
Supervised Clustering

Pranjal Awasthi
Carnegie Mellon University
pawasthi@cs.cmu.edu

Reza Bosagh Zadeh
Stanford University

rezab@stanford.edu

Abstract

Despite the ubiquity of clustering as a tool in unsupervisedlearning, there is not
yet a consensus on a formal theory, and the vast majority of work in this direction
has focused on unsupervised clustering. We study a recentlyproposed framework
for supervised clustering where there is access to a teacher. We give an improved
generic algorithm to cluster any concept class in that model. Our algorithm is
query-efficient in the sense that it involves only a small amount of interaction
with the teacher. We also present and study two natural generalizations of the
model. The model assumes that the teacher response to the algorithm is perfect.
We eliminate this limitation by proposing a noisy model and give an algorithm for
clustering the class of intervals in this noisy model. We also propose a dynamic
model where the teacher sees a random subset of the points. Finally, for datasets
satisfying a spectrum of weak to strong properties, we give query bounds, and
show that a class of clustering functions containing Single-Linkage will find the
target clustering under the strongest property.

1 Introduction

Clustering has traditionally been a tool of unsupervised learning. Despite widespread usage across
several fields there is not yet a well-established theory to describe clustering [ABD09, AL10, Blu09,
GvLW09]. Recently, Balcan and Blum [BB08] proposed a supervised model of clustering, where
there is access to a teacher. We further explore the implications of their model and extend it in several
important directions. As a motivating example, consider Google News, where news documents are
gathered from the web and need to be clustered into groups, each corresponding to a particular news
story. In this case, it is clear to the human eye (the teacher)which group each document should
belong to, but the sheer number of articles makes clusteringby hand prohibitive. In this case, an
algorithm can interact with the teacher to aid in clusteringthe documents without asking too much
of the teacher.

Traditional approaches to clustering optimize some objective function, like the k-means or the k-
median, over the given set of points [KVV00, CGTS99]. These approaches work under the implicit
assumption that by minimizing a certain objective functionone can reach close to the underlying
ground truth clustering. Alternatively, another line of work makes strong assumptions on the na-
ture of the data. One popular in literature is the assumptionthat data is coming from a mixture of
Gaussians [Das99]. However when dealing with web-pages, documents etc. it is not very clear if
these assumptions are reasonable. In fact, there might be noprincipled way to reach the target clus-
tering which a teacher has in mind without actually interacting with him/her. For example consider
documents representing news articles. These documents could be clustered as{politics, sports,
entertainment, other}. However, this is just one of the many possible clusterings.The clustering
{entertainment + sports, politics, other} is equally likely apriori. Or perhaps the teacher would
like these articles to be clustered into{news articles} vs. {opinion pieces}. These scenarios mo-
tivate the need to consider the problem of clustering under feedback. Recently, there has been an
interest in investigating such models and to come up with a more formal theoretical framework for
analyzing clustering problems and algorithms. One such framework was proposed by Balcan and

1

Blum [BB08] who, motivated by different models for learningunder queries, proposed a model for
clustering under queries.

The model is similar to the Equivalence Query(EQ) model of learning [Ang98] but with a differ-
ent kind of feedback. We assume that the given setS of m points belongs tok target clusters
{c1, c2, . . . , ck}, where each cluster is defined by some conceptc belonging to a concept classC.
For example, the points belonging to the clusterc1 will be the set{x ∈ S|c1(x) = 1}. We also
assume that each point belongs to exactly one of thek clusters. As in the EQ model of learning,
the algorithm presents a hypothesis clustering{h1, h2, . . . , hk′} to the teacher. If the clustering is
incorrect the algorithm gets some feedback from the teacher. However, the feedback in this case is
different from the one in the EQ model. In the learning model,the algorithm gets a specific pointx
as a counter-example to its proposed hypothesis. For clustering problems this may not a very natural
form of feedback. In a realistic scenario, the teacher can look at the clustering proposed and give
some limited feedback. Hence, the model in [BB08] considersthe following feedback: If there is a
clusterhi which contains points from two or more target clusters, thenthe teacher can ask the algo-
rithm to split that cluster by issuing the requestsplit(hi). Note that the teacher does not specify how
the clusterhi should be split. If there are clustershi andhj such thathi∪hj is a subset of one of the
target clusters, then the teacher can ask the algorithm to merge these two clusters by issuing the re-
questmerge(hi, hj). The goal of the algorithm is to be query efficient –O(poly(k, log m, log |C|))
queries, and computationally efficient – running time ofO(poly(k, m, log |C|)). Notice, that if we
allow the algorithm to use the number of queries linear inm, then there is a trivial algorithm, which
starts with all the points in separate clusters and then merges clusters as requested by the teacher.
One could also imagine applying this split-merge frameworkto cases where the optimal clustering
does not necessarily belong to a natural concept class, but instead satisfies some natural separa-
tion conditions (ex., large margin conditions). We also study and present results for such problem
instances.

1.1 Contributions

In their paper, Balcan and Blum [BB08] gave efficient clustering algorithms for the class of intervals
and the class of disjunctions over{0, 1}n. We extend those results by constructing an algorithm for
clustering the class of axis parallel rectangles ind dimensions. Our algorithm is computationally
efficient(for constantd) and uses a small number of queries. We generalize our algorithm to cluster
the class of hyperplanes ind dimensions with known slopes. Balcan and Blum [BB08] also gave a
generic algorithm for any finite concept classC, which usesO(k3 log |C|) queries. We reduce the
query complexity of the generic algorithm fromO(k3 log |C|) to O(k log |C|). Furthermore, the
new algorithm is much simpler than the one from [BB08]. We study two natural generalization of
the original model. In the original model the teacher is onlyallowed to merge two clustershi and
hj if hi ∪ hj is a subset of one of the target clusters. We consider a noise tolerant version of this in
which the teacher can ask the algorithm to mergehi andhj if both the clusters have at least some
fixed fraction of points belonging to the same target cluster. This is a more natural model since we
allow for the teacher requests to be imperfect.

In the original model we assume that the teacher has access toall the points. In practice, we are
interested in clustering a large domain of points and the teacher might only have access to a random
subset of these points at every step. For example, in the caseof clustering news documents, our goal
is to figure out the target clustering which reflects the teacher preferences. But the teacher sees a
small fresh set of news articles very day. We propose a model which takes into account the fact that
at each step the split and merge requests might be on a different set of points. In both the above
models the straight forward algorithm for clustering the class of intervals fails. We develop new
algorithms for clustering intervals in both the models.

We also apply the split-merge framework of [BB08] to datasets satisfying a spectrum of weak to
strong properties and design algorithms for clustering such data sets. Along the way, we also show
that a class of clustering functions containing Single-Linkage will find the target clustering under
the strict threshold property (Theorem 6.1).

2

2 The model

We consider the model proposed by Balcan and Blum [BB08]. Theclustering algorithm is given a
setS of m points. Each point belongs to one of thek clusters. Each cluster is defined by a function
f ∈ C, whereC is a concept class. The goal of the algorithm is to figure out the correct clustering
by interacting with the teacher as follows:

1. The algorithm proposes a hypothesis clustering{h1, h2, . . . , hJ} to the teacher.

2. The teacher can requestsplit(hi) if hi contains points from two or more target clusters.
The teacher can requestmerge(hi, hj) if hi ∪ hj is a subset of one of the target clusters.

The assumption is that there is no noise in the teacher response. The goal is to use as few queries to
the teacher as possible. Ideally, we would like the number ofqueries to bepoly(k, logm, log |C|).

2.1 A generic algorithm for learning any finite concept class

We reduce the query complexity of the generic algorithm for learning any concept class [BB08],
from O(k3 log |C|) to O(k log |C|). In addition our algorithm is simpler than the original one.The
new algorithm is described below.

Givenm points letV S = { the set of all possiblek clusterings of the given points using concepts
in C}. Notice that|V S| ≤ |C|k. Given a seth ⊆ S of points we say that a given clusteringR
is consistent withh if h appears as a subset of one of the clusters inR. Define,V S(h) = {R ∈
V S|R is consistent withh.}. At each step the algorithm outputs clusters as follows:

1. Initializei = 1.

2. Find the largest set of pointshi, s.t. |V S(hi)| ≥ 1

2
|V S|.

3. Outputhi as a cluster.

4. Seti = i + 1 and repeat steps1-3 on the remaining points until every point has been
assigned to some cluster.

5. Present the clustering{h1, h2, . . . , hJ} to the teacher.

If the teacher sayssplit(hi), remove all the clusterings inV S which are consistent withhi If the
teacher saysmerge(hi, hj) , remove all the clusterings inV S which are inconsistent withhi ∪ hj .

Theorem 2.1. The generic algorithm can cluster any finite concept class using at mostk log |C|
queries.

Proof. At each request, if the teacher sayssplit(hi), then all the clusterings consistent withhi are
removed, which by the construction followed by the algorithm will be at least half of|V S|. If the
teacher saysmerge(hi, hj), i < j, then all the clusterings inconsistent withhi ∪ hj are removed.
This set will be at least half of|V S|, since otherwise the number of clusterings consistent with
hi ∪ hj will be more than half of|V S| which contradicts the maximality ofhi. Hence, after each
query at least half of the version space is removed. From the above claim we notice that the total
number of queries will be at mostlog |V S| ≤ log|C|k ≤ k log |C|.

The analysis can be improved if the VC-dimensiond of the concept classC is much smaller than
log |C|. In this case the size ofV S can be bounded from above byC[m]

k, whereC[m] is the
number of ways to splitm points using concepts inC. Also from Sauer’s lemma[Vap98] we know
thatC[m] ≤ md. Hence, we get|V S| ≤ mkd. This gives a query complexity ofO(kd log m).

3 Clustering geometric concepts

We now present an algorithm for clustering the class of rectangles in2 dimensions. We first present
a simple but less efficient algorithm for the problem. The algorithm usesO((k log m)3) queries
and runs in timepoly(k, m). In the appendix, we show that the query complexity of the algorithm
can be improved toO((k log m)2). Our algorithm generalizes in a natural way to rectangles ind
dimensional space, and to hyperplanes ind dimensions with known slopes.

3

3.1 An algorithm for clustering rectangles

Each rectanglec in the target clustering can be described by four points(ai, aj), (bi, bj) such that
(x, y) ∈ ck iff ai < x < aj andbi < y < bj . Hence, corresponding to anyk-clustering there are at
most2k pointsa1, a2, . . . , a2k on thex-axis and at most2k pointsb1, b2, . . . , b2k on they-axis. We
call these points thetarget points. The algorithm works by finding these points. During its course
the algorithm maintains a set of points on the x-axis and a setof points on the y-axis. These points
divide the entire space into rectangular regions. The algorithm uses these regions as its hypothesis
clusters. The algorithm is sketched below:

1. Start with points(astart
′, aend

′) on the x-axis and points(bstart
′, bend

′), such that all the
points are contained in the rectangle defined by these points.

2. At each step, cluster them points according to the region in which they belong. Present
this clustering to the teacher.

3. On a merge request, simply merge the two clusters.

4. On a split of(ai
′, aj

′), (bi
′, bj

′), create a new pointar
′ such thatai

′ < ar
′ < aj

′, and the
projection of all the points onto(ai

′, aj
′) is divided into half byar

′. Similarly, create a
new pointbr

′ such thatbi
′ < br

′ < bj
′, and the projection of all the points onto(bi

′, bj
′) is

divided into half bybr
′. Abandon all the merges done so far.

Theorem 3.1. The algorithm can cluster the class of rectangles in 2 dimensions using at most
O((k log m)3) queries.

Proof. Lets first bound the total number of split requests. If the teacher says split on
(xi, xj), (yi, yj), then we know that either(xi, xj) contains a target pointa or (yi, yj) contains
a target pointb or both. By creating two splits we are ensuring that the size of at least one of the
regions containing a target point is reduced by half. There are at most2k intervals on thex-axis and
at most2k intervals on they-axis. Hence, the total number of split requests is≤ 4k log m. Now
lets bound the merge requests. Between any two split requests the total number of merge requests
will be at most the total number of regions which is≤ O((k log m)2). Since,t points on the x and
the y axis can create at mostt2 regions, we get that the total number of merge requests is at most
≤ O(k log m)3. Hence, the total number of queries made by the algorithm isO((k log m)3).

If we are a bit more careful, we can avoid redoing the merges after every split and reduce the query
complexity toO((k log m)2). So, for rectangles we have the following result1.

Theorem 3.2. There is an algorithm which can cluster the class of rectangles in2 dimensions using
at mostO((k log m)2) queries.

We can also generalize this algorithm to work for rectanglesin a d-dimensional space. Hence, we
get the following result

Corollary 3.3. There is an algorithm which can cluster the class of rectangles ind dimensions using
at mostO((kd log m)d) queries.

Corollary 3.4. There is an algorithm which can cluster the class of hyperplanes ind dimensions
having a known set of slopes of size at mosts, using at mostO((kds log m)d) queries.

4 Dynamic model

We now study a natural generalization of the original model.In the original model we assume
that the teacher has access to the entire set of points. In practice, this will rarely be the case. For
example, in the case of clustering news articles, each day the teacher sees a small fresh set of articles
and provides feedback. Based on this the algorithm must be able to figure out the target clustering
for the entire space of articles. More formally, letX be the space of all the points. There is a target
k clustering for these points, where cluster corresponds to aconcept in a concept classC. At each
step, the world picksm points and the algorithm clusters thesem points and presents the clustering
to the teacher. If the teacher is unhappy with the clusteringhe may provide feedback. Note that

1Proof is omitted due to space constraints

4

the teacher need not provide feedback every time the algorithm proposes an incorrect clustering.
The goal of the algorithm is to minimize the amount of feedback necessary to figure out the target
clustering. Notice that at each step the algorithm may get a fresh set ofm points. We assume that
the requests have no noise and the algorithm has access to allthe points inX . We now give an
algorithm for learning intervals in this model.

4.1 An algorithm for clustering intervals

We assume that the spaceX is discretized inton points. Let us assume that there ex-
ist points {a1, a2, . . . , ak+1}, on the x-axis such that the target clustering is the intervals
{[a1, a2], [a2, a3], . . . , [ak, ak+1]}. The algorithm maintains a set of points on the x-axis and uses
the intervals induced by them as its hypothesis. Also each interval is associated with a state of
marked/unmarked. When a new interval is created, it is alwaysunmarked. An interval is marked
if we know that none of the points(ai’s) in the target clustering can be present in that interval.The
algorithm is sketched below:

1. Start with one unmarked interval containing all the points in the space.

2. Given a set ofm points, first form preliminary clustersh1, . . . , hJ such that each cluster
corresponds to an interval. Next output the final clusters asfollows:

• set i=1
• If hi andhi+1 correspond to adjacent intervals at least one of them is unmarked, then

outputhi ∪ hi+1 and seti = i + 2. Else outputhi and seti = i + 1.

3. On a split request, split every unmarked interval in the cluster in half.

4. On a merge request, mark every unmarked contained in the cluster.

Theorem 4.1. The algorithm can cluster the class of intervals using at most O(k log n) mistakes.

Proof. Notice that by our construction, every cluster will containat most2 unmarked intervals. Lets
first bound the total number of split requests. For every point ai in the target clustering we define
two variablesleft size(ai) and right size(ai). If ai is inside a hypothesis interval[x, y] then
left size(ai) = number of points in[x, ai] andright size(ai) = number of points in[ai, y]. If
ai is also a boundary point in the hypothesis clustering ([x, ai], [ai, y]) then againleft size(ai) =
number of points in[x, ai] andright size(ai) = number of points in[ai, y]. Notice, that every
split request reduces either theleft size or theright size of some boundary point by half. Since
there are at mostk boundary points in the target clustering, the total number of split requests is
≤ O(k log n) times. Also note that the number of unmarked intervals is at mostO(k log n) since,
unmarked intervals increase only via split requests. On every merge request either an unmarked
interval is marked or two marked intervals are merged. Hence, the total number of merge requests is
atmost twice the number of unmarked intervals≤ O(k log n). Hence, the total number of mistakes
is≤ O(k log n).

Its easy to notice that the generic algorithm for learning any finite concept class in the original model
also works in this model. Hence, we can learn any finite concept class in this model using at most
k log |C| queries.

5 η noise model

The previous two models assume that there is no noise in the teacher requests. This is again an
unrealistic assumption since we cannot expect the teacher responses to be perfect. For example,
if the algorithm proposes a clustering in which there are twoclusters which are almost pure,i.e., a
large fraction of the points in both the clusters belong to the same target clusters, then there is a
good chance that the teacher will ask the algorithm to merge these two clusters, especially if the
teacher has access to the clusters through a random subset ofthe points. In this section we study a
model which removes this assumption. For simplicity, we consider the noisy version of the original
model [BB08]. As in the original model, the algorithm hasm points. At each step, the algorithm
proposes a clustering{h1, h2, . . . , hJ} to the teacher and the teacher provides feedback. But now,
the feedback is noisy in the following sense

5

1. Split: As before the teacher can saysplit(hi), if hi contains points from more than one
target clusters.

2. Merge: The teacher can saymerge(hi, hj), if hi andhj each have at least one point from
some target cluster.

It turns out that handling arbitrary noise is difficult. The following Theorem (proof omitted) shows
a counter-example.

Theorem 5.1. Considerm points on a line andk = 2. Any clustering algorithm must useΩ(m)
queries in the worst case to figure out the target clustering in the noisy model.

Hence, we now consider a relaxed notion of noise. If the teacher saysmerge(hi, hj) then we assume
that at least a constantη fraction of the points in both the clusters, belong to a single target cluster.
Under this model of noise we now give an algorithm for learning k-intervals.

5.1 An algorithm for clustering intervals

The algorithm is a generalization of the interval learning algorithm in the original model. The main
idea is that when the teacher asks to merge two intervals(ai, aj) and(aj , ak), then we know than
at leastη fraction of the portion to the left and the right ofaj is pure. Hence, the algorithm can
still make progress. As the algorithm proceeds it is going tomark certain intervals as “pure” which
means that all the points in that interval belong to the same cluster. More formally the algorithm is
as follows

1. Start with one interval[astart
′, aend

′] containing all the points.

2. At each step, cluster the points using the current set of intervals and present that clustering
to the teacher.

3. On split request : Divide the interval in half.

4. On a merge request

• If both the intervals are marked “pure”, merge them.
• If both the intervals are unmarked, then create3 intervals where the middle interval

containsη fraction of the two intervals. Also make the middle intervalas “pure”.
• If one interval is marked and one is unmarked, then shift the boundary between the

two intervals towards the unmarked interval by a fraction ofη.

Theorem 5.2. The algorithm clusters the class of intervals using at mostO(k(log 1

1−η

m)2).

Proof. We will call a merge request, as “impure” if it involves at least one impure interval,i.e., an
interval which contains points from two or more clusters. Else we will call it as “pure”. Notice
that every split and impure merge request makes progress, i.e. the size of some target interval is
reduced by at leastη. Hence, the total number of split + impure merge requests≤ k log 1

1−η

m.
We also know that the total number of unmarked intervals≤ k log 1

1−η

m, since only split requests
increase the unmarked intervals. Also, total number of marked intervals≤ total number of unmarked
intervals, since every marked interval can be charged to a split request. Hence, the total number of
intervals≤ 2k log 1

1−η

m.

To bound the total number of pure merges, notice that every time a pure merge is made, the size
of some interval decreases by at least anη fraction. The size of an interval can decrease at most
log 1

1−η

m times. Hence, the total number of pure merges≤ k(log 1

1−η

m)2.

Hence, the algorithm makes at mostO(k(log 1

1−η

m)2) queries.

6 Properties of the Data

We now adapt the query framework of [BB08] to cluster datasets which satisfy certain natural sep-
aration conditions with respect to the target partitioning. For this section, sometimes we write
d = 〈e1, e2, . . . , e(n

2
)〉 to mean the set of distances that exist between all pairs ofn points. This

6

list is always orderedby increasing distance. For a definition of the Single-Linkage and Min-Sum
clustering functions, please see the appendix.

6.1 Threshold Separation

We introduce a (strong) property that may be satisfied byd = 〈e1, e2, . . . , e(n

2
)〉 with respect toΓ,

the target clustering. It is important to note that this property is imposing restrictions ond, defined
by the data. An inner edge ofΓ is a distance between two points inside a cluster, while an outer edge
is a distance between two points in differing clusters.

STRICT THRESHOLDSEPARATION. There exists a thresholdt > 0 such that all inner edges ofΓ
have distance less than or equalt, and all outer edges have distance greater thant.

In other words, the pairwise distances between the data are such that all inner edges ofd (w.r.t.
Γ) have distance smaller than all outer edges (again, w.r.t.Γ). This property gives away a lot of
information aboutΓ, in that it allows Single-Linkage to fully recoverΓ as we will see in theorem
6.1. Before we present the algorithm to interact with the teacher, Theorem 6.1 will be useful (proof
omitted).

[Kle03, JS71] introduce the following 3 properties which a clustering function can satisfy. An
F (d, k)-transformation ofd is a change tod such that inner-cluster distances ind are decreased, and
outer-cluster distances are increased.

1. CONSISTENCY. Fix k. Letd be a distance function, andd′ be aF (d, k)-transformation of
d. ThenF (d, k) = F (d′, k)

2. ORDER-CONSISTENCY. For any two distance functionsd andd′, number of clustersk, if
the order of edges ind is the same as the order of edges ind′, thenF (d, k) = F (d′, k)

3. k-RICHNESS. For any number of clustersk, Range(F (•, k)) is equal to the set of allk-
partitions ofS

Theorem 6.1. Fix k and a targetk-partitioningΓ, and letd be a distance function satisfying Strict
Threshold Separation w.r.t.Γ. Then for any Consistent,k-Rich, Order-Consistent partitioning func-
tion F , we haveF (d, k) = Γ.

Note that since Single-linkage is Consistent,k-Rich, and Order-Consistent [ZBD09], it immediately
follows that SL(d, k) = Γ - in other words, SL is guaranteed to find the targetk-partitioning,
but we still have to interact with the teacher to find outk. It is a recently resolved problem that
Single-Linkage is not the only function satisfying the above properties [ZBD], so the the class
of Consistent,k-Rich, and Order-Consistent functions has many members. Wenow present the
algorithm to interact with the teacher.

Theorem 6.2. Given a dataset satisfying Strict Threshold Separation, there exists an algorithm
which can find the target partitioning for any hypothesis class inO(log(n)) queries

Proof. Note that the thresholdt and the number of clustersk are not known to the algorithm, else
the target could be found immediately. By theorem 6.1, we know that the target must be exactly
what Single-Linkage returns for somek, and it remains to find the number of clusters. This can be
done using a binary search on the number of clusters which canvary from1 to n. We start with
some candidatek, and if the teacher tells us to split anything, we know the number of clusters must
be larger, and if we are told to merge, we know the number of clusters must be smaller. Thus we can
find the correct number of clusters inO(log(n)) queries.

Note that since strict threshold separation implies strictseparation, then theO(k) algorithm pre-
sented in the next section can also be used, givingO(min(log(n), k)) queries.

Strict Separation: Now we relax strict threshold separation

STRICT SEPARATION. All points in the same cluster are more similar to one another than to points
outside the cluster.

7

With this property, it is no longer true that all inner distances are smaller than outer distances, and
therefore Theorem 6.1 does not apply. However, [BBV08] prove the following lemma

Lemma 6.3. [BBV08] For a dataset satisfying strict separation, let SL(d) be the tree returned by
Single-Linkage. Then any partitioning respecting the strict separation ofd will be a pruning of
SL(d).

Theorem 6.4. Given a dataset satisfying Strict Separation, there existsan algorithm which can find
the target partitioning for any hypothesis class inO(k) queries

Proof. Let the distances between points be represented by the distance functiond. By lemma 6.3 we
know that the target partitioning must be a pruning of SL(d). Our algorithm will start by presenting
the teacher with all points in a single cluster. Upon a split request, we split according to the relevant
node in SL(d). There can be no merge requests since we always split perfectly. Each split will create
a new cluster, so there will be at mostk − 1 of these splits, after which the correct partitioning is
found.

γ-margin Separation: Margins show up in many learning models, and this is no exception. A
natural assumption is that there may be a separation of at leastγ between points in differing clusters,
where the points all lie inside the unit ball.

γ-MARGIN SEPARATION. Points in different clusters of the target partitioning are at leastγ away
from one another.

With this property, we can prove the following for all hypothesis classes

Theorem 6.5. Given a dataset satisfyingγ-margin Separation, there exists an algorithm which can
find the target partitioning for any hypothesis class inO((

√
d

γ
)d − k) queries

Proof. We split the unit ball (inside which all points live) into hypercubes with edge lengthγ√
d
. We

are interested in the diameter of such a hypercube. The diameter of ad-dimensional hypercube with
side γ√

d
is
√

d× γ√
d

= γ, so no two points inside a hypercube of sideγ√
d

can be more thanγ apart.
It follows that if split the unit ball up using a grid of hypercubes, all points inside a hypercube must
be from the same cluster. We say such a hypercube is “pure”.

There are at mostO((
√

d
γ

)d) hypercubes in a unit ball. We show each hypercube as a single cluster
to the teacher. Since all hypercubes are pure, we can only getmerge requests, of which there can be
at mostO((

√
d

γ
)d − k) until the target partitioning is found.

7 Conclusions and open problems

In this paper we investigated a recently proposed model of clustering under feedback. We gave algo-
rithms for clustering geometric concepts in the model. For datasets satisfying a spectrum of weak to
strong properties, we gave query bounds, and showed that a class of clustering functions containing
Single-Linkage will find the target clustering under the strongest property. We also studied natural
generalizations of the model and gave efficient algorithms for learning intervals in the new models.
Several interesting problems remain

1. Give algorithms for clustering other classes of functions, for example linear separators in
the original model.

2. Give efficient algorithms for clustering geometric concept classes in the new models.

3. Establish connections between the proposed models and the Equivalence Query model of
learning.

4. In [BB08], the authors give an algorithm for learning the class of disjunctions. It would be
interesting to come up with an attribute efficient version ofthe algorithm, similar in spirit
to the Winnow algorithm [Lit87].

8

References

[ABD09] M. Ackerman and S. Ben-David. Clusterability: A theoretical study.Proceedings of
AISTATS-09, JMLR: W&CP, 5:1–8, 2009.

[AL10] Ben-David S. Ackerman, M. and D. Loker. Characterization of Linkage-based Cluster-
ing. COLT 2010, 2010.

[Ang98] D. Angluin. Queries and concept learning.Machine Learning, 2:319–342, 1998.

[BB08] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. InALT,
2008.

[BBV08] M.-F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering
via similarity functions. InProceedings of the 40th ACM Symposium on Theory of
Computing, 2008.

[Blu09] Avrim Blum. Thoughts on clustering. InNIPS Workshop on Clustering Theory, 2009.

[CGTS99] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoy. A constant-factor approximation
algorithm for the k-median problem. InACM Symposium on Theory of Computing,
1999.

[Das99] S. Dasgupta. Learning mixtures of gaussians. InProceedings of the 40th Annual Sym-
posium on Foundations of Computer Science, 1999.

[GvLW09] I. Guyon, U. von Luxburg, and R.C. Williamson. Clustering: Science or Art? InNIPS
Workshop on Clustering Theory, 2009.

[JS71] N. Jardine and R. Sibson. Mathematical taxonomy.New York, 1971.

[Kle03] J. Kleinberg. An impossibility theorem for clustering. In Advances in Neural Informa-
tion Processing Systems 15: Proceedings of the 2002 Conference, page 463. The MIT
Press, 2003.

[KVV00] R. Kannan, S. Vempala, and A. Veta. On clusterings-good, bad and spectral. InFOCS
’00: Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
2000.

[Lit87] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm.Machine Learning, 2(4), 1987.

[Vap98] V. N. Vapnik.Statistical Learning Theory. John Wiley and Sons Inc., 1998.

[ZBD] Reza Bosagh Zadeh and Shai Ben-David. Axiomatic Characterizations of Single-
Linkage. InIn Submission.

[ZBD09] Reza Bosagh Zadeh and Shai Ben-David. A Uniqueness Theorem for Clustering. In
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009.

9

