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Abstract

A new algorithm for isotonic regression is presented basedegursively par-
titioning the solution space. We develop efficient methamtsefach partitioning
subproblem through an equivalent representation as a neflea problem, and
prove that this sequence of partitions converges to theafjsmdution. These net-
work flow problems can further be decomposed in order to sadve large prob-
lems. Success of isotonic regression in prediction and lyarithm'’s favorable
computational properties are demonstrated through steuilexamples as large
as2 x 10° variables and 07 constraints.

1 Introduction

Assume we have a set ofdata observationge, y1), .. (xn, yn), Wherex € X (usually X =RP)
is a vector of covariates or independent vanabj,e& R is the response, and we wish to fit a

model f : X — R to describe the dependenceybn z, i.e.,y ~ f( ). Isotonic regression is a
non-parametric modeling approach which only restnctsfﬂlhed model to being monotone in all
independent variables [1]. Defigeas the family of isotonic functions, that ig,c G satisfies

T 212 = g(21) < g(22),

where the partial order here will usually be the standard Euclidean one, &.e < 2 if 215 < 29,
Vj. Given these definitions, isotonic regression solves

f = argmin|ly - g(x)|*. )

As many authors have noted, the optimal solution to this lpralcomprises a partitioning of the
spacet’ into regions obeying a monotonicity property with a consfited to f in each region.

It is clear that isotonic regression is a very attractive eiddr situations where monotonicity is a
reasonable assumption, but other common assumptionsriarity or additivity are not. Indeed,
this formulation has found useful applications in biolo@y, [medicine [3], statistics [1] and psy-
chology [4], among others. Practicality of isotonic regies has already been demonstrated in
various fields and in this paper we focus on algorithms for gotimng isotonic regressions on large
problems.

An equivalent formulation of 5 isotonic regression seeks an optimal isotonigfiat every point
by solving
minimize ; —
Z v)” (2)
subjectto g; < Uj V(i,j) €T

whereZ denotes a set of isotonic constraints. This paper assuraeg ttontains no redundant
constraints, i.e.(i,7),(j, k) € T = (i,k) ¢ Z. Problem (2) is a quadratic program subject to



simple linear constraints, and, according to a literatexéetw, appears to be largely ignored due to
computational difficulty on large problems. The worst c@¢e*) complexity (a large overstatement
in practice as will be shown) has resulted in overlookingréseilts that follow [5, 6].

The discussion of isotonic regression originally focused® case: € R, where< denoted a com-
plete order [4]. For this case, the well known pooled adjaeitators algorithm (PAVA) efficiently
solves the isotonic regression problem. For the partiaileped case, many different algorithms
have been developed over the years, with most early effontsantrated on generalizations of PAVA
[7, 5]. These algorithms typically have no polynomial coexiy guarantees and are impractical
when data size exceed a few thousand observations. Prolerarf also be treated as a separa-
ble quadratic program subject to simple linear equalityst@ints. Such was done, for example,
in [8], which applies active set methods to solve the problgdhile such algorithms can often be
efficient in practice, the algorithm of [8] gives no complgxguarantees. Related algorithms in [9]
to those described here were applied to problems for scimgghalorder intervals in production sys-
tems and are of complexity(n?) and connections to isotonic regression can be made thrdigh [
Interior point methods are another tool for solving Probldm and have time complexity guaran-
tees ofO(n?) when the number of constraints is on the same order as theenwhiariables (see
[10]). However, the excessive memory requirements of iotqroint methods from solving large
systems of linear equations typically make them impratfmaarge data sizes. Recently, [6] and
[11] gave arD(n?) approximate generalized PAVA algorithm, however solution quality catyde
demonstrated via experimentation. An even better comiylexiO(n log n) can be obtained for the
optimal solution when the isotonic constraints take a spatiucture such as a tree, e.g. [12].

1.1 Contribution

Our novel approach to isotonic regression offers an exdtiso of (1) with a complexity bounded

by O(n*), but acts on the order ¢¥(n?) for practical problems. We demonstrate here that it accom-
modates problems with tens of thousands of observatioesgormore with our decomposition. The
main goal of this paper is to make isotonic regression a regse computational tool for large data
sets, as the assumptions in this framework are very appdigabeal-world applications. Our frame-
work solves quadratic programs withx 10° variables and more thar)” constraints, a problem

of size not solved anywhere in previous isotonic regreshierature, and with the decompaosition
detailed below, even larger problems can be solved.

The paper is organized as follows. Section 2 describes &ipairig algorithm for isotonic re-
gression and proves convergence to the globally optimatisol. Section 3 explains how the sub-
problems (creating a single partition) can be solved effityeand decomposed in order to solve
large-scale problems. Section 4 demonstrates that thigiquairtg algorithm is significantly better

in practice than th&(n*) worst-case complexity. Finally, Section 5 gives numerieaults and
demonstrates favorable predictive performance on largelated data sets and Section 6 concludes
with future directions.

Notation

Theweight of a set of pointsA is defined agj, = ‘—i‘ > ica Yi- A subset/ of A is anupper set
of Aifz eU,y € A, <y=y elU. AsetB C Ais defined as a block od if 5,5 < 7
for each upper sét of A such that/ N B # {}. A general blockA4 is considered a block of the
entire space. For two block$ and B, we denoted < B if 9z € A,y € B such thatt < y and
#z € A,y € B such thaty < z (i.e. there is at least one comparable pair of points thafgahe
direction of isotonicity).A and B are then said to be isotonic blocks (or obey isotonicity).réup
of nodesX majorizes (minorizes) another grouy” if X = Y (X <Y). A groupX is amajorant
(minorant) of X U AwhereA = Uf_| A, if X A A, (X £ A)Vi=1...k.

2 Partitioning Algorithm

We first describe the structure of the claskicisotonic regression problem and continue to detail
the partitioning algorithm. The section concludes by pmgvtonvergence of the algorithm to the
globally optimal isotonic regression solution.



2.1 Structure

Problem (2) is a quadratic program subject to simple lineastraints. The structure of the opti-
mal solution to (2) is well-known. Observations are dividetb & groups where the fits in each
group take the group mean observation value. This can betlsemmgh the equations given by the
following Karush-Kuhn-Tucker (KKT) conditions:

R 1
@ g =i = 5( Z Aij = Z Aji)
j:(i,5)ET j:(4,0) €T
() 9: <9;v(i,j) €T
(€) \ij >0V(i,j) eZ
(d) Nij (9 —9;) =0V(i,j) € T.

This set of conditions exposes the nature of the optimaltissiusince condition (d) implies that
Aij > 0 = 9; = g;. Hence);; can be non-zero only within blocks in the isotonic solutionieh
have the same fitted value. For observations in differerisio\;; = 0. Furthermore, the fit within
each block s trivially seen to be the average of the obsienvain the block, i.e. the fits minimize the
block’s squared loss. Thus, we get the familiar characiéde of the isotonic regression problem
as one of finding a division into isotonic blocks.

2.2 Partitioning

In order to take advantage of the optimal solution’s striestwe propose solving the isotonic re-
gression problem (2) as a sequence of subproblems thaediadjroup of nodes into two groups
at each iteration. An important property of our partitiognagpproach is that nodes separated at one
iteration are never rejoined into the same group in futw®tions. This gives a clear bound on the
total number of iterations in the worst case.

We now describe the partitioning criterion used for eachpsoblem. Suppose a current blopks
optimal and thug)} = w,, Vi € V. From condition (a) of the KKT conditions, we define the net
outflow of agroup as) ., (y; — #:). Finding two groups within/ such that the net outflow from
the higher group is greater than the net outflow from the layveup should be infeasible, according
to the KKT conditions. The partition here looks for two suaglogps. Denote by, the set of all
feasible (i.e. isotonic) cuts through the network definedbges inV. A cutis called isotonic if the
two blocks created by the cut are isotonic. The optimal cdeigrmined as the cut that solves the
problem

max Y (yi —Ty) — > (Ui —Ty) ®3)

ceCy
ievt iEVS
whereV_ (V) is the group on the lower (upper) side of the edges ofccun terms of isotonic
regression, the optimal cut is such that the differenceeérstim of the normalized fitg; — 7,,) at
each node of a group is maximized. If this maximized diffeeeis zero, then the group must be an
optimal block. The optimal cut problem (3) can also be writés the binary program

maximize >, z;(y; — Uy)
subjectto z; < z; V(i,j) €T (4)
z € {-1,+1} VieV.

Well-known results from [13] (due to the fact that the coastt matrix is totally unimodular) say
that the following relaxation to this binary program is opail with 2* on the boundary, and hence
the optimal cut can be determined by solving the linear @oygr

maximize Tz

subjectto z; < z; V(i,j) €T (5)
1<z, <1 VieVy

wherez; = y;, — yy,. This group-wise partitioning operation is the basis for partitioning al-
gorithm which is explicitly given in Algorithm 1. It startsith all observations as one group (i.e.,
V = {1,...,n}), and recursively splits each group optimally by solvinpmwblem (5). At each



iteration, a listC of potential optimal cuts for each group generated thussfanaintained, and the
cut among them with the highest objective value is perfornTée listC is updated with the opti-
mal cuts in both sub-groups generated. Partitioning endseser the solution to (5) is trivial (i.e.,
no split is found because the group is a block). As proven,ribig algorithm terminates with the
optimal global (isotonic) solution to the isotonic regiiessproblem (2).

Algorithm 1 Paritioning Algorithm

Require: Observationgy, ..., y, and partial order.

Require: V= {{1,...,n}},C={(0,{1,....n},{H}, W= {}.
1: while V # {} do

2. Let(val,w™,w") € C be the potential cut with largest!.
3 Updatey = (V\ (w~ UwT))U{w ,wt},C=C\ (val,w ,w").
4: forall ve{w ,wt}do
5: Setz; = y; — Y, Vi € v wherey,, is the mean of observationsin
6: Solve LP (5) with input: and get:*.
7 if 27 =...=a (group is optimally divided}hen
8: Updatey =V \ v andW = W Uw.
9: else
10: Letv™ ={i:af = —1},0" = {i:af = +1}.
11: UpdateC = CU {(zTz*, v, vT)}
12: end if
13:  end for
14: end while

15: return W the optimal groups

2.3 Convergence

Theorem 1 next states the main result that allows for a noetg@grtitioning algorithm for isotonic
regression. This will lead to our convergence result. Wemssthat group’ is isotonic (i.e. has no
holes) and is the union of optimal blocks.

Theorem 1 Assume a group V isa union of blocks from the optimal solution to problem (2). Then
a cut made by solving (5) does not cut through any block in the global optimal solution.

Proof. The following is a brief sketch of the proof idea: L&t be the union of<” optimal blocks in

V that get broken by the cut. Defidé; (M) to be a minorant (majorant) block it. For each\/;,
defineM (MY) as the groups if/;, below (above) the algorithm cut. Using the definitions of how
the algorithm makes partitions, the following two consetpes can be proven: (), < ¥,,,. by
optimality (i.e. according to KKT conditions) and isotoitycand (2)7,,, > 7y, andy,,,. < .-
This is proven by showing thaleU > 7y, because otherwise the block would be on the
lower side of the cut, resulting if/; being on the lower side of the cut, and thug, > 7,, since
Ynmr > Yuy by the optimality assumption on blodk; (with symmetric arguments fa¥/ ). This
leads to the contradiction, < 7,;, < ¥, < ¥y, and henceVl must be empty.m

Since Algorithm 1 starts with’ = {1,...,n} which is a union of (all) optimal blocks, we can
conclude from this theorem that partitions never cut annogitiblock. The following corollary is
then a direct consequence of repeatedly applying TheorenAlgorithm 1:

Corollary 2 Algorithm 1 convergesto the global optimal solution of (2) with no regret (i.e. without
having to rejoin observationsthat are divided at a previousiteration).

3 Efficient solutions of the subproblems

Linear program (5) has a special structure that can be tatteantage of in order to solve larger
problems faster. We first show why these problems can bedé&dgter than typical linear programs,
followed by a novel decomposition of the structure thatwigroblems of extremely large size to
be solved efficiently.



3.1 Network flow problems

The dual to Problem (2) is a network flow problem with quadratdjective. The network flow
constraints are identical to those in (6) below, but the aije is i S, (s? +t2), which, to the
author’s knowledge, currently still precludes this dualnfr being efficiently solved with special
network algorithms.

While this structure does not help solve directly the quiitl@ogram, the network structure allows
the linear program for the subproblems to be solved veryieffity. The dual program to (5) is

minimize Z (si +t;)
=%

subject to Z Aij — Z Nji—si+ti=2 YieV (6)
J:(1,5)€ET §:(j,0)eT
As,t >0

where agairx; = y; — 3y,. Linear program (6) is a network flow problem wifhi| + 2 nodes and
|Z] 4 2|V arcs. Variables denotes links directed from a source node into each othez,neldile

t denotes links connecting each node into a sink node. Theonlefilow problem here minimizes
the total sum of flow over links from the source and into thé siith the goal to leave; units of
flow at each nodé € V. Note that this is very similar to the network flow problemweal in [14]
wherez; there represents the classification performance on hd®gecialized simplex methods for
such network flow problems are typically much faster ([15¢@ments an average speedup factor
of 10 to 100 over standard simplex solvers) due to severabreasuch as simpler operations on
network data structures rather than maintaining and ojpgran the simplex tableau (see [16] for
an overview of network simplex methods).

3.2 Large-scale decompositions

In addition to having a very efficient method for solving thetwork flow problem, further enhance-
ments can be made on extremely large problems of similactsireithat might suffer from memory
problems. It is already assumed that no redundant arcsiexgsti.e. (i, j), (j,k) € Z = (i, k) &
7). One simple reduction involves eliminating negative ({fies) nodes, i.e. nodes with; < 0

(z; > 0) where wherez; = y; — 7y, that are bounded only from above (below). It is trivial to
observe that these nodes will be be equatto(+1) in the optimal solution and that eliminating
them does not affect solving (5) without them. However, iagbice, this trivial reduction has a
computationally minimal affect on large data sets. Thedactons were also discussed in [14].

We next consider a novel reduction for the primal linear paog (5). The main idea is that it can
be solved through a sequence of smaller linear programsetiate the total size of the full linear
program on each iteration. Consider a minorant group of 8gdeC V and the subset of arcs
Z7 C 7 connecting them. Solving problem (5) on this reduced netwdth the original inputz
divides the nodes iy into a lower and upper group, denotgd and.7;;. Nodes in7; are not
bounded from above and will be in the lower group of the fublgem solved orV. In addition,
the same problem solved on the remaining nodas in7;, will give the optimal solutions to these
nodes. This is formalized in Proposition 3.

Proposition 3 Let 7 C V be a minorant group of nodesin V. Let w* and x* be optimal solutions
to Problem (5) on thereduced set ;7 and full set V of nodes, respectively. If w} = —1,thenz} = —1
Vi € J. The optimal solution for the remaining nodes (V' \ 7) can be found by solving (5) over only
those nodes. The same claims can be made when 7 C V isa majorant group of nodesin ¥V where
instead w; = +1=a; =+1Vie J.

Proof. DenoteWV the set of nodes such that = —1 andW = V \ W. Clearly, the solution to
Problem (5) over nodes WV has the solution with all variables equal+d. Problem (5) can be
written in the following form with separable objective:

maximize Zzixi—i— Z ZiT;

iEW i€eV\W
subjectto z; < z; V(i,j)eT,i,jeW )
x; < j V(i,j) €Z,i €V, €V\W



Start with an initial solutionz; = 1 Vi € V. Variables in)V can be optimized over first and by
assumption have the optimal value with all variables equalt. Optimization over variables in

is not bounded from below by variables)iti since those variables are all at the lower bound. Hence
the optimal solution to variables W is given by optimizing over only these variables. The result
for minorant groups follows. The final claim is easily arguedhe same way as for the minorant
groups. m

Given Proposition 3, Algorithm 2, which iteratively solvgs, can be stated. The subtrees are built
as follows. First, an upper triangular adjacency mattigan be constructed to represé&ntwhere
Cyi; = 1if 2; < z; is an isotonic constraint and;; = 0 otherwise. A minorant (majorant) subtree
with k& nodes is then constructed as the upper left (lower right)k sub-matrix of C.

Algorithm 2 Iterative algorithm for linear program (5)

Require: Observationg, ..., y, and partial order.
Require: M AXSIZFE of problem to be solved by general LP solver
Require: V={1,...,n},L=U={}.

1: while |V| > MAXSIZE do

ELIMINATE A MINORANT SET OF NODES:

Build a minorant subtre& .

Solve linear program (5) oft and get solutiorj € {—1, +1}/71,
L=LU{veT: g,=-1},V=V\{veT:g,=-1}
ELIMINATE A MAJORANT SET OF NODES:

Build majorant subtre& .

Solve linear program (5) oft and get solutiory € {—1, +1}/71,
D U=UU{wET g, =411V =V \{veT:j,=+1}.
10: end while
11: Solve linear program (5) od and get solutiory € {—1, +1}/VI.
12: L=LU{weT :g,=-1} U=UU{veT: g, =+1}.

©ONOIOAWN

The computational bottleneck of Algorithm 2 is solving lamgrogram (5), which is done efficiently
by solving the dual network flow problem (6). This shows tlifat)e first network flow problem is
too large to solve, it can be solved by a sequence of smalternle flow problems as illustrated
in Figure 1. Lemma 4 below proves that this reduction optiynsblves the full problem (5). In
the worst case, many network flow problems will be solvedluth# original full-size network
flow problem is solved. However, in practice on large proldethis artifact is never observed.
Computational performance of this reduction is demorstrat Section 5.

Lemma 4 Algorithm 2 optimally solves Problem (5).

Proof. The result follows from repeated application of Propositioover the set of nodasthat has
not yet been optimally solved form

4 Complexity of the partitioning algorithm

Linear program (5) can be solved @n(n?) using interior point methods. Given that the algorithm
performs at most iterations, the worst case complexity of Algorithm 1(%n*). However, the
practical complexity of IRP is significantly better than twerst case. Each iteration of LP (5)
solves smaller problems. Consider the case of balancetligartg at each iteration until there
aren final blocks. In this case, we can represent the partitiopity as a binary tree wittogn
levels, and at each levél LP (5) is solved” times on instances of siz& which leads to a total
complexity of

logn logn log n+1
n 1 1—.25%%
2k N3 = 3 Ve — 3
> ) = () =)

subject to additional constants. Foe> 10, the summation is approximately 1.33, and hence in this
case the partitioning algorithm has complexi®y1.33n3) (considering the complexity of interior
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Figure 1: lllustration of LP (5) decomposition. Data here is 2 dimensi with only 1000 nodes in order to
leave a clear picture. First 7 iterations and the final iteral6 of the decomposition are shown from left to
right and top to bottom. The remaining nodes (blue circlesjiéntify ast+1 decreases through the iterations.
LP (5) solved on the entire set of nodes in the first picture betpo large for memory. Hence subproblems are
solved on the lower left (red dots) and upper right (grees)doft the networks and some nodes are fixed from
the solution of these subproblems. This is repeated umtihtimber of unidentified nodes in the last iteration
is of small enough size for memory. Note that at each itendtie three groups obey isotonicity.

point methods for partitioning). More generally, jgnd1 — p be the percentages on each split.
Table 1 displays the constantsepresenting the complexity from(cn?) over varyingp andn. As
demonstrated, the problem size rapidly decreases and mhglexity is in practiceO(n?).

n=100 | n=1000 | n=10000
p=0.55| 1.3%° | 1.3%° 1.35°
p=0.65| 1.462° | 1.467° 1.4%7°
p=0.75| 1.7m° | 1.7&3 1.78°
p=0.85| 2.56:° | 2.6In° 2.61n°
p=0.95| 6.41n> | 6.94° 7.01n°

Table 1: Complexity: Groups are split with ratipat each iteration. Complexity in practice@¥n®).

5 Numerical experiments

We here demonstrate that exact isotonic regression is ciatigually tractable for very large prob-
lems, and compare against the time it takes to get an appabxim We first show the computational
performance of isotonic regression on simulated data sefsrge a2 x 10° training points with
more tharl07 constraints. We then show the favorable predictive peréme of isotonic regression
on large simulated data sets.

5.1 Large-Scale Computations

Figure 2 demonstrates that the partitioning algorithm wliétompositions of the partitioning step
can solve very large isotonic regressions. Three dimenbitata is simulated fro¥ (0, 2) and the
responses are created as linear functions plus noise. T&®fbthe training sets varies frohd*

to 2 x 10° points. The left figure shows that the partitioning algaritfinds the globally optimal
isotonic regression solution in not much more time thankiesato find an approximation as done
in [6] for very large problems. Although the worst-case ctenjty of our exact algorithm is much
worse, the two algorithms scale comparably in practice.

Figure 2 (right) shows how the number of partitions (leftsincreases as the number of training
points increases. It is not clear why the approximation inhf#s less partitions as the size of the
problem grows. More partitions (left axis) require solvimgpre network flow problems, however,

as discussed, they reduce in size very quickly over thetjmanitig path, resulting in the practical

complexity seen in the figure on the left. The bold black lilahows the number of constraints
(right axis) which goes up to more thaf” constraints.



Time vs # Training Points
450 7000

# Partitions vs # Training Points

—&— IRP
—4— GPAV

S

© Tpx
S

6000

@
<)
1S}
3
@

o~

4000

@
&
1)
3

o

RN

oy

N
I}
1S)
S}

Number Partitions
Number Constraints

1000 A LR

e 4
oL o NP g . . 0 . . .
o 05 1 15 2 0 05 1 15

Number Training Points ~ ** Number Training Points

~ TR
S TN w &

x10°

Figure 2: IRP performance on large-scale simulations. RataR® hasz; ~ U/(0, 2). Responses are linear

functions plus noise. Number of training points varies fropd to 2 x 10°. Results shown are averages of 5
simulations with dotted lines at one standard deviation. Time (seconds) versus numberipirtgapoints is

on the left. On the right, the number of partitions is illas&d using the left axis and the bold black line shows
the average number of constraints per test using the right ax

5.2 Predictive Performance

Here we show that isotonic regression is a useful tool wherd#ia fits the monotonic framework.
Data is simulated as above and responses are construatee-dd,; «; + N(0,.5) wherep varies
from 2 to 6. The training set varies from 500 to 5000 to 5000@{s@nd the test size is fixed at 5000.
Results are averaged over 10 trials and 95% confidence ahteave given. A comparison is made
between isotonic regression and linear least squaressggne With only 500 training points, the
model is poorly fitted and a simple linear regression perfommuch better. 5000 training points is
sufficient to fit the model well with up to 4 dimensions, aftdrieh linear regression outperforms the
isotonic regression, and 50000 training points fits the rha@d up with up to 5 dimensions. Two
trends are observed. Larger training sets allow better faadde fit which improves performance
while higher dimensions increase overfitting which, in fudecreases performance.

Dim IRP MSE LS MSE IRP MSE LS MSE IRP MSE LS MSE
n=500 n=500 n=5000 n=5000 n=50000 n=50000
2 0.69+0.01 | 0.37£0.00 | 0.27+0.00 | 0.36£ 0.00 | 0.25+ 0.00 | 0.36=+ 0.00
3 0.76+0.03 | 0.65+0.01 | 0.31+£0.00 | 0.61£0.01 | 0.26+ 0.00 | 0.62+ 0.00
4 1.45+0.08 | 1.08+0.01 | 0.61+0.02 | 1.08+ 0.02 | 0.34+ 0.01 | 1.06+ 0.03
5 461+ 0.65 | 1.76+0.02 | 2.61+0.16 | 1.88+0.04 | 0.93+ 0.04 | 1.86+ 0.05
6 12.89+1.30 | 3.06+-0.04 | 8.41+1.36 | 2.84+0.07 | 3.37+0.06 | 2.83+0.12

Table 2: Statistics for simulation generated wigh= [, z; + N (0, .5%). A comparison between the results of
IRP and aleast squares linear regression is shown. Boldmigtrates statistical significance at 95% confidence.

6 Conclusion

This paper demonstrates that isotonic regression can daiselve extremely large problems. Fast
approximations are useful, however, as shown, globallimatsolutions are also computationally
tractable. Indeed, isotonic regression as done here pesfaith a complexity of)(n?) in practice.
As also shown, isotonic regression performs well at reasierdimensions, but suffers from over-
fitting as the dimension of the data increases. Extensiotti®algorithm will analyze the path of
partitions in order to control overfitting by stopping thgalithm early. Statistical complexity of
the models generated by partitioning will be examined. lmnore, similar results will be made
for isotonic regression with different loss functions.
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