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Abstract

Despite the ubiquity of clustering as a tool in unsupervisedning, there is not
yet a consensus on a formal theory, and the vast majority df imcthis direction
has focused on unsupervised clustering. We study a reqaothpsed framework
for supervised clustering where there is access to a teadleegive an improved
generic algorithm to cluster any concept class in that mo@air algorithm is
query-efficient in the sense that it involves only a small antoof interaction
with the teacher. We also present and study two natural génations of the
model. The model assumes that the teacher response to théralyis perfect.
We eliminate this limitation by proposing a noisy model anggn algorithm for
clustering the class of intervals in this noisy model. We gsopose a dynamic
model where the teacher sees a random subset of the poin&lyFHor datasets
satisfying a spectrum of weak to strong properties, we givery bounds, and
show that a class of clustering functions containing Siigtkage will find the
target clustering under the strongest property.

1 Introduction

Clustering has traditionally been a tool of unsupervisadiig. Despite widespread usage across
several fields there is not yet a well-established theorgsedbe clustering [ABD09, AL10, Blu09,
GvLWO09]. Recently, Balcan and Blum [BBO08] proposed a sujsed model of clustering, where
there is access to a teacher. We further explore the imjgitabf their model and extend it in several
important directions. As a motivating example, consideo@e News, where news documents are
gathered from the web and need to be clustered into grougs cearesponding to a particular news
story. In this case, it is clear to the human eye (the teackieigh group each document should
belong to, but the sheer number of articles makes clusténynigand prohibitive. In this case, an
algorithm can interact with the teacher to aid in clustetimgdocuments without asking too much
of the teacher.

Traditional approaches to clustering optimize some objedtinction, like the k-means or the k-
median, over the given set of points [KVV00, CGTS99]. Thgsgraaches work under the implicit
assumption that by minimizing a certain objective functae can reach close to the underlying
ground truth clustering. Alternatively, another line of lkanakes strong assumptions on the na-
ture of the data. One popular in literature is the assumptiahdata is coming from a mixture of
Gaussians [Das99]. However when dealing with web-pagesjrdents etc. it is not very clear if
these assumptions are reasonable. In fact, there might penuipled way to reach the target clus-
tering which a teacher has in mind without actually intdragtvith him/her. For example consider
documents representing news articles. These documenig bewclustered agpolitics, sports,
entertainment, othér However, this is just one of the many possible clusterinbise clustering
{entertainment + sports, politics, otheis equally likely apriori. Or perhaps the teacher would
like these articles to be clustered infnews article$ vs. {opinion piece$. These scenarios mo-
tivate the need to consider the problem of clustering uneedlback. Recently, there has been an
interest in investigating such models and to come up with eerfarmal theoretical framework for
analyzing clustering problems and algorithms. One suahdraork was proposed by Balcan and



Blum [BB08] who, motivated by different models for learningder queries, proposed a model for
clustering under queries.

The model is similar to the Equivalence Query(EQ) model afiéng [Ang98] but with a differ-
ent kind of feedback. We assume that the givenSetf m points belongs td: target clusters
{c1,c2,...,c}, where each cluster is defined by some conedptlonging to a concept clags.

For example, the points belonging to the clustewill be the set{x € S|c;(z) = 1}. We also
assume that each point belongs to exactly one ofitbkisters. As in the EQ model of learning,
the algorithm presents a hypothesis clustefing, ho, ..., hy/} to the teacher. If the clustering is
incorrect the algorithm gets some feedback from the teattmwvever, the feedback in this case is
different from the one in the EQ model. In the learning motled, algorithm gets a specific point

as a counter-example to its proposed hypothesis. For diugigroblems this may not a very natural
form of feedback. In a realistic scenario, the teacher cak & the clustering proposed and give
some limited feedback. Hence, the model in [BB08] consitledollowing feedback: If there is a
clusterh; which contains points from two or more target clusters, tterteacher can ask the algo-
rithm to split that cluster by issuing the requegtit(h;). Note that the teacher does not specify how
the clusterh; should be split. If there are clustgrsandh; such that; Uh; is a subset of one of the
target clusters, then the teacher can ask the algorithm tgentleese two clusters by issuing the re-
questmerge(h;, h;). The goal of the algorithm is to be query efficient{poly(k,log m,log |C|))
queries, and computationally efficient — running timeXgpoly (k, m,log |C|)). Notice, that if we
allow the algorithm to use the number of queries lineanirthen there is a trivial algorithm, which
starts with all the points in separate clusters and then esectysters as requested by the teacher.
One could also imagine applying this split-merge frameworkases where the optimal clustering
does not necessarily belong to a natural concept classnbtgad satisfies some natural separa-
tion conditions (ex., large margin conditions). We alsadgtand present results for such problem
instances.

1.1 Contributions

In their paper, Balcan and Blum [BB08] gave efficient clustgialgorithms for the class of intervals
and the class of disjunctions ovf, 1}". We extend those results by constructing an algorithm for
clustering the class of axis parallel rectangleg idimensions. Our algorithm is computationally
efficient(for constant) and uses a small number of queries. We generalize our tigoto cluster
the class of hyperplanes ihdimensions with known slopes. Balcan and Blum [BB08] alseega
generic algorithm for any finite concept claSswhich usesO(k? log |C|) queries. We reduce the
query complexity of the generic algorithm fro®(k3 log |C|) to O(klog |C|). Furthermore, the
new algorithm is much simpler than the one from [BB08]. Wadgttwo natural generalization of
the original model. In the original model the teacher is alpwed to merge two clusters; and

h; if h; U h; is a subset of one of the target clusters. We consider a rae@nt version of this in
which the teacher can ask the algorithm to mergand?; if both the clusters have at least some
fixed fraction of points belonging to the same target cluskéis is a more natural model since we
allow for the teacher requests to be imperfect.

In the original model we assume that the teacher has accedkth® points. In practice, we are
interested in clustering a large domain of points and thehiamight only have access to a random
subset of these points at every step. For example, in theofafiestering news documents, our goal
is to figure out the target clustering which reflects the teagmeferences. But the teacher sees a
small fresh set of news articles very day. We propose a mokiehitakes into account the fact that
at each step the split and merge requests might be on a diffeeé of points. In both the above
models the straight forward algorithm for clustering thassl of intervals fails. We develop new
algorithms for clustering intervals in both the models.

We also apply the split-merge framework of [BB08] to datasstisfying a spectrum of weak to
strong properties and design algorithms for clusterindnslata sets. Along the way, we also show
that a class of clustering functions containing Singlekiaige will find the target clustering under
the strict threshold property (Theorem 6.1).



2 The model

We consider the model proposed by Balcan and Blum [BB08]. clstering algorithm is given a
setS of m points. Each point belongs to one of thelusters. Each cluster is defined by a function
f € C,whereC is a concept class. The goal of the algorithm is to figure oaitthrrect clustering
by interacting with the teacher as follows:

1. The algorithm proposes a hypothesis clustefibg s, . .., h;} to the teacher.

2. The teacher can requestlit(h;) if h; contains points from two or more target clusters.
The teacher can requesterge(h;, h;) if h; U h; is a subset of one of the target clusters.

The assumption is that there is no noise in the teacher respdine goal is to use as few queries to
the teacher as possible. Ideally, we would like the numbeuefies to beoly(k, logm,log |C|).

2.1 A generic algorithm for learning any finite concept class

We reduce the query complexity of the generic algorithm &arhing any concept class [BB08],
from O(k3 log |C|) to O(k log |C|). In addition our algorithm is simpler than the original ofiére
new algorithm is described below.

Givenm points letV'S = { the set of all possiblé clusterings of the given points using concepts
in C}. Notice that|V'S| < |C|*. Given a seth C S of points we say that a given clusterifgy

is consistent with: if » appears as a subset of one of the clusterB.irDefine,V.S(h) = {R €

V' S|R is consistent withh.}. At each step the algorithm outputs clusters as follows:

. Initialize: = 1.
. Find the largest set of points, s.t. [V.S(h;)| > [V S]|.
. Outputh; as a cluster.

. Seti = i + 1 and repeat steps-3 on the remaining points until every point has been
assigned to some cluster.

5. Present the clusterifgy, ho, ..., h;} to the teacher.

A WN P

If the teacher saysplit(h;), remove all the clusterings IS which are consistent with; If the
teacher saysiwerge(h;, h;) , remove all the clusterings iV S which are inconsistent with; U k.

Theorem 2.1. The generic algorithm can cluster any finite concept classguat mostk log |C|
gueries.

Proof. At each request, if the teacher say#it(h;), then all the clusterings consistent withare
removed, which by the construction followed by the algaritwill be at least half ofVV'S|. If the
teacher saysierge(h;, h;),i < j, then all the clusterings inconsistent withU h; are removed.
This set will be at least half ofi”S|, since otherwise the number of clusterings consistent with
h; U h; will be more than half of V.S| which contradicts the maximality df;. Hence, after each
query at least half of the version space is removed. Fromlibgeaclaim we notice that the total
number of queries will be at mokig [V S| < log|C|* < klog|C]. O

The analysis can be improved if the VC-dimensibaf the concept clas€' is much smaller than
log|C|. In this case the size df S can be bounded from above I6yim]", whereC[m] is the
number of ways to splitn points using concepts ifi. Also from Sauer’s lemma[Vap98] we know
thatC[m] < m?. Hence, we gefV' S| < m*<. This gives a query complexity @ (kd log m).

3 Clustering geometric concepts

We now present an algorithm for clustering the class of regltes in2 dimensions. We first present
a simple but less efficient algorithm for the problem. Theodthm usesO((klogm)?) queries
and runs in timepoly(k, m). In the appendix, we show that the query complexity of theatlgm
can be improved t@((k logm)?). Our algorithm generalizes in a natural way to rectangles in
dimensional space, and to hyperplaneg @imensions with known slopes.



3.1 An algorithm for clustering rectangles

Each rectangle in the target clustering can be described by four pofaisa;), (b;, b;) such that
(x,y) € ¢ iff a; < x < a; anddb; < y < b;. Hence, corresponding to aayclustering there are at
most2k pointsay, as, . . . , asg ON thex-axis and at mostk pointsby, bo, . . ., bop, ON they-axis. We
call these points th&arget points The algorithm works by finding these points. During its czur
the algorithm maintains a set of points on the x-axis and afgebints on the y-axis. These points
divide the entire space into rectangular regions. The @hguruses these regions as its hypothesis
clusters. The algorithm is sketched below:

1. Start with pointgasiart’, aena’) ON the x-axis and point&s;q.+ , bend’ ), Such that all the
points are contained in the rectangle defined by these points

2. At each step, cluster the points according to the region in which they belong. Present
this clustering to the teacher.

3. On a merge request, simply merge the two clusters.

4. On a split of(a;’, a;"), (b, b;"), create a new point,” such thatz,” < a,” < a;’, and the
projection of all the points ontéu;’, a;’) is divided into half bya,’. Similarly, create a
new point,” such thab;” < b," < b;’, and the projection of all the points onfla’, ;) is
divided into half byb,’. Abandon all the merges done so far.

Theorem 3.1. The algorithm can cluster the class of rectangles in 2 dinterssusing at most
O((klogm)?) queries.

Proof. Lets first bound the total number of split requests. If thechea says split on
(x:,25), (vi,y;), then we know that eithefz;, z;) contains a target point or (y;,y;) contains

a target poind or both. By creating two splits we are ensuring that the sfzat ¢east one of the
regions containing a target point is reduced by half. Thez@amosek intervals on ther-axis and

at most2k intervals on they-axis. Hence, the total number of split requestsiigk log m. Now
lets bound the merge requests. Between any two split regjtiestotal number of merge requests
will be at most the total number of regions whichdsO((k log m)?). Since,t points on the x and
the y axis can create at mastregions, we get that the total number of merge requests isat m
< O(klogm)3. Hence, the total number of queries made by the algorith@({& log m)?). O

If we are a bit more careful, we can avoid redoing the mergtes afery split and reduce the query
complexity toO((k logm)?). So, for rectangles we have the following result

Theorem 3.2. There is an algorithm which can cluster the class of rectes@h2 dimensions using
at mostO((k logm)?) queries.

We can also generalize this algorithm to work for rectangiesd-dimensional space. Hence, we
get the following result

Corollary 3.3. There is an algorithm which can cluster the class of rectaa@d dimensions using
at mostO((kdlog m)?) queries.

Corollary 3.4. There is an algorithm which can cluster the class of hyperptaind dimensions
having a known set of slopes of size at mostsing at mosO((kds log m)9) queries.

4 Dynamic model

We now study a natural generalization of the original model.the original model we assume
that the teacher has access to the entire set of points. ¢tigarathis will rarely be the case. For
example, in the case of clustering news articles, each datgtither sees a small fresh set of articles
and provides feedback. Based on this the algorithm must let@figure out the target clustering
for the entire space of articles. More formally, [étbe the space of all the points. There is a target
k clustering for these points, where cluster correspondsctanaept in a concept clags At each
step, the world picks: points and the algorithm clusters thesgoints and presents the clustering
to the teacher. If the teacher is unhappy with the clustenmgnay provide feedback. Note that

Proof is omitted due to space constraints



the teacher need not provide feedback every time the atgonitroposes an incorrect clustering.
The goal of the algorithm is to minimize the amount of feedbaecessary to figure out the target
clustering. Notice that at each step the algorithm may getshfset ofn points. We assume that
the requests have no noise and the algorithm has accessthe albints inX. We now give an
algorithm for learning intervals in this model.

4.1 An algorithm for clustering intervals

We assume that the space€ is discretized inton points. Let us assume that there ex-
ist points {a1,as,...,ar+1}, on the z-axis such that the target clustering is the intervals
{[a1,a2], a2, as], ..., [ak, ax+1]}. The algorithm maintains a set of points on the x-axis and use
the intervals induced by them as its hypothesis. Also eatnal is associated with a state of
marked/unmarked. When a new interval is created, it is alwaysmnarked. An interval is marked

if we know that none of the points(’s) in the target clustering can be present in that intervake
algorithm is sketched below:

1. Start with one unmarked interval containing all the pgintthe space.

2. Given a set ofn points, first form preliminary clusteris,, ..., h; such that each cluster
corresponds to an interval. Next output the final clusterfelémws:
e seti=1

e If h; andh;, correspond to adjacent intervals at least one of them is thedathen
outputh; U h; 1 and set = i + 2. Else output,; and set = i + 1.

3. On a split request, split every unmarked interval in thestdr in half.
4. On a merge request, mark every unmarked contained inubktecl
Theorem 4.1. The algorithm can cluster the class of intervals using attmii{& log n) mistakes.

Proof. Notice that by our construction, every cluster will contairmost2 unmarked intervals. Lets
first bound the total number of split requests. For every pejrin the target clustering we define
two variablesie ft_size(a;) andright_size(a;). If a; is inside a hypothesis intervét, y] then
left_size(a;) = number of points iz, a;] andright_size(a;) = number of points ifa;, y]. If

a; is also a boundary point in the hypothesis clusteringd;], [a;, y]) then agairieft_size(a;) =
number of points ifx, a;] andright_size(a;) = number of points ina;,y]. Notice, that every
split request reduces either theft_size or theright_size of some boundary point by half. Since
there are at most boundary points in the target clustering, the total numiesptit requests is
< O(klogn) times. Also note that the number of unmarked intervals is @t (k logn) since,
unmarked intervals increase only via split requests. Omyeweerge request either an unmarked
interval is marked or two marked intervals are merged. Hgthectotal number of merge requests is
atmost twice the number of unmarked interval®(k log n). Hence, the total number of mistakes
is < O(klogn). O

Its easy to notice that the generic algorithm for learningfarite concept class in the original model
also works in this model. Hence, we can learn any finite coindeps in this model using at most
klog|C| queries.

5 7 noise model

The previous two models assume that there is no noise in Hubée requests. This is again an
unrealistic assumption since we cannot expect the teaelsponses to be perfect. For example,
if the algorithm proposes a clustering in which there are thusters which are almost pure,i.e., a
large fraction of the points in both the clusters belong ® shme target clusters, then there is a
good chance that the teacher will ask the algorithm to mergset two clusters, especially if the
teacher has access to the clusters through a random suliBetpafints. In this section we study a
model which removes this assumption. For simplicity, wesider the noisy version of the original
model [BB08]. As in the original model, the algorithm haspoints. At each step, the algorithm
proposes a clusterinfhy, ha, ..., h;} to the teacher and the teacher provides feedback. But now,
the feedback is noisy in the following sense



1. Split: As before the teacher can saylit(h;), if h; contains points from more than one
target clusters.

2. Merge: The teacher can sayerge(h;, h;), if h; andh; each have at least one point from
some target cluster.

It turns out that handling arbitrary noise is difficult. Tr@léwing Theorem (proof omitted) shows
a counter-example.

Theorem 5.1. Considerm points on a line andk = 2. Any clustering algorithm must us&(m)
queries in the worst case to figure out the target clustenmtipe noisy model.

Hence, we now consider a relaxed notion of noise. If the teesdysnerge(h;, h;) then we assume
that at least a constantfraction of the points in both the clusters, belong to a grtgrget cluster.
Under this model of noise we now give an algorithm for leagririntervals.

5.1 An algorithm for clustering intervals

The algorithm is a generalization of the interval learnitgpathm in the original model. The main
idea is that when the teacher asks to merge two intefvgls;) and(a;, ax), then we know than

at leastn fraction of the portion to the left and the right of is pure. Hence, the algorithm can
still make progress. As the algorithm proceeds it is goingnéok certain intervals as “pure” which
means that all the points in that interval belong to the saoser. More formally the algorithm is
as follows

1. Start with one intervdbs:q,+', aena’] cONtaining all the points.

2. At each step, cluster the points using the current settefials and present that clustering
to the teacher.

3. On split request : Divide the interval in half.
4. On a merge request

o If both the intervals are marked “pure”, merge them.

o If both the intervals are unmarked, then creatiatervals where the middle interval
containg fraction of the two intervals. Also make the middle interaal“pure”.

¢ If one interval is marked and one is unmarked, then shift thenary between the
two intervals towards the unmarked interval by a fraction.of

Theorem 5.2. The algorithm clusters the class of intervals using at nid(@t(log 1 m)?).

Proof. We will call a merge request, as “impure” if it involves at #@ne impure interval,i.e., an
interval which contains points from two or more clustersseElve will call it as “pure”. Notice
that every split and impure merge request makes progressthe size of some target interval is
reduced by at leasj. Hence, the total number of split + impure merge requestslog 1

—n

We also know that the total number of unmarked intervals log m, since only split requests

increase the unmarked intervals. Also, total number of m;hnktervals< total number of unmarked
intervals, since every marked interval can be charged tditrsguest. Hence, the total number of
intervals< 2k log% m

-n

To bound the total number of pure merges, notice that everg & pure merge is made, the size
of some interval decreases by at leastjainaction. The size of an interval can decrease at most
log% m times. Hence, the total number of pure merge@(log% m)2.

-n -n

Hence, the algorithm makes at m@(tk(log% m)?) queries. O

6 Properties of the Data

We now adapt the query framework of [BBO08] to cluster datasdtich satisfy certain natural sep-
aration conditions with respect to the target partitionirigor this section, sometimes we write
d = (e1,eq,.. .,e(n)> to mean the set of distances that exist between all pairsdints. This
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list is always orderedvy increasing distance. For a definition of the Single-Ligpkand Min-Sum
clustering functions, please see the appendix.

6.1 Threshold Separation

We introduce a (strong) property that may be satisfied by (e1, e, . .., e(n)> with respect td’,

the target clustering. It is important to note that this gndypis imposing restrictions o, defined
by the data. An inner edge bfis a distance between two points inside a cluster, while éer@age
is a distance between two points in differing clusters.

STRICT THRESHOLD SEPARATION. There exists a threshold> 0 such that all inner edges ©of
have distance less than or eqtiadnd all outer edges have distance greater than

In other words, the pairwise distances between the datauate that all inner edges af (w.r.t.
I") have distance smaller than all outer edges (again, W).t. This property gives away a lot of
information abouf’, in that it allows Single-Linkage to fully recovér as we will see in theorem
6.1. Before we present the algorithm to interact with thetiea, Theorem 6.1 will be useful (proof
omitted).

[Kle03, JS71] introduce the following 3 properties which lastering function can satisfy. An
F(d, k)-transformation ofl is a change td such that inner-cluster distancesliare decreased, and
outer-cluster distances are increased.

1. CONSISTENCY Fix k. Letd be a distance function, anfl be aF(d, k)-transformation of
d. ThenF(d, k) = F(d', k)

2. ORDER-CONSISTENCY For any two distance functionsandd’, number of clusterg, if
the order of edges it is the same as the order of edgesiinthenF(d, k) = F(d', k)

3. k-RICHNESS For any number of clusters, Rangef(e, k)) is equal to the set of ak-
partitions of S

Theorem 6.1. Fix k and a targetk-partitioningI', and letd be a distance function satisfying Strict
Threshold Separation w.rt. Then for any Consistent;Rich, Order-Consistent partitioning func-
tion F', we havel’(d, k) = T.

Note that since Single-linkage is ConsisténRich, and Order-Consistent [ZBDQ09], it immediately
follows that SL(d,k) = T - in other words, SL is guaranteed to find the targegartitioning,
but we still have to interact with the teacher to find @utlt is a recently resolved problem that
Single-Linkage is not the only function satisfying the abqwoperties [ZBD], so the the class
of Consistentk-Rich, and Order-Consistent functions has many members.nd¥e present the
algorithm to interact with the teacher.

Theorem 6.2. Given a dataset satisfying Strict Threshold Separatioarglexists an algorithm
which can find the target partitioning for any hypothesissslanO(log(n)) queries

Proof. Note that the thresholtiand the number of clusteksare not known to the algorithm, else
the target could be found immediately. By theorem 6.1, wenktlmat the target must be exactly
what Single-Linkage returns for sondg and it remains to find the number of clusters. This can be
done using a binary search on the number of clusters whictvagnfrom1 to n. We start with
some candidatg, and if the teacher tells us to split anything, we know the bhanof clusters must
be larger, and if we are told to merge, we know the number attehs must be smaller. Thus we can
find the correct number of clusters@log(n)) queries. O

Note that since strict threshold separation implies st@garation, then th€©(k) algorithm pre-
sented in the next section can also be used, gigitgin(log(n), k)) queries.

Strict Separation: Now we relax strict threshold separation

STRICT SEPARATION. All points in the same cluster are more similar to one anatien to points
outside the cluster.



With this property, it is no longer true that all inner distas are smaller than outer distances, and
therefore Theorem 6.1 does not apply. However, [BBV08] pritne following lemma

Lemma 6.3. [BBV08] For a dataset satisfying strict separation, let(8)-be the tree returned by
Single-Linkage. Then any partitioning respecting thecstseparation ofd will be a pruning of

SL(d).
Theorem 6.4. Given a dataset satisfying Strict Separation, there esistalgorithm which can find
the target partitioning for any hypothesis classixik) queries

Proof. Let the distances between points be represented by thackstanctioni. By lemma 6.3 we
know that the target partitioning must be a pruning of &L Our algorithm will start by presenting
the teacher with all points in a single cluster. Upon a splifuest, we split according to the relevant
node in Sl(d). There can be no merge requests since we always split ggrieath split will create

a new cluster, so there will be at mdst- 1 of these splits, after which the correct partitioning is
found.

~-margin Separation: Margins show up in many learning models, and this is no exceptA
natural assumption is that there may be a separation ofst|d@tween points in differing clusters,
where the points all lie inside the unit ball.

v-MARGIN SEPARATION. Points in different clusters of the target partitioning at leasty away
from one another.

With this property, we can prove the following for all hypetlis classes

Theorem 6.5. Given a dataset satisfyingmargin Separation, there exists an algorithm which can
find the target partitioning for any hypothesis classﬁn(@)d — k) queries

Proof. We split the unit ball (inside which all points live) into hgrzubes with edge Ieng%. We
are interested in the diameter of such a hypercube. The tkamiead-dimensional hypercube with
side% isvd x % = 1, S0 no two points inside a hypercube of s'@g can be more than apart.

It follows that if split the unit ball up using a grid of hyperges, all points inside a hypercube must
be from the same cluster. We say such a hypercube is “pure”.

There are at mosﬂ((@)d) hypercubes in a unit ball. We show each hypercube as a sihgtec
to the teacher. Since all hypercubes are pure, we can onimgefe requests, of which there can be
at mostO((@)d — k) until the target partitioning is found. O

7 Conclusions and open problems

In this paper we investigated a recently proposed modelsteting under feedback. We gave algo-
rithms for clustering geometric concepts in the model. Fdadets satisfying a spectrum of weak to
strong properties, we gave query bounds, and showed thass.@l clustering functions containing
Single-Linkage will find the target clustering under theoatyest property. We also studied natural
generalizations of the model and gave efficient algorithonddfarning intervals in the new models.
Several interesting problems remain

1. Give algorithms for clustering other classes of fundidior example linear separators in
the original model.
2. Give efficient algorithms for clustering geometric coptogasses in the new models.

3. Establish connections between the proposed models areighivalence Query model of
learning.

4. In [BB08], the authors give an algorithm for learning thass of disjunctions. It would be
interesting to come up with an attribute efficient versionhaf algorithm, similar in spirit
to the Winnow algorithm [Lit87].
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