
Decomposing Isotonic Regression for Efficiently
Solving Large Problems

Ronny Luss
Dept. of Statistics and OR

Tel Aviv University
ronnyluss@gmail.com

Saharon Rosset
Dept. of Statistics and OR

Tel Aviv University
saharon@post.tau.ac.il

Moni Shahar
Dept. of Electrical Eng.

Tel Aviv University
moni@eng.tau.ac.il

Abstract

A new algorithm for isotonic regression is presented based on recursively par-
titioning the solution space. We develop efficient methods for each partitioning
subproblem through an equivalent representation as a network flow problem, and
prove that this sequence of partitions converges to the global solution. These net-
work flow problems can further be decomposed in order to solvevery large prob-
lems. Success of isotonic regression in prediction and our algorithm’s favorable
computational properties are demonstrated through simulated examples as large
as2 × 105 variables and107 constraints.

1 Introduction

Assume we have a set ofn data observations(x1, y1), ..., (xn, yn), wherex ∈ X (usuallyX =Rp)
is a vector of covariates or independent variables,y ∈ R is the response, and we wish to fit a
modelf̂ : X → R to describe the dependence ofy on x, i.e., y ≈ f̂(x). Isotonic regression is a
non-parametric modeling approach which only restricts thefitted model to being monotone in all
independent variables [1]. DefineG as the family of isotonic functions, that is,g ∈ G satisfies

x1 � x2 ⇒ g(x1) ≤ g(x2),

where the partial order� here will usually be the standard Euclidean one, i.e.,x1 � x2 if x1j ≤ x2j

∀j. Given these definitions, isotonic regression solves

f̂ = argmin
g∈G

‖y − g(x)‖2. (1)

As many authors have noted, the optimal solution to this problem comprises a partitioning of the
spaceX into regions obeying a monotonicity property with a constant fitted to f̂ in each region.

It is clear that isotonic regression is a very attractive model for situations where monotonicity is a
reasonable assumption, but other common assumptions like linearity or additivity are not. Indeed,
this formulation has found useful applications in biology [2], medicine [3], statistics [1] and psy-
chology [4], among others. Practicality of isotonic regression has already been demonstrated in
various fields and in this paper we focus on algorithms for computing isotonic regressions on large
problems.

An equivalent formulation ofL2 isotonic regression seeks an optimal isotonic fitŷi at every point
by solving

minimize
n∑

i=1

(ŷi − yi)
2

subject to ŷi ≤ ŷj ∀(i, j) ∈ I

(2)

whereI denotes a set of isotonic constraints. This paper assumes that I contains no redundant
constraints, i.e.(i, j), (j, k) ∈ I ⇒ (i, k) 6∈ I. Problem (2) is a quadratic program subject to

1

simple linear constraints, and, according to a literature review, appears to be largely ignored due to
computational difficulty on large problems. The worst caseO(n4) complexity (a large overstatement
in practice as will be shown) has resulted in overlooking theresults that follow [5, 6].

The discussion of isotonic regression originally focused on the casex ∈ R, where� denoted a com-
plete order [4]. For this case, the well known pooled adjacent violators algorithm (PAVA) efficiently
solves the isotonic regression problem. For the partially ordered case, many different algorithms
have been developed over the years, with most early efforts concentrated on generalizations of PAVA
[7, 5]. These algorithms typically have no polynomial complexity guarantees and are impractical
when data size exceed a few thousand observations. Problem (1) can also be treated as a separa-
ble quadratic program subject to simple linear equality constraints. Such was done, for example,
in [8], which applies active set methods to solve the problem. While such algorithms can often be
efficient in practice, the algorithm of [8] gives no complexity guarantees. Related algorithms in [9]
to those described here were applied to problems for scheduling reorder intervals in production sys-
tems and are of complexityO(n4) and connections to isotonic regression can be made through [1].
Interior point methods are another tool for solving Problem(1), and have time complexity guaran-
tees ofO(n3) when the number of constraints is on the same order as the number of variables (see
[10]). However, the excessive memory requirements of interior point methods from solving large
systems of linear equations typically make them impractical for large data sizes. Recently, [6] and
[11] gave anO(n2) approximate generalized PAVA algorithm, however solution quality can only be
demonstrated via experimentation. An even better complexity of O(n log n) can be obtained for the
optimal solution when the isotonic constraints take a special structure such as a tree, e.g. [12].

1.1 Contribution

Our novel approach to isotonic regression offers an exact solution of (1) with a complexity bounded
by O(n4), but acts on the order ofO(n3) for practical problems. We demonstrate here that it accom-
modates problems with tens of thousands of observations, oreven more with our decomposition. The
main goal of this paper is to make isotonic regression a reasonable computational tool for large data
sets, as the assumptions in this framework are very applicable in real-world applications. Our frame-
work solves quadratic programs with2 × 105 variables and more than107 constraints, a problem
of size not solved anywhere in previous isotonic regressionliterature, and with the decomposition
detailed below, even larger problems can be solved.

The paper is organized as follows. Section 2 describes a partitioning algorithm for isotonic re-
gression and proves convergence to the globally optimal solution. Section 3 explains how the sub-
problems (creating a single partition) can be solved efficiently and decomposed in order to solve
large-scale problems. Section 4 demonstrates that the partitioning algorithm is significantly better
in practice than theO(n4) worst-case complexity. Finally, Section 5 gives numericalresults and
demonstrates favorable predictive performance on large simulated data sets and Section 6 concludes
with future directions.

Notation
Theweight of a set of pointsA is defined asyA = 1

|A|

∑
i∈A yi. A subsetU of A is anupper set

of A if x ∈ U , y ∈ A, x ≺ y ⇒ y ∈ U . A setB ⊆ A is defined as a block ofA if yU∩B ≤ yB

for each upper setU of A such thatU ∩ B 6= {}. A general blockA is considered a block of the
entire space. For two blocksA andB, we denoteA � B if ∃x ∈ A, y ∈ B such thatx � y and
∄x ∈ A, y ∈ B such thaty � x (i.e. there is at least one comparable pair of points that satisfy the
direction of isotonicity).A andB are then said to be isotonic blocks (or obey isotonicity). A group
of nodesX majorizes (minorizes) another groupY if X � Y (X � Y). A groupX is amajorant
(minorant) of X ∪ A whereA = ∪k

i=1Ai if X 6� Ai (X 6� Ai) ∀i = 1 . . . k.

2 Partitioning Algorithm

We first describe the structure of the classicL2 isotonic regression problem and continue to detail
the partitioning algorithm. The section concludes by proving convergence of the algorithm to the
globally optimal isotonic regression solution.

2

2.1 Structure

Problem (2) is a quadratic program subject to simple linear constraints. The structure of the opti-
mal solution to (2) is well-known. Observations are dividedinto k groups where the fits in each
group take the group mean observation value. This can be seenthrough the equations given by the
following Karush-Kuhn-Tucker (KKT) conditions:

(a) ŷi = yi −
1

2
(

∑

j:(i,j)∈I

λij −
∑

j:(j,i)∈I

λji)

(b) ŷi ≤ ŷj ∀(i, j) ∈ I

(c) λij ≥ 0 ∀(i, j) ∈ I

(d) λij(ŷi − ŷj) = 0 ∀(i, j) ∈ I.

This set of conditions exposes the nature of the optimal solution, since condition (d) implies that
λij > 0 ⇒ ŷi = ŷj . Henceλij can be non-zero only within blocks in the isotonic solution which
have the same fitted value. For observations in different blocks,λij = 0. Furthermore, the fit within
each block is trivially seen to be the average of the observations in the block, i.e. the fits minimize the
block’s squared loss. Thus, we get the familiar characterization of the isotonic regression problem
as one of finding a division into isotonic blocks.

2.2 Partitioning

In order to take advantage of the optimal solution’s structure, we propose solving the isotonic re-
gression problem (2) as a sequence of subproblems that divides a group of nodes into two groups
at each iteration. An important property of our partitioning approach is that nodes separated at one
iteration are never rejoined into the same group in future iterations. This gives a clear bound on the
total number of iterations in the worst case.

We now describe the partitioning criterion used for each subproblem. Suppose a current blockV is
optimal and thuŝy∗

i = yV ∀i ∈ V . From condition (a) of the KKT conditions, we define the net
outflow of a groupV as

∑
i∈V (yi − ŷi). Finding two groups withinV such that the net outflow from

the higher group is greater than the net outflow from the lowergroup should be infeasible, according
to the KKT conditions. The partition here looks for two such groups. Denote byCV the set of all
feasible (i.e. isotonic) cuts through the network defined bynodes inV . A cut is called isotonic if the
two blocks created by the cut are isotonic. The optimal cut isdetermined as the cut that solves the
problem

max
c∈CV

∑

i∈V+
c

(yi − yV) −
∑

i∈V−
c

(yi − yV) (3)

whereV−
c (V+

c) is the group on the lower (upper) side of the edges of cutc. In terms of isotonic
regression, the optimal cut is such that the difference in the sum of the normalized fits(yi − yV) at
each node of a group is maximized. If this maximized difference is zero, then the group must be an
optimal block. The optimal cut problem (3) can also be written as the binary program

maximize
∑

i xi(yi − yV)
subject to xi ≤ xj ∀(i, j) ∈ I

xi ∈ {−1, +1} ∀i ∈ V .
(4)

Well-known results from [13] (due to the fact that the constraint matrix is totally unimodular) say
that the following relaxation to this binary program is optimal with x∗ on the boundary, and hence
the optimal cut can be determined by solving the linear program

maximize zT x
subject to xi ≤ xj ∀(i, j) ∈ I

−1 ≤ xi ≤ 1 ∀i ∈ V
(5)

wherezi = yi − yV . This group-wise partitioning operation is the basis for our partitioning al-
gorithm which is explicitly given in Algorithm 1. It starts with all observations as one group (i.e.,
V = {1, . . . , n}), and recursively splits each group optimally by solving subproblem (5). At each

3

iteration, a listC of potential optimal cuts for each group generated thus far is maintained, and the
cut among them with the highest objective value is performed. The listC is updated with the opti-
mal cuts in both sub-groups generated. Partitioning ends whenever the solution to (5) is trivial (i.e.,
no split is found because the group is a block). As proven next, this algorithm terminates with the
optimal global (isotonic) solution to the isotonic regression problem (2).

Algorithm 1 Paritioning Algorithm
Require: Observationsy1, . . . , yn and partial orderI.
Require: V = {{1, . . . , n}}, C = {(0, {1, . . . , n}, {})},W = {}.
1: while V 6= {} do
2: Let (val, w−, w+) ∈ C be the potential cut with largestval.
3: UpdateV = (V \ (w− ∪ w+)) ∪ {w−, w+}, C = C \ (val, w−, w+) .
4: for all v ∈ {w−, w+} do
5: Setzi = yi − yv ∀i ∈ v whereyv is the mean of observations inv.
6: Solve LP (5) with inputz and getx∗.
7: if x∗

1 = . . . = x∗
n (group is optimally divided)then

8: UpdateV = V \ v andW = W ∪ v.
9: else

10: Let v− = {i : x∗
i = −1}, v+ = {i : x∗

i = +1}.
11: UpdateC = C ∪ {(zT x∗, v−, v+)}
12: end if
13: end for
14: end while
15: return W the optimal groups

2.3 Convergence

Theorem 1 next states the main result that allows for a no-regret partitioning algorithm for isotonic
regression. This will lead to our convergence result. We assume that groupV is isotonic (i.e. has no
holes) and is the union of optimal blocks.

Theorem 1 Assume a group V is a union of blocks from the optimal solution to problem (2). Then
a cut made by solving (5) does not cut through any block in the global optimal solution.

Proof. The following is a brief sketch of the proof idea: LetM be the union ofK optimal blocks in
V that get broken by the cut. DefineM1 (MK) to be a minorant (majorant) block inM. For eachMk

defineML
k (MU

k) as the groups inMk below (above) the algorithm cut. Using the definitions of how
the algorithm makes partitions, the following two consequences can be proven: (1)yM1

< yMK
by

optimality (i.e. according to KKT conditions) and isotonicity and (2)yM1
> yV andyMK

< yV .
This is proven by showing thatyMU

1
> yV , because otherwise theMU

1 block would be on the
lower side of the cut, resulting inM1 being on the lower side of the cut, and thusyM1

> yV since
yML

1
> yMU

1
by the optimality assumption on blockM1 (with symmetric arguments forMK). This

leads to the contradictionyV < yM1
< yMK

< yV , and henceM must be empty.

Since Algorithm 1 starts withV = {1, ..., n} which is a union of (all) optimal blocks, we can
conclude from this theorem that partitions never cut an optimal block. The following corollary is
then a direct consequence of repeatedly applying Theorem 1 in Algorithm 1:

Corollary 2 Algorithm 1 converges to the global optimal solution of (2) with no regret (i.e. without
having to rejoin observations that are divided at a previous iteration).

3 Efficient solutions of the subproblems

Linear program (5) has a special structure that can be taken advantage of in order to solve larger
problems faster. We first show why these problems can be solved faster than typical linear programs,
followed by a novel decomposition of the structure that allows problems of extremely large size to
be solved efficiently.

4

3.1 Network flow problems

The dual to Problem (2) is a network flow problem with quadratic objective. The network flow
constraints are identical to those in (6) below, but the objective is 1

4

∑n
i=1 (s2

i + t2i), which, to the
author’s knowledge, currently still precludes this dual from being efficiently solved with special
network algorithms.

While this structure does not help solve directly the quadratic program, the network structure allows
the linear program for the subproblems to be solved very efficiently. The dual program to (5) is

minimize
∑

i∈V

(si + ti)

subject to
∑

j:(i,j)∈I

λij −
∑

j:(j,i)∈I

λji − si + ti = zi ∀i ∈ V

λ, s, t ≥ 0

(6)

where againzi = yi − yV . Linear program (6) is a network flow problem with|V| + 2 nodes and
|I| + 2|V| arcs. Variables denotes links directed from a source node into each other node, while
t denotes links connecting each node into a sink node. The network flow problem here minimizes
the total sum of flow over links from the source and into the sink with the goal to leavezi units of
flow at each nodei ∈ V . Note that this is very similar to the network flow problem solved in [14]
wherezi there represents the classification performance on nodei. Specialized simplex methods for
such network flow problems are typically much faster ([15] documents an average speedup factor
of 10 to 100 over standard simplex solvers) due to several reasons such as simpler operations on
network data structures rather than maintaining and operating on the simplex tableau (see [16] for
an overview of network simplex methods).

3.2 Large-scale decompositions

In addition to having a very efficient method for solving thisnetwork flow problem, further enhance-
ments can be made on extremely large problems of similar structure that might suffer from memory
problems. It is already assumed that no redundant arcs existin I (i.e. (i, j), (j, k) ∈ I ⇒ (i, k) 6∈
I). One simple reduction involves eliminating negative (positive) nodes, i.e. nodes withzi < 0
(zi ≥ 0) where wherezi = yi − yV , that are bounded only from above (below). It is trivial to
observe that these nodes will be be equal to−1 (+1) in the optimal solution and that eliminating
them does not affect solving (5) without them. However, in practice, this trivial reduction has a
computationally minimal affect on large data sets. These reductions were also discussed in [14].

We next consider a novel reduction for the primal linear program (5). The main idea is that it can
be solved through a sequence of smaller linear programs thatreduce the total size of the full linear
program on each iteration. Consider a minorant group of nodes J ⊆ V and the subset of arcs
IJ ⊆ I connecting them. Solving problem (5) on this reduced network with the original inputz
divides the nodes inJ into a lower and upper group, denotedJL andJU . Nodes inJL are not
bounded from above and will be in the lower group of the full problem solved onV . In addition,
the same problem solved on the remaining nodes inV \ JL will give the optimal solutions to these
nodes. This is formalized in Proposition 3.

Proposition 3 Let J ⊆ V be a minorant group of nodes in V . Let w∗ and x∗ be optimal solutions
to Problem (5) on the reduced set J and full set V of nodes, respectively. If w∗

i = −1, then x∗
i = −1

∀i ∈ J . The optimal solution for the remaining nodes (V \J) can be found by solving (5) over only
those nodes. The same claims can be made when J ⊆ V is a majorant group of nodes in V where
instead w∗

i = +1 ⇒ x∗
i = +1 ∀i ∈ J .

Proof. DenoteW the set of nodes such thatw∗
i = −1 andŴ = V \ W . Clearly, the solution to

Problem (5) over nodes inW has the solution with all variables equal to−1. Problem (5) can be
written in the following form with separable objective:

maximize
∑

i∈W

zixi +
∑

i∈V\W

zixi

subject to xi ≤ xj ∀(i, j) ∈ I, i, j ∈ W
xi ≤ xj ∀(i, j) ∈ I, i ∈ V , j ∈ V \W
−1 ≤ xi ≤ 1 ∀i ∈ V

(7)

5

Start with an initial solutionxi = 1 ∀i ∈ V . Variables inW can be optimized over first and by
assumption have the optimal value with all variables equal to−1. Optimization over variables in̂W
is not bounded from below by variables inW since those variables are all at the lower bound. Hence
the optimal solution to variables in̂W is given by optimizing over only these variables. The result
for minorant groups follows. The final claim is easily arguedin the same way as for the minorant
groups.

Given Proposition 3, Algorithm 2, which iteratively solves(5), can be stated. The subtrees are built
as follows. First, an upper triangular adjacency matrixC can be constructed to representI, where
Cij = 1 if xi ≤ xj is an isotonic constraint andCij = 0 otherwise. A minorant (majorant) subtree
with k nodes is then constructed as the upper left (lower right)k × k sub-matrix of C.

Algorithm 2 Iterative algorithm for linear program (5)
Require: Observationsy1, . . . , yn and partial orderI.
Require: MAXSIZE of problem to be solved by general LP solver
Require: V = {1, . . . , n},L = U = {}.
1: while |V| ≥ MAXSIZE do
2: ELIMINATE A MINORANT SET OF NODES:
3: Build a minorant subtreeT .
4: Solve linear program (5) onT and get solution̂y ∈ {−1, +1}|T |.
5: L = L ∪ {v ∈ T : ŷv = −1},V = V \ {v ∈ T : ŷv = −1}.
6: ELIMINATE A MAJORANT SET OF NODES:
7: Build majorant subtreeT .
8: Solve linear program (5) onT and get solution̂y ∈ {−1, +1}|T |.
9: U = U ∪ {v ∈ T : ŷv = +1},V = V \ {v ∈ T : ŷv = +1}.

10: end while
11: Solve linear program (5) onV and get solution̂y ∈ {−1, +1}|V|.
12: L = L ∪ {v ∈ T : ŷv = −1},U = U ∪ {v ∈ T : ŷv = +1}.

The computational bottleneck of Algorithm 2 is solving linear program (5), which is done efficiently
by solving the dual network flow problem (6). This shows that,if the first network flow problem is
too large to solve, it can be solved by a sequence of smaller network flow problems as illustrated
in Figure 1. Lemma 4 below proves that this reduction optimally solves the full problem (5). In
the worst case, many network flow problems will be solved until the original full-size network
flow problem is solved. However, in practice on large problems, this artifact is never observed.
Computational performance of this reduction is demonstrated in Section 5.

Lemma 4 Algorithm 2 optimally solves Problem (5).

Proof. The result follows from repeated application of Proposition 3 over the set of nodesV that has
not yet been optimally solved for.

4 Complexity of the partitioning algorithm

Linear program (5) can be solved inO(n3) using interior point methods. Given that the algorithm
performs at mostn iterations, the worst case complexity of Algorithm 1 isO(n4). However, the
practical complexity of IRP is significantly better than theworst case. Each iteration of LP (5)
solves smaller problems. Consider the case of balanced partitioning at each iteration until there
aren final blocks. In this case, we can represent the partitioningpath as a binary tree withlog n
levels, and at each levelk, LP (5) is solved2k times on instances of sizen

2k which leads to a total
complexity of

log n∑

k=0

2k(
n

2k
)3 = n3(

log n∑

k=0

(
1

4
)k) = n3(

1 − .25log n+1

.75
),

subject to additional constants. Forn ≥ 10, the summation is approximately 1.33, and hence in this
case the partitioning algorithm has complexityO(1.33n3) (considering the complexity of interior

6

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Illustration of LP (5) decomposition. Data here is 2 dimensional with only 1000 nodes in order to
leave a clear picture. First 7 iterations and the final iteration 16 of the decomposition are shown from left to
right and top to bottom. The remaining nodes (blue circles) to identify as±1 decreases through the iterations.
LP (5) solved on the entire set of nodes in the first picture maybe too large for memory. Hence subproblems are
solved on the lower left (red dots) and upper right (green dots) of the networks and some nodes are fixed from
the solution of these subproblems. This is repeated until the number of unidentified nodes in the last iteration
is of small enough size for memory. Note that at each iteration the three groups obey isotonicity.

point methods for partitioning). More generally, letp and1 − p be the percentages on each split.
Table 1 displays the constantsc representing the complexity fromO(cn3) over varyingp andn. As
demonstrated, the problem size rapidly decreases and the complexity is in practiceO(n3).

n=100 n=1000 n=10000
p=0.55 1.35n3 1.35n3 1.35n3

p=0.65 1.46n3 1.46n3 1.47n3

p=0.75 1.77n3 1.78n3 1.78n3

p=0.85 2.56n3 2.61n3 2.61n3

p=0.95 6.41n3 6.94n3 7.01n3

Table 1: Complexity: Groups are split with ratiop at each iteration. Complexity in practice isO(n3).

5 Numerical experiments

We here demonstrate that exact isotonic regression is computationally tractable for very large prob-
lems, and compare against the time it takes to get an approximation. We first show the computational
performance of isotonic regression on simulated data sets as large as2 × 105 training points with
more than107 constraints. We then show the favorable predictive performance of isotonic regression
on large simulated data sets.

5.1 Large-Scale Computations

Figure 2 demonstrates that the partitioning algorithm withdecompositions of the partitioning step
can solve very large isotonic regressions. Three dimensional data is simulated fromU(0, 2) and the
responses are created as linear functions plus noise. The size of the training sets varies from104

to 2 × 105 points. The left figure shows that the partitioning algorithm finds the globally optimal
isotonic regression solution in not much more time than it takes to find an approximation as done
in [6] for very large problems. Although the worst-case complexity of our exact algorithm is much
worse, the two algorithms scale comparably in practice.

Figure 2 (right) shows how the number of partitions (left axis) increases as the number of training
points increases. It is not clear why the approximation in [6] has less partitions as the size of the
problem grows. More partitions (left axis) require solvingmore network flow problems, however,
as discussed, they reduce in size very quickly over the partitioning path, resulting in the practical
complexity seen in the figure on the left. The bold black line also shows the number of constraints
(right axis) which goes up to more than107 constraints.

7

0 0.5 1 1.5 2

x 10
5

0

50

100

150

200

250

300

350

400

450

IRP
GPAV

Time vs # Training Points

T
im

e
(s

ec
on

ds
)

Number Training Points
0 0.5 1 1.5 2

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

IRP
GPAV

0 0.5 1 1.5 2

x 10
5

0

1

2

3

4

5

6

7

8

9

10
x 10

6# Partitions vs # Training Points

N
um

be
r

P
ar

tit
io

ns

N
um

be
r

C
on

st
ra

in
ts

Number Training Points

Figure 2: IRP performance on large-scale simulations. Datax ∈ R3 hasxi ∼ U(0, 2). Responsesy are linear
functions plus noise. Number of training points varies from104 to 2 × 105. Results shown are averages of 5
simulations with dotted lines at± one standard deviation. Time (seconds) versus number of training points is
on the left. On the right, the number of partitions is illustrated using the left axis and the bold black line shows
the average number of constraints per test using the right axis.

5.2 Predictive Performance

Here we show that isotonic regression is a useful tool when the data fits the monotonic framework.
Data is simulated as above and responses are constructed asyi =

∏
i xi + N (0, .52) wherep varies

from 2 to 6. The training set varies from 500 to 5000 to 50000 points and the test size is fixed at 5000.
Results are averaged over 10 trials and 95% confidence intervals are given. A comparison is made
between isotonic regression and linear least squares regression. With only 500 training points, the
model is poorly fitted and a simple linear regression performs much better. 5000 training points is
sufficient to fit the model well with up to 4 dimensions, after which linear regression outperforms the
isotonic regression, and 50000 training points fits the model well up with up to 5 dimensions. Two
trends are observed. Larger training sets allow better models to be fit which improves performance
while higher dimensions increase overfitting which, in turn, decreases performance.

Dim IRP MSE LS MSE IRP MSE LS MSE IRP MSE LS MSE
n=500 n=500 n=5000 n=5000 n=50000 n=50000

2 0.69± 0.01 0.37± 0.00 0.27± 0.00 0.36± 0.00 0.25± 0.00 0.36± 0.00
3 0.76± 0.03 0.65± 0.01 0.31± 0.00 0.61± 0.01 0.26± 0.00 0.62± 0.00
4 1.45± 0.08 1.08± 0.01 0.61± 0.02 1.08± 0.02 0.34± 0.01 1.06± 0.03
5 4.61± 0.65 1.76± 0.02 2.61± 0.16 1.88± 0.04 0.93± 0.04 1.86± 0.05
6 12.89± 1.30 3.06± 0.04 8.41± 1.36 2.84± 0.07 3.37± 0.06 2.83± 0.12

Table 2: Statistics for simulation generated withyi =
∏

i
xi +N (0, .52). A comparison between the results of

IRP and a least squares linear regression is shown. Bold demonstrates statistical significance at 95% confidence.

6 Conclusion

This paper demonstrates that isotonic regression can be used to solve extremely large problems. Fast
approximations are useful, however, as shown, globally optimal solutions are also computationally
tractable. Indeed, isotonic regression as done here performs with a complexity ofO(n3) in practice.
As also shown, isotonic regression performs well at reasonable dimensions, but suffers from over-
fitting as the dimension of the data increases. Extensions ofthis algorithm will analyze the path of
partitions in order to control overfitting by stopping the algorithm early. Statistical complexity of
the models generated by partitioning will be examined. Furthermore, similar results will be made
for isotonic regression with different loss functions.

8

References

[1] R.E. Barlow and H.D. Brunk. The isotonic regression problem and its dual.Journal of the American
Statistical Association, 67(337):140–147, 1972.

[2] G. Obozinski, G. Lanckriet, C. Grant, M.I. Jordan, and W.S. Noble. Consistent probabilistic outputs for
protein function prediction.Genome Biology, 9:247–254, 2008. Open Access.

[3] M.J. Schell and B. Singh. The reduced monotonic regression method.Journal of the American Statistical
Association, 92(437):128–135, 1997.

[4] J.B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psy-
chometrika, 29(1), 1964.

[5] H. Block, S. Qian, and A. Sampson. Structure algorithms for partially ordered isotonic regression.Journal
of Computational and Graphical Statistcs, 3(3):285–300, 1994.

[6] O. Burdakov, O. Sysoev, A. Grimvall, and M. Hussian. Ano(n2) algorithm for isotonic regression. 83:25–
83, 2006. In: G. Di Pillo and M. Roma (Eds)Large-Scale Nonlinear Optimization. Series: Nonconvex
Optimization and Its Applications.

[7] C.-I. C. Lee. The min-max algorithm and isotonic regression. The Annals of Statistics, 11(2):467–477,
1983.

[8] J. de Leeuw, K. Hornik, and P. Mair. Isotone optimizationin r: Pool-adjacent-violators algorithm (pava)
and active set methods. 2009. UC Los Angeles: Department of Statistics, UCLA. Retrieved from:
http://cran.r-project.org/web/packages/isotone/vignettes/isotone.pdf.

[9] W.L. Maxwell and J.A. Muckstadt. Establishing consistent and realistic reorder intervals in production-
distribution systems.Operations Research, 33(6):1316–1341, 1985.

[10] R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms. part II: Convex quadratic
programming.Mathematical Programming, 44:43–66, 1989.

[11] O. Burdakov, O. Sysoev, and A. Grimvall. Generalized PAV algorithm with block refinement for partially
ordered monotonic regression. pages 23–37, 2009. In: A. Feelders and R. Potharst (Eds.) Proc. of the
Workshop on Learning Monotone Models from Data at the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases.

[12] P.M. Pardalos and G. Xue. Algorithms for a class of isotonic regression problems.Algorithmica, 23:211–
222, 1999.

[13] K.G. Murty. Linear Programming. John Wiley & Sons, Inc., 1983.

[14] R. Chandrasekaran, Y.U. Ryu, V.S. Jacob, and S. Hong. Isotonic separation.INFORMS Journal on
Computing, 17(4):462–474, 2005.

[15] MOSEK ApS. The MOSEK optimization tools manual. version 6.0, revision 61. 2010. Software available
at http://www.mosek.com.

[16] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Inc., 1993.

9

