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Abstract

Accurate short-term wind forecasts (STWFs), with time horizons from 0.5 to 6
hours, are essential for efficient integration of wind power to the electrical power
grid. Physical models based on numerical weather predictions are currently not
competitive, and research on machine learning approaches is ongoing. Two major
challenges confronting these efforts are missing observations and weather-regime
induced dependency shifts among wind variables. In this paper we introduce ap-
proaches that address both of these challenges. We describe a new regime-aware
approach to STWF that use auto-regressive hidden Markov models (AR-HMM), a
subclass of conditional linear Gaussian (CLG) models. Although AR-HMMs are
a natural representation for weather regimes, as with CLG models in general, ex-
act inference is NP-hard when observations are missing (Lerner and Parr, 2001).
We introduce a simple approximate inference method for AR-HMMs, which we
believe has applications in other problem domains. In an empirical evaluation
on publicly available wind data from two geographically distinct regions, our ap-
proach makes significantly more accurate predictions than baseline models, and
uncovers meteorologically relevant regimes.

1 Introduction

Accurate wind speed and direction forecasts are essential for efficient integration of wind energy
into electrical transmission systems. The importance of wind forecasts for the wind energy industry
stems from three facts: 1) for reliability and safety the aggregate power produced and consumed
throughout a power system must be nearly in balance at all times, 2) because it depends strongly
on wind speed and direction, the power output of a wind farm is highly variable, and 3) efficient
and cost effective energy storage mechanisms do not exist. A recent estimate placed the value of a
perfect forecast at $3Billion annually (Piwko and Jordan, 2010) for the United States power system
of 2030 envisioned by the Department of Energy (Lindenberg, 2008). Because information on the
30 minute to six-hour time horizon is actionable for many control decisions, and the current state-
of-the-art is considered inadequate, there has been a recent surge of interest in improving forecasts
in this range.

The short-term wind forecasting (STWF) problem presents numerous challenges to the modeler.
Data produced by the current observation network are sparse relative to the temporal and spatial scale
of weather events that drive short-term changes in wind features; observations are frequently missing
or corrupted; quality training sets with multiple years of turbine height (~80 m) wind observations
at numerous sites are typically not available; transfer of learned models (Caruana, 1997) across



wind farms is difficult, and because of the dynamic nature of weather the spatial and temporal
dependencies of wind features within a geographical region are not fixed.

Numerical weather predictions (NWP) methods are the primary means for producing the large-scale
weather forecasts used throughout the world, but are not competitive for STWEF. In fact, NWP based
wind speed predictions are less accurate than “persistence” forecasts (Giebel, 2003), a surprisingly
robust method for time horizons less than a few hours. Approaches to STWF include ARMA mod-
els (Marti et al., 2004), support vector machines (Zheng and Kusiak, 2009), and other data mining
methods (Kusiak et al., 2009), but with the exception of two methods (Gneiting et al., 2006; Pin-
son and Madsen, 2008) these do not consider dependency dynamics. Gneiting et al. (2006) “hard
code” their regimes based on wind direction, while Pinson and Madsen (2008) learns regimes for
a single forecasting site with complete data. At the time of writing we are unaware of any previ-
ous STWF work which simultaneously learns regimes, incorporates multiple observation sites, and
accepts missing observations.

We propose a novel approach to STWF that automatically reasons about learned weather regimes
across multiple sites while naturally handling missing observations. Our approach is based on
switching conditional linear Gaussian (CLG) models, variously known as switching vector autore-
gressive models or autoregressive hidden Markov models. For an overview of CLG models, see
Koller and Friedman (2009, Chap. 14). Since exact inference in CLG models with incomplete data
is NP-hard (Lerner and Parr, 2001), we pursue approximate methods. We introduce a novel and sim-
ple approximate inference approach that exploits the tendency of regimes to persist for several hours.
Predictions by our learned models are significantly better than baseline persistence predictions in ex-
periments on national climatic data center (NCDC) data from two sites in the United States: one in
the Pacific Northwest and one in southern Wisconsin. Inspection of the learned models show that
our approach learns meteorologically interesting regimes.

Switching CLG models have been applied in other domains where missing observations are an
issue, such as meteorology (Tang, 2004; Paroli et al., 2005), epidemiology (Toscani et al., 2010) and
econometrics (Perez-Quiros et al., 2010). Some approaches are able to avoid the issue of missing
data by throwing out affected timesteps, or by imputing values through a variety of domain-specific
techniques. Alternatively, Markov Chain Monte Carlo parameter estimation techniques have been
applied. Our approach may be an attractive alternative in these domains, offering a solution that
does not require deletion or imputation.

2 Methods

We consider the setting in which wind observations from a set of M stations arrive at regular inter-
vals (hourly in our experiments). Let Uy and V¢ be M-by-1 vector of random variables for the u
and v components of the wind at all sites at time t. We use Wy = [1 U} V]’ to refer to both Uy
and V¢!, and we denote settings to random variables with lowercase letters, for example wy.

Our approach to STWF is based on auto-regressive HMMs where at each time ¢ we have a single
discrete random variable R; that represents the active regime, and a continuous valued vector random
variable W, that represents measured wind speeds. As local probabilities are linear Gaussian (LG)
we denote the model in which the regime variables R; have cardinality C by AR-LG(C). Thus,
AR-LG(1) is a traditional AR model. Figure 1 shows example graphical models.

The local conditional distributions, Pr(R;11|R:) and Pr(W|W,_1, R;), are shared across time.
We represent Pr(R;41|R:) by the C-by-C transition matrix 7" where T'(r, s) > 0 is the probability
of transitioning from regime r to regime s. Since weather regimes tend to persist for multiple
hours, the self-transition probabilities 7'(r, r) are typically the largest. The local distributions for
the continuous variables are linear Gaussian, Pr(w|w;_1, Ry = r) = N (B(r)w;_1, Q(r)), where
B(r) is the 2M-by-2M regression matrix for regime r, row j of B(r) is the regression vector for
the " component of w;, Q(r) is the regime’s covariance matrix, and NV'(u, X) is the multivariate
Gaussian (MVG) with mean p and covariance Y. The joint probability of a setting to all variables

"We include the additional dimension with constant value of 1.0 here to indicate that we include a constant
term in all our models. But for notational simplicity in what follows we include this term only implicitly and
describe our methods as if W, were comprised of observations only.
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Figure 1: Graphical structures of wind speed models. Darkly shaded nodes are observed, lightly shaded nodes
are partially observed, and unshaded nodes are unobserved. (a) Auto-regressive linear Gaussian (AR-LG(1)) for
data set with L time steps. (b) Auto-regressive HMM (AR-LG(C'), C' > 1). Exact inference in (b) with missing
observations is NP-hard (Lerner and Parr, 2001). (c) Truncated AR-LG(C) HOMO approximation of (b) for
predictions of wind speeds at target time ¢ + h made at ¢ with X' = 2 and horizon h = 2. Our approximation
assumes the regime does not change in the window ¢ — K to t + h. (d) Truncated (non-conditional) AR-LG(1)
analogous to (c). (e) Detailed structure of (d) for 3 sites showing within time-slice conditional independencies
and assorted missing observations.

for L time steps is

L
Pr(ri,wy, -+ ,rp,wr) = Pr(ry) Pr(wq|r) H Pr(ry|ri—1) Pr(wi|ry, we_1)
t=2
L
=v(r)N (wi; py(r1), Qi(r1)) HT(Tt—l,Tt)N (Wi B(ro)wi—1, Q(r))
t=2
where v is the initial regime distribution, the observations at ¢ = 1 for regime r are Gaussian

with mean g, () and covariance Q1 (r), and N () with three arguments denotes MVG density. We
set v to the stationary state-distribution, given by the eigenvector of 7" associated with eigenvalue
1. We train model parameters with standard EM methods for conditional linear Gaussian (CLG)
models (Murphy, 1998), except that the E-step uses approximate inference.

2.1 Approximate Inference Methods

Consider a length L time series and let W = (W1, --- , W) refer to the continuous variables. We
denote the sequence of partial observations as Wy.;, = (W1, Wa, - - - W) where the “dot” notation
w; denotes a potentially incomplete vector with missing data. Our inference tasks are to calculate
Pr(W;_1, Wy, R¢|W1.1,) and Pr(R;_1, R¢|W1.r,) while training to compute the expected sufficient
statistics needed for estimation of CLG parameters using EM (Murphy, 1998), and to compute
Pr(Wy4 g |W1.) for horizon H forecasting at time ¢.

In AR-LG(1) models with no discrete variables (Figure 1a), the chain structure permits efficient ex-
act inference using message passing techniques (Weiss and Freeman, 2001). For general AR-LG(C)
models, however, the posterior distributions over unobserved continuous variables are mixtures of
exponentially many Gaussians and exact inference is NP-hard (Lerner and Parr, 2001). Specifically,
Pr(W,g|Wi.¢) has C9*H component Gaussians, one for each setting of R; g1, , Riy .
where d is the number of contiguous time steps in the suffix of wy.; with at least one missing obser-
vation. The training posteriors Pr(W;_1, W¢|w.,) have Cdit2+dy components where d; and d,.
are the number of consecutive time steps to the left of £ — 1 and right of ¢ with at least one missing
observation. Because of the nature of data collection, most wind data sets with multiple sites will
have a number of missing observations. Indeed, our Wisconsin (21 sites) and Pacific Northwest (24
sites) data sets have only 5.6% and 6.4% hours of complete data, respectively. Missing observations



are by no means unique to wind. Lauritzen’s approach (Lauritzen and Jensen, 2001) for exact infer-
ence in conditional linear Gaussian models offers no relief as the clique sizes in the strongly rooted
junction trees are exponentially large for AR-LG(C') models.

Since exact inference is intractable we investigate approximate methods. We first make a sim-
plification that involves focusing only on observations temporally close to the inference vari-
ables. We ignore observations more than K time-steps from ¢. For example, we approximate
Pr(W;_1, W¢|W1.1) by a truncated model Pr(W;_1, W¢|W;_g.+1x). While inference in the
truncated model will be less costly than in the full model, it is still O(C?5+1) in the worst case,
which is prohibitive for moderate K on large datasets.

Our approaches are based on the general concept of pruning (Koller and Friedman, 2009, Chap. 14),
where all but n mixture components are discarded, in order to approximate a posterior distribution
with a prohibitive number of components. Let P(V) refer to a desired posterior distribution under
the truncated model given evidence, which we assume has at least one missing observation at each
time step. P(V) is a mixture of Gaussians with an exponential number of components N, which
we write P(V) = Zjvzl w;p; (V). Each mixing proportion w; is associated with a regime state
sequence and p;(V) is the posterior Gaussian for that sequence. We approximate P (V') by the
distribution Q(V) = > 7_, m;q;(V) with a much smaller number components 7 in which each
component in () is equal to one component in P. Without loss of generality we re-order components
of P so that the selected components comprise the first n, and thus q; = p; for j < n. As pointed out
previously (Lerner and Parr, 2001), this approach is appropriate in many real world settings in which
a large fraction of the probability mass of P(V') is contained in a small number of components. This
is the case for us as weather regimes tend to persist for a number of hours, and thus regime sequences
with frequent regime switching are highly unlikely.

2.1.1 Approach 1: PRIOR

We consider three approaches to choosing the components in (). Our first approach is the method
of Lerner and Parr (2001) that chooses the components associated with the n a-priori most likely
state sequences, which, since our discrete variables form a simple chain, we can find efficiently using
the Best Max-Marginal First (BMMF) method (Yanover and Weiss, 2003). The mixing proportions
are set so that 7; oc w;. Although not theoretically justified in Lerner and Parr (2001), we show here
that this choice in fact minimizes an upper bound on the a-priori or evidence-free KL divergence
from @ to P, D(Q||P), among all () made from n components of P. To see this we first extend @
to have N components where m; = 0 for j > n and apply an upper bound on the KL-divergence
between mixtures of Gaussians (Singer and Warmuth, 1998; Do, 2003), D(Q||P) < D(nl||w) +

Z;\[:l m;D(g;||p;)- Since we constrain () to have components from P, the second term drops out,

and D(Q||P) < D(r||w) = 37, % (log(%4) — log(w;)), where here we use that 7; o w; where
the proportionality constant Z = 2?21 w; is the sum of chosen mixing probabilities. This leaves
D(Q||P) < —log(Z), which is clearly minimized by choosing the n components of P with largest

w;. We call this approach PRIOR(n).

2.1.2 Approach 2: HOMO

Our second method for setting Q (V) is a simple but often effective approach that assumes no regime
changes in the truncated model. This approach, which we call HOMO has n = C' components, one
for each homogeneous regime sequence. If the self transition probabilities T'(r, r) are largest, then
the most likely regime sequence a-priori is homogeneous, and thus is also chosen by PRIOR(n).
The other components of PRIOR(n) may be only small variations from this homogeneous regime
sequence, however, the components selected by HOMO are very different from one another. This
diversity may be advantageous for prediction.

2.1.3 Approach 3: POST

Our final method depends on the evidence. We would like to select the components for the top
n regime sequences with maximum posterior likelihood, however, this too is NP-hard (Lerner
and Parr, 2001). We instead use a fast approximation in which the posterior potential of set-
tings to regime variables is set by local evidence. We define 7(r) = Pr(wy|w;—1,R; = r) to



Table 1: Missing data summary. The “Count” row lists the number of hours in our WI data set (21 sites total)
in which the number of sites with missing values was exactly equal to the value “# Sites Missing”.

# Sites Missing 0 1 2 3 4 5 6 7+
Count 1978 2583 6463 8165 8849 4769 1229 1028
Frequency 5.6% 74% 184% 233% 252% 13.6% 3.5% 29%

be the potential for R; = r, and then run BMMF on the model where Pr(ri_g, -« ,74Kx) X
Tk (T—K) H?;If_KH Ty (r¢ )T (rp—1, 7). Note that each 74(r) is the density value of a single
Gaussian, and can be computed quickly from model parameters. We call this approach POST(n).

3 Experimental evaluation

We compare the forecasts of our models to forecasts of persistence models, which represent the
current state-of-the-art for STWF. We design our experiments to answer the following questions.
1. Are STWFs of our single-regime models more accurate than persistence forecasts? 2. Are
STWFs of our models that consider regimes more accurate than those of the single-regime models?
3. Do differences between learned regimes make sense meteorologically? Additionally, we wish to
comparatively evaluate the effectiveness of our approximate inference algorithm.

3.1 Data set

We conduct our evaluation in two meteorologically distinct regions in the United States: Wisconsin
(WI), and the Pacific Northwest (PNW) states of Washington and Oregon. The National Climatic
Data Center (NCDC) maintains a publicly accessible database of hourly historical climatic surface
data, from which we obtained 4 years of data from a number of sites in both regions. The WI
observations span from January 1, 2006 through December 31, 2009, and the PNW observations
span from February 4, 2006 through February 3, 2010. We have data from 21 and 24 sites in WI and
PNW, respectively. This data is available at http://ganymede.cs.uwm.edu/nips2010/.

We collect wind direction and wind speed at each site, as measured at 10 meters above ground
level. Since our primary motivation is wind power forecasting, we prefer wind speed measurements
taken at turbine height (approximately 50-100 meters above ground level). Publicly available turbine
height observations, however, are scarce, so we use the 10 m. data as a compromise and for proof of
concept.

Raw data from the NCDC is approximately hourly, but readings often appear off-the-hour in an
unpredictable fashion. We use the simple rule of selecting the nearest data point within +/—10
minutes of the hourly transition. We discard all readings outside this margin. Additionally, NCDC
appends various quality flags to each reading, and we discarded any data which did not pass all
quality checks. These discarded points as well as varying site-specific instrumentation practices
introduce missing observations. Table 1 shows a summary of missing data in the the WI data set.
Missing data did not arise from a few misbehaving stations.

3.2 [Experimental methodology

Data was assembled into four cross-validation folds, each contiguous and exactly 1 year in length.
For each fold we use the three training years to learn AR-LG(C') models with C' = 1,2, ..., 5. Note
that AR-LG(1) is the standard (non-conditional) auto-regressive model. With each learned model
we forecast wind speeds at all sites and all test-year hours at six horizons (1-6 hours). Thus, for
each geography (WI and PNW) we have 20 learned models (4 folds and C' = 1,2, ...,5) and 120
prediction sequences (horizon 1-6 hrs for each of the 20 learned models). Note that this entails
“casting out” or unrolling a learned model to reach longer horizons, which as we see below can
impact performance. For the persistence model, we only make a horizon h forecast for target time
t + h if the time ¢ observation at that site is available. For point-predictions we predict the expected
value of the posterior wind distribution at the prediction time.
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Figure 2: Mean RMSE over all sites and folds for single-regime model (AR-LG(1)) and persistence models in
WI (left) and PNW (right). Errorbars extend one standard deviation above and below the mean.
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Figure 3: Site-by-site average RMSE values for AR-LG(1) and persistence models in WI for 1, 3 and 5 hour
horizons. Errorbars show standard deviations calculated across folds (years).

We chose for these experiments to use the HOMO approximation method, with a truncated model
corresponding to 3 hours () = 1). This approximation method is simplest and suits our domain,
where we expect distinct regimes to generally persist over a period of a few hours.

We use two performance measures to evaluate prediction sequences, test-set log-likelihood (LL) and
root mean squared error (RMSE). The RMSE measure provides an evaluation for point predictions
while the LL provides an evaluation of probabilistic predictions. For a given geographical region
we denote the RMSE of the horizon h prediction sequence made by AR-LG(C') model for site s
and year y by e(h, s,y, C). In a similar way we denote RMSE of a persistence prediction sequence
by e,(h, s,y). We denote collections and aggregates with MATLAB-style notation. For example,
e(1,:,:,2) is the collection of RMSE values for 1 hour predictions for the 2 regime model across
all sites and years, and mean [e(1, :,:,2)] and std [e(1, :, :, 2)] are the collection’s mean and standard
deviation.

We calculate LL values of the AR-LG(C) models relative to LL values of a persistent Gaussian
model w,, = w; + €,,. Here, €, is the horizon h zero-mean Gaussian noise vector with variance
estimated from the training-set.

In order to make meaningful comparisons between AR-LG(C') and persistence models, we calculate
performance measures for all horizon h prediction sequences from only hours for which a corre-
sponding horizon A persistence prediction is available.

3.3 Results

To compare our approximation methods, we evaluate the three approximate inference procedures,
HOMO, PRIOR(2) and POST(2) using simulated data from a situation with ten sites arrayed lin-
early (eg, east-to-west) and two regimes. The parameters of regime 1 were set for a east-to-west
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Figure 4: Performance of multi- versus single-regime models at a 2 hour prediction horizon, in each of 4
folds. Performance measures of test-set relative log-likelihood across all sites for WI (left) and PNW (right),
with number of regimes, C, on the z-axis. Note that at C' = 1 the value is zero since this is comparison of
AR-LG(1) against itself.

moving weather regime and the parameters for regime 2 were set for a west-to-east weather regime.
Self transition probabilities were set to 0.8. Observations were generated using these models and
20% were hidden, which is consistent with the missing rate in our data sets. Then we make 2-hr
ahead forecasts at all time points using window size K from 2 to 15 hours. The mean-absolute error
of PRIOR(2) was highest for all K (1.05), HOMO had the lowest overall error (0.95), and there
was surprisingly no obvious trends due to K. The good performance of HOMO supports our hy-
pothesis that the performance of PRIOR(2) will suffer from lack of diversity, however, we expected
POST(2) to perform better relative to HOMO, but instead it had an overall error of 0.965.

In all further experiments, we attempted to assess the effectiveness of the AR-LG(C') models, using
the real wind data described above.

To answer the first question above, we compute mean [e(h,:,:,1)] and mean [e,(h,:,:)] for the
RMSE collections of the AR-LG(1) and persistence models for both geographical locations and all
horizons h = 1,2, ..., 6. Figure 2 plots the mean RMSE of these collections. The errorbars extend
1 standard deviation unit above and below the mean. Not surprisingly, error increases with horizon
length. In both WI and PNW the AR-LG(1) model has significantly lower RMSE than persistence
for 1 and 2 hour time horizons. For longer horizons the results vary by geography. In PNW the gap
between AR-LG(1) and persistence grows with h, while in in WI the AR-LG(1) performance begins
to degrade relative to persistence starting with A = 3. At 3 and 4 hour horizons we see an increase
in the variance of AR-LG(1), but still a lower mean RMSE than persistence. For h = 5 and h = 6
the persistence model has lower mean RMSE than the AR-LG(1).

To gain insight into decreasing performance at longer horizons in WI, we plot in Figure 3 the mean
and standard deviation RMSE values for the site specific collections e(h, s,:,1) and e,(h, s, :) at
all WI sites for 1,3 and 5 hour horizons. Each collection here contains four RMSE values, one per
fold. For h = 1 our AR-LG(1) model beats persistence at all sites, usually by by multiple standard
deviation units. This is a significant result because persistence forecasts have been shown to be
difficult to improve upon for very short horizons. At h = 3 problems begin to appear. Although
at most sites AR-LG(1) has improved further upon persistence accuracy, two sites display high
variance and one (second from left) has high variance and very high RMSE near 3 m/s. Ath =5
high variance is widespread and the RMSE of the ill behaving sites at h = 3 have grown. This
suggests that large erroneous predictions at a small number of sites spread throughout the system as
it evolves forward in time.

Next, we consider the performance of multiple regime models. For these models we focus on the
LL measure. Figure 4 plots total LL values for AR-LG(2), AR-LG(3), AR-LG(4) and AR-LG(5)
relative to AR-LG(1) for individual years. In both WI and PNW there is a large jump from 1 to 2
regimes. While in WI there is no obvious trend from 2 to 5 regimes, in PNW there is a clear increase
in performance as the number of regimes increases.
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Figure 5: Meteorological properties of learned regimes of AR-LG(5) models in WI. (a) Mean wind vectors
(u,v) at each of 21 sites in WL, in each of 5 regimes (regime indicated by shape). (b) Mean regime posteriors
with respect to test-set hour-of-day (CST), showing diurnal trends. (c) Mean regime posteriors with respect to
test-set month.

Increase in forecast skill and test-set log-likelihood indicate that regimes in the multi-regime models
are capturing important generalizable patterns in short-term wind dynamics, whose features ought
to arise from underlying meteorology. Indeed, model parameters exhibit strong clustering patterns
which can be tied to known regional meteorological phenomena. Figure 5 shows an analysis of a
five regime model trained on the WI dataset. Figure 5 (a) plots learned wind vectors in the first
time-slice between the five regimes. Figures 5 (b) and (c) analyze posterior regime likelihoods with
respect to diurnal (daily) and seasonal time-frames. We note strong clusterings in (a) and significant
diurnal and seasonal trends.

4 Conclusion

We have described a model for short-term wind forecasting (STWF), an important task in the wind
power industry. Our model is set apart from previous STWF approaches in three important ways:
Firstly, forecasts are informed by off-site evidence through a representation of the dynamical evolu-
tion of winds in the region. Secondly, our models can learn and reason about meteorological regimes
unique to the local climate. Finally, our model is tolerant to missing data which is present in most
sources of wind data. These points are shown empirically through an improvement in forecasting
error versus state-of-the-art, and observation of meteorological properties of learned regimes.

We presented novel approximate inference procedures that enables AR-HMMs to be gracefully used
in situations with missing data. We hope these approaches can be applied to other problem domains
suited to AR-HMMs.
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