in episodek. We havemk
t = rmeta if the goal is reached at timet in

episodek, andmk
t = 0 otherwise, wherermeta > 0 is a constant. WhenΠe is provided by an oracle

(active learning), a query costc > 0 is taken into account in (8), by subtractingc fromu1. Thus, the
probability of exploration is reduced each time the agent makes a query to the oracle (i.e.,ykt = 1).
After a certain number of queries,ûi,1 becomes the small positive numberη (it never becomes zero
due to the max operator), at which point the agent stops querying in belief regionz = i.

In (7) and (8), exploitation always receives a “credit”, while exploration never receives credit (ex-
ploration is actually discredited whenΠe is an oracle). This update makes sure that the chance
of exploitation monotonically increases as the episodes accumulate. Exploration receives no credit
because it has been pre-assigned a credit (u1) in the prior, and the chance of exploration should
monotonically decrease with the accumulation of episodes.The parameteru1 represents the agent’s
prior for the amount of needed exploration. Whenc > 0, u1 is discredited by the cost and the agent
needs a largeru1 (than whenc = 0) to obtain the same amount of exploration. The fact that the
amount of exploration monotonically increases withu1 implies that, one can always find a large
enoughu1 to ensure that the primary RPR is optimal inHknown = {h : p(y = 0|h,Θ, λ) ≈ 1}.
However, an unnecessarily largeu1 makes the agent over-explore and leads to slow convergence.
Let umin

1 denote the minimumu1 that ensures optimality inHknown. We assumeumin
1 exists in the

analysis below. The possible range ofumin
1 is examined in the experiments.

4 Optimality and Convergence Analysis

Let M be the true POMDP model. We first introduce an equivalent expression for the empirical
value function in (2),

V̂ (E
(K)
T ; Θ) =

∑
E

(K)
T

∑T

t=0γ
trtp(a0:t, o1:t, rt|y0:t = 0,Θ,M), (9)

where the first summation is over all elements inE
(K)
T ⊆ ET , andET = {(a0:T , o1:T , r0:T ) : at ∈

A, ot ∈ O, t = 0, 1, · · · , T } is the complete set of episodes of lengthT in the POMDP, with no
repeated elements. The conditiony0:t = 0, which is an an abbreviation foryτ = 0 ∀ τ = 0, 1, · · · , t,
indicates that the agent always follows the RPR (Θ) here. NoteV̂ (E

(K)
T ; Θ) is the empirical value

function ofΘ defined onE(K)
T , as isV̂ (D(K); Θ) onD(K). WhenT = ∞ 1, the two are identical

up to a difference in acquiring the episodes:E
(K)
T is a simple enumeration of distinct episodes

whileD(K) may contain identical episodes. The multiplicity of an episode inD(K) results from the
sampling process (by following a policy to interact with theenvironment). Note that the empirical
value function defined usingE(K)

T is interesting only for theoretical analysis, because the evaluation
requires knowing the true POMDP model, not available in practice. We define the optimistic value
function

V̂f (E
(K)
T ; Θ,λ,Πe) =

∑

E
(K)
T

T∑

t=0

γt
1∑

y0,··· ,yt=0

(
rt+(Rmax−rt)∨

t
τ=0 yτ

)
p(a0:t, o1:t, rt, y0:t|Θ,λ,M,Πe) (10)

where∨tτ=0yτ indicates that the agent receivesrt if and only if yτ = 0 at all time stepsτ =
1, 2, · · · , t; otherwise, it receivesRmax at t, which is an upper bound of the rewards in the environ-
ment. Similarly we can definêV (D(K); Θ, λ,Πe), the equivalent expression for̂Vf (E

(K)
T ; Θ, λ,Πe).

The following lemma is proven in the Appendix.

Lemma 4.1 Let V̂ (E
(K)
T ; Θ), V̂f (E

(K)
T ; Θ, λ,Πe), and Rmax be defined as above. Let

Pexlpore(E
(K)
T ,Θ, λ,Πe) be the probability of executing the exploration policyΠe at least once in

some episode inE(K)
T , under the auxiliary RPR(Θ, λ) and the exploration policyΠe. Then

Pexlpore(E
(K)
T ,Θ, λ,Πe) ≥

1 − γ

Rmax
|V̂ (E

(K)
T ; Θ) − V̂f (E

(K)
T ; Θ, λ,Πe)|.

1An episode almost always terminates in finite time steps in practice and the agent stays in the absorbing
state with zero reward for the remaining infinite steps afteran episode is terminated [10]. The infinite horizon
is only to ensure theoretically all episodes have the same horizon length.
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Proposition 4.2 Let Θ be the optimal RPR onE(K)
∞ andΘ∗ be the optimal RPR in the complete

POMDP environment. Let the auxiliary RPR hyper-parameters(λ) be updated according to (7) and
(8), with u1 ≥ umin

1 . Let Πe be the exploration policy andǫ ≥ 0. Then either (a)̂V (E∞; Θ) ≥

V̂ (E∞; Θ∗)− ǫ, or (b) the probability that the auxiliary RPR suggests executingΠe in some episode

unseen inE(K)
∞ is at leastǫ(1−γ)

Rmax
.

Proof: It is sufficient to show that if (a) does not hold, then (b) musthold. Let us assume
V̂ (E∞; Θ) < V̂ (E∞; Θ∗) − ǫ. BecauseΘ is optimal inE(K)

∞ , V̂ (E
(K)
∞ ; Θ) ≥ V̂ (E

(K)
∞ ; Θ∗), which

implies V̂ (E
(\K)
∞ ; Θ) < V̂ (E

(\K)
∞ ; Θ∗) − ǫ. whereE(\K)

∞ = E∞ \ E
(K)
∞ . We show below that

V̂f (E
(\K)
∞ ; Θ, λ,Πe) ≥ V̂ (E

(\K)
∞ ; Θ∗) which, together with Lemma 4.1, implies

Pexlpore(E
(\K)
∞ ,Θ, λ,Πe) ≥

1 − γ

Rmax

[
V̂f (E

(\K)
∞ ; Θ, λ,Πe) − V̂ (E(\K)

∞ ; Θ)
]

≥
1 − γ

Rmax

[
V̂ (E(\K)

∞ ; Θ∗) − V̂ (E(\K)
∞ ; Θ)

]
≥
ǫ(1 − γ)

Rmax

We now showV̂f (E
(\K)
∞ ; Θ, λ,Πe) ≥ V̂ (E

(\K)
∞ ; Θ∗). By construction,̂Vf (E

(\K)
∞ ; Θ, λ,Πe) is an

optimistic value function, in which the agent receivesRmax at any timet unless ifyτ = 0 at τ =
0, 1, · · · , t. However,yτ = 0 at τ = 0, 1, · · · , t implies that{hτ : τ = 0, 1, · · · , t} ⊂ Hknown, By
the premise,λ is updated according to (7) and (8) andu1 ≥ umin

1 , thereforeΘ is optimal inHknown

(see the discussions following (7) and (8)), which impliesΘ is optimal in{hτ : τ = 0, 1, · · · , t}.
Thus, the inequality holds. Q.E.D.

Proposition 4.2 shows that whenever the primary RPR achieves less accumulative reward than
the optimal RPR byǫ, the auxiliary RPR suggests exploration with a probabilityexceeding
ǫ(1 − γ)R−1

max. Conversely, whenever the auxiliary RPR suggests exploration with a probability
smaller thanǫ(1− γ)R−1

max, the primary RPR achievesǫ-near optimality. This ensures that the agent
is either receiving sufficient rewards or it is performing sufficient exploration.

5 Experimental Results

Our experiments are based on Shuttle, a benchmark POMDP problem [7], with the following setup.
The primary policy is a RPR with|Z| = 10 and a prior in (4), with all hyper-parameters initially
set to one (which makes the initial prior non-informative).The auxiliary policy is a RPR sharing
{µ,W} with the primary RPR and having a prior forλ as in (6). The prior ofλ is initially biased
towards exploration by usingu0 = 1 andu1 > 1. We consider various values ofu1 to examine
the different effects. The agent performs online learning:upon termination of each new episode,
the primary and auxiliary RPR posteriors are updated by using the previous posteriors as the current
priors. The primary RPR update follows Theorem 2.4 withK = 1 while the auxiliary RPR update
follows (7) and (8) forλ (it shares the same update with the primary RPR forµ andW ). We perform
100 independent Monte Carlo runs. In each run, the agent starts learning from a random position
in the environment and stops learning whenKtotal episodes are completed. We compare various
methods that the agent uses to balance exploration and exploitation: (i) following the auxiliary RPR,
with various values ofu1, to adaptively switch between exploration and exploitation; (ii ) randomly
switching between exploration and exploitation with a fixedexploration ratePexplore (various values
ofPexplore are examined). When performing exploitation, the agent follows the current primary RPR
(using theΘ that maximizes the posterior); when performing exploration, it follows an exploration
policy Πe. We consider two types ofΠe: (i) taking random actions and (ii ) following the policy
obtained by solving thetrue POMDP using PBVI [8] with 2000 belief samples. In either case,
rmeta = 1 andη = 0.001. In case (ii ), the PBVI policy is the oracle and incurs a query costc.

We report: (i) the sum of discounted rewards accrued within each episode during learning; these
rewards result from both exploitation and exploration. (ii ) the quality of the primary RPR upon
termination of each learning episode, represented by the sum of discounted rewards averaged over
251 episodes of following the primary RPR (using the standard testing procedure for Shuttle: each
episode is terminated when either the goal is reached or a maximum of 251 steps is taken); these
rewards result from exploitation alone. (iii ) the exploration ratePexplore in each learning episode,
which is the number of time steps at which exploration is performed divided by the total time steps in
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a given episode. In order to examine the optimality, the rewards in (i)-(ii ) has the corresponding op-
timal rewards subtracted, where the optimal rewards are obtained by following the PBVI policy; the
difference are reported, with zero difference indicating optimality and minus difference indicating
sub-optimality. All results are averaged over the 100 MonteCarlo runs. The results are summarized
in Figure 1 whenΠe takes random actions and in Figure 2 whenΠe is an oracle (the PBVI policy).
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Figure 1: Results on Shuttle with a random exploration policy, withKtotal = 3000. Left: accumulative
discounted reward accrued within each learning episode, with the corresponding optimal reward subtracted.
Middle: accumulative discounted rewards averaged over251 episodes of following the primary RPR obtained
after each learning episode, again with the corresponding optimal reward subtracted. Right: the rate of explo-
ration in each learning episode. All results are averaged over 100 independent Monte Carlo runs.
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Figure 2: Results on Shuttle with an oracle exploration policy incurring costc = 1 (top row) andc = 3
(bottom row), andKtotal = 100. Each figure in a row is a counterpart of the corresponding figure in Figure 1,
with the randomΠe replaced by the oracleΠe. See the captions there for details.

It is seen from Figure 1 that, with random exploration andu1 = 2, the primary policy converges
to optimality and, accordingly,Pexplore drops to zero, after about1500 learning episodes. When
u1 increases to20, the convergence is slower: it does not occur (andPexplore > 0) until after
abound 2500 learning episodes. Withu1 increased to 200, the convergence does not happen and
Pexplore > 0.2 within the first3000 learning episodes. These results verify our analysis in Section
3 and 4: (i) the primary policy improves asPexplore decreases; (ii ) the agent explores when it is
not acting optimally and it is acting optimally when it stopsexploring; (iii ) there exists finiteu1

such that the primary policy is optimal ifPexplore = 0. Althoughu1 = 2 may still be larger than
umin

1 , it is small enough to ensure convergence within1500 episodes. We also observe from Figure
1 that: (i) the agent explores more efficiently when it is adaptively switched between exploration
and exploitation by the auxiliary policy, than when the switch is random; (ii ) the primary policy
cannot converge to optimality when the agent never explores; (iii ) the primary policy may converge
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to optimality when the agent always takes random actions, but it may need infinite learning episodes
to converge.

The results in Figure 2, withΠe being an oracle, provide similar conclusions as those in Figure
1 whenΠe is random. However, there are two special observations fromFigure 2: (i) Pexplore is
affected by the query costc: with a largerc, the agent performs less exploration. (ii ) the convergence
rate of the primary policy is not significantly affected by the query cost. The reason for (ii ) is that the
oracle always provides optimal actions, thus over-exploration does not harm the optimality; as long
as the agent takes optimal actions, the primary policy continually improves if it is not yet optimal,
or it remains optimal if it is already optimal.

6 Conclusions

We have presented a dual-policy approach for jointly learning the agent behavior and the optimal
balance between exploitation and exploration, assuming the unknown environment is a POMDP. By
identifying a known part of the environment in terms of histories (parameterized by the RPR), the ap-
proach adaptively switches between exploration and exploitation depending on whether the agent is
in the known part. We have provided theoretical guarantees for the agent to either explore efficiently
or exploit efficiently. Experimental results show good agreement with our theoretical analysis and
that our approach finds the optimal policy efficiently. Although we empirically demonstrated the
existence of a smallu1 to ensure efficient convergence to optimality, further theoretical analysis is
needed to findumin

1 , the tight lower bound ofu1, which ensures convergence to optimality with
just the right amount of exploration (without over-exploration). Finding the exactumin

1 is difficult
because of the partial observability. However, it is hopeful to find a good approximation toumin

1 . In
the worst case, the agent can always choose to be optimistic,like in E3 and Rmax. An optimistic
agent uses a largeu1, which usually leads to over-exploration but ensures convergence to optimality.
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Appendix

Proof of Lemma 4.1: We expand (10) as,bVf (E
(K)
T ; Θ, λ, Πe) =

P
E
(K)
T

PT

t=0γ
t
rtp(a0:t, o1:t, rt|y0:t = 0, Θ, M)p(y0:t = 0|Θ, λ)

+
P

E
(K)
T

PT

t=0 γtRmax

P
y0:t 6=0p(a0:t, o1:t, rt|y0:t, Θ, M, Πe)p(y0:t|Θ, λ)

wherey0:t is an an abbreviation foryτ = 0 ∀ τ = 0, · · · , t andy0:t 6= 0 is an an abbreviation for∃ 0 ≤ τ ≤ t

satisfyingyτ 6= 0. The sum
P

E
(K)
T

is over all episodes inE (K)
T . The difference between (9) and (11) is

|bV (E
(K)
T , Θ) − bV (E

(K)
T ; Θ, λ)| =

���P
E
(K)
T

PT

t=0γ
t
rtp(a0:t, o1:t, rt|y0:t = 0, Θ, M)(1 − p(y0:t = 0|Θ, λ))

−
P

E
(K)
T

PT

t=0 γtRmax

P
y0:t 6=0p(a0:t, o1:t, rt|y0:t, Θ,M, Πe)p(y0:t|Θ, λ)

���
=
���P

E
(K)
T

PT

t=0 γtrtp(a0:t, o1:t, rt|y0:t = 0, Θ, M)
P

y0:t 6=0p(y0:t|Θ, λ)

−
P

E
(K)
T

PT

t=0 γtRmax

P
y0:t 6=0p(a0:t, o1:t, rt|y0:t, Θ,M, Πe)p(y0:t|Θ, λ)

���
=

�����X
E
(K)
T

TX
t=0

γ
t
rt

X
y0:t 6=0

h
p(a0:t, o1:t, rt|y0:t = 0, Θ, M) −

Rmax

rt

p(a0:t, o1:t, rt|y0:t, Θ, M, Πe)
i
p(y0:t|Θ, λ)

�����
≤
P

E
(K)
T

PT

t=0 γtRmax

P
y0:t 6=0p(y0:t|Θ, λ) =

P
E
(K)
T

PT

t=0γ
t
Rmax(1 − p(y0:t = 0|Θ, λ))

≤
P

E
(K)
T

(1 − p(y0:T = 0|Θ, λ))
PT

t=0γ
t
Rmax ≤

Rmax

1 − γ

P
E
(K)
T

(1 − p(y0:T = 0|Θ, λ))

where
P

y0:t 6=0 is a sum over all sequences{y0:t : ∃ 0 ≤ τ ≤ t satisfying yτ 6= 0}. Q.E.D.
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