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Johannes Schemmel and Marc-Olivier Schwartz

Kirchhoff-Institut für Physik
Ruprecht-Karls-Universität Heidelberg

smillner@kip.uni-heidelberg.de

Abstract

We describe an accelerated hardware neuron being capable of emulating the adap-
tive exponential integrate-and-fire neuron model. Firing patterns of the membrane
stimulated by a step current are analyzed in transistor level simulations and in
silicon on a prototype chip. The neuron is destined to be the hardware neuron
of a highly integrated wafer-scale system reaching out for new computational
paradigms and opening new experimentation possibilities. As the neuron is dedi-
cated as a universal device for neuroscientific experiments, the focus lays on pa-
rameterizability and reproduction of the analytical model.

1 Introduction

Since the beginning of neuromorphic engineering [1, 2] designers have had great success in build-
ing VLSI1 neurons mimicking the behavior of biological neurons using analog circuits [3–8]. The
design approaches are quite different though, as the desired functions constrain the design.

It has been argued [4] whether it is best to emulate an established model or to create a new one using
analog circuits. The second way is gone by [3–7] for instance, aiming at the low power consump-
tion and fault tolerance of neural computation to be used in a computational device in robotics for
example. This can be done most effectively by the technology-driven design of a new model, fitted
directly to biological results. We approach gaining access to the computational power of neural sys-
tems and creating a device being able to emulate biologically relevant spiking neural networks that
can be reproduced in a traditional simulation environment for modeling. The use of a commonly
known model enables modelers to do experiments on neuromorphic hardware and compare them
to simulations. This design methodology has been applied successfully in [8, 9], implementing the
conductance-based integrate-and-fire model [10]. The software framework PyNN [11, 12] even al-
lows for directly switching between a simulator and the neuromorphic hardware device, allowing
modelers to access the hardware on a high level without knowing all implementation details.

The hardware neuron presented here can emulate the adaptive exponential integrate-and-fire neuron
model (AdEx) [13], developed within the FACETS-project [14]. The AdEx model can produce
complex firing patterns observed in biology [15], like spike-frequency-adaptation, bursting, regular
spiking, irregular spiking and transient spiking by tuning a limited number of parameters [16].
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Completed by the reset conditions, the model can be described by the following two differential
equations for the membrane voltage V and the adaptation variable w:

−Cm
dV

dt
= gl(V − E1)− gl∆te

(V −Vt
∆t

) + ge(t)(V − Ee) + gi(t)(V − Ei) + w; (1)

−τw
dw

dt
= w − a(V − El). (2)

Cm, gl, ge and gi are the membrane capacitance, the leakage conductance and the conductances for
excitatory and inhibitory synaptic inputs, where ge and gi depend on time and the inputs from other
neurons. El, Ei and Ee are the leakage reversal potential and the synaptic reversal potentials. The
parameters Vt and ∆t are the effective threshold potential and the threshold slope factor. The time
constant of the adaptation variable is τw and a is called adaptation parameter. It has the dimension
of a conductance.

If the membrane voltage crosses a certain threshold voltage Θ, the neuron is reset:
V → Vreset; (3)
w → w + b. (4)

The parameter b is responsible for spike-triggered adaptation. Due to the sharp rise, created by
the exponential term in equation 1, the exact value of Θ is not critical for the determination of the
moment of a spike [13].
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Figure 1: Phase plane of the AdEx model with parameters according to figure 4 d) from [16],
stimulus excluded. V and w will be rising below their nullclines and falling above.

Figure 1 shows the phase plane of the AdEx model with its nullclines. The nullcline of a variable is
the cline, where its time derivative is zero. The crossing off the nullclines in the left is the stable fix-
point, where the trajectory is located in rest. A constant current stimulus will lift the V -nullcline. For
V > Vt below the V -nullcline, the derivative of V is proportional to V - the exponential dominates
and V diverges until Θ is reached.

The neuron is integrated on a prototype chip called HICANN2 [17–19] (figure 2) which has been
produced in 2009. Each HICANN contains 512 dendrite membrane (DenMem) circuits (figure 3),
each being connected to 224 dynamic input synapses. Neurons are built of DenMems by shorting
their membrane capacitances gaining up to 14336 input synapses for a single neuron. The HICANN
is prepared for integration in the FACETS wafer-scale system [17–19] allowing to interconnect 384
HICANNs on an uncut silicon wafer via a high speed bus system, so networks of up to 196 608
neurons can be emulated on a single wafer.

A major feature of the described hardware neuron is that the size of components allows working with
an acceleration factor of 103 up to 105 compared to biological real time, enabling the operator to do
several runs of an experiment in a short time to do large parameter sweeps and gain better statistics.
Effects occurring on a longer timescale like long term synaptic plasticity could be emulated. This
way the wafer-scale system can emerge as an alternative and an enhancement to traditional computer
simulations in neuroscience. Another VLSI neuron designed with a time scaling factor is presented
in [7]. This implementation is capable of reproducing lots of different firing patterns of cortical
neurons, but has no direct correspondence to a neuron from the modeling area.
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Figure 2: Photograph of the HICANN-chip

2 Neuron implementation

2.1 Neuron

The smallest part of a neuron is a DenMem, which implements the terms of the AdEx neuron de-
scribed above. Each term is constructed by a single circuit using operational amplifiers (OP) and
operational transconductance amplifiers (OTA) and can be switched off separately, so less complex
models like the leaky integrate-and-fire model implemented in [9] can be emulated. OTAs directly
model conductances for small input differences. The conductance is proportional to a biasing cur-
rent. A first, not completely implemented version of the neuron has been proposed in [17]. Some
simulation results of the actual neuron can be found in [19].
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Figure 3: Schematic diagram of AdEx neuron circuit

Figure 3 shows a block diagram of a DenMem. During normal operation, the neuron gets rectangular
shaped current pulses as input from the synapse array (figure 2) at one of the two synaptic input
circuits. Inside these circuits the current is integrated by a leaky integrator OP-circuit resulting in
a voltage that is transformed to a current by an OTA. Using this current as bias for another OTA, a
sharply rising and exponentially decaying synaptic input conductance is created. Each DenMem is
equipped with two synaptic input circuits, each having its own connection to the synapse array.
The output of a synapse can be chosen between them, which allows for two independent synaptic
channels which could be inhibitory or excitatory.

The leakage term of equation 1 can be implemented directly using an OTA, building a conductance
between the leakage potential El and the membrane voltage V .

Replacing the adaptation variable w in equation 2 by a(Vadapt − El), results in:

−τw
dVadapt
dt

= Vadapt − V. (5)
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Now the time constant τw shall be created by a capacitance Cadapt and a conductance gadapt and
we get:

−Cadapt
dVadapt
dt

= gadapt(Vadapt − V ). (6)

We need to transform b into a voltage using the conductance a and get

CadaptIbtpulse =
b

a
(7)

where the fixed tpulse is the time a current Ib increases Vadapt on Cadapt at each detected spike of a
neuron. These resulting equations for adaptation can be directly implemented as a circuit.

A MOSFET3 connected as a diode is used to emulate the exponential positive feedback of equation 1
(figure 4). To generate the correct gate source voltage, a non inverting amplifier multiplies the
difference between the membrane voltage and a voltage Vt by an adjustable factor. A simplified
version of the circuit can be seen in figure 4. The gate source voltage of M1 is :

VGSM1 =
R1

R2
(V − Vt) (8)

Deployed in the equation for a MOSFET in sub-threshold mode this results in a current depending
exponentially on V following equation 1 where ∆t can be adjusted via the resistors R1 and R2. The
factor in front of the exponential gl∆t and Vt of the model can be changed by moving the circuits
Vt. To realize huge (hundreds of kΩ) variable resistors, the slope of the output characteristic of a
MOSFET biased in saturation is used as replacement for R1.

Figure 4: Simplified schematic of the exponential circuit

Our neuron detects a spike at a directly adjustable threshold voltage Θ - this is especially necessary
as the circuit cannot only implement the AdEx model, but also less complex models. In a model
without a sharp spike, like the one created by the positive feedback of the exponential term, spike
timing very much depends on the exact voltage Θ.

A detected spike triggers reseting of the membrane by a current pulse to a potential Vreset for an
adjustable time. Therefore our circuit supports basic modeling of a refractory period additionally to
the modeling by the adaption variable.

2.2 Parameterization

In contrast to most other systems, we are using analog floating gate memories similar to [20] as
storage device for the analog parameters of a neuron. Due to the small size of these cells, we are
capable of providing most parameters individually for a single DenMem circuit. This way, matching
issues can be counterbalanced, and different types of neurons can be implemented on a single chip
enhancing the universality of the wafer-scale system.

Table 1 shows the parameters used in the implemented AdEx model and the parameter ranges aimed
during design. Technical biasing parameters and parameters of the synaptic input circuits are ex-
cluded. Parameter ranges of several orders of magnitude are necessary, as our neurons can work in
different time scalings relative to real time. This is achieved by switching between different mul-
tiplication factors for biasing currents. As these switches are parameterized globally, ranges of a
parameter of a neuron group(one quarter of a HICANN) need to be in the same order of magnitude.

3metal-oxide-semiconductor field-effect transistor
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Table 1: Neuron parameters

PARAMETER SHARING RANGE

gl individual 34 nS..4 µS
a individual 34 nS..4 µS
gadapt individual 5 nS..2 µS
Ib individual 200 nA..5 µA
tpulse fixed 18 ns
Vreset global 0 V..1.8 V
Vexp individual 0 V..1.8 V
treset global 25 ns..500 ns
Cmem global 400 fF or 2 pF
Cadapt fixed 2 pF
∆t individual ..10 mV..
Θ individual 0 V..1.8 V

As a starting point for for the parameter ranges, [13] and [21] have been used. The chosen ranges
allow leakage time constants τmem = Cmem/gl at an acceleration factor of 104 between 1 ms and
588 ms and an adaptation time constant τw between 10 ms and 5 s in terms of biological real time.
So the parameters used in [22] are easily reached for instance. Switching to other acceleration
modes, the regime for a biologically realistic operation is reduced as the needed time constants are
shifted one order of magnitude.

As OTAs are used for modeling conductances, and linear operation for this type of devices can
only be achieved for smaller voltage differences, it is necessary to limit the operating range of the
variables V and Vadapt to some hundreds of millivolts. If this area is left, the OTAs will not work as
a conductance anymore, but as a constant current, hence there will not be any more spike triggered
adaptation for example.

A neuron can be composed of up to 64 DenMem circuit hence several different adaptation variables
with different time constants for each are allowed.

2.3 Parameter mapping

For a given set of parameters from the AdEx model, we want to reproduce the exact same behavior
with our hardware neuron. Therefore, a simple two-steps procedure was developed to translate
biological parameters from the AdEx model to hardware parameters. The translation procedure is
summarized in figure 5:

Biological AdEx
parameters

Scaled AdEx
parameters

Hardware
parameters

Scaling Translation

Figure 5: Biology to hardware parameter translation

The first step is to scale the biological AdEx parameters in terms of time and voltage. At this stage,
the desired time acceleration factor is chosen, and applied to the two time constants of the model.
Then, a voltage scaling factor is defined, by which the biological voltages parameters are multiplied.
This factor has to be high enough to improve the signal-to-noise ratio in the hardware, but not too
high to stay in the operating range of the OTAs.

The second step is to translate the parameters from the scaled AdEx model to hardware parameters.
For this purpose, each part of the DenMem circuit was characterized in transistor-level simulations
using a circuit simulator. This theoretical characterization was then used to establish mathematical
relations between scaled AdEx parameters and hardware parameters.
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2.4 Measurement capabilities

For neuron measuring purposes, the membrane can be either stimulated by incoming events from
the synapse array - as an additional feature a Poisson event source is implemented on the chip
- or by a programmable current. This current can be programmed up to few µA replaying 129 10 bit
values using a sequencer and a digital-to-analog converter. Four current sources are implemented
on the chip allowing to stimulate adjacent neurons individually. Currently, the maximum period of
a current stimulus is limited to 33 µs, but this can be easily enhanced as the HICANN host interface
allows an update of the value storage in real time.

The membrane voltage and all stored parameters in the floating gates can directly be measured via
one of the two analog outputs of the HICANN chip. Membrane voltages of two arbitrary neurons
can be read out at the same time.

To characterize the chip, parameters like the membrane capacitance need to be measured indirectly
using the OTA, emulating gl, as a current source example.

3 Results

Different firing patterns have been reproduced using our hardware neuron and the current stimulus in
circuit simulation and in silicon, inducing a periodic step current onto the membrane. The examined
neuron consists of two DenMem circuits with their membrane capacitances switched to 2 pF each.

Figure 6 shows results of some reproduced patterns according to [23] or [16] neighbored by their
phase plane trajectory of V and Vadapt. As the simulation describes an electronic circuit, the tra-
jectories are continuous. All graphs have been recorded injecting a step current of 600 nA onto the
membrane. gadapt and gl have been chosen equal in all simulations except tonic spiking to facilitate
the nullclines:

Vadapt = −gl
a

(V − El) +
gl
a

∆T e

(
V −VT

∆T

)
+ El +

I

a
(9)

Vadapt = V ; (10)

As described in [16], the AdEx model allows different types of spike after potentials (SAP). Sharp
SAPs are reached if the reset after a spike sets the trajectory to a point, below the V-nullcline. If
reset ends in a point, above the V-nullcline, the membrane voltage will be pulled down below the
reset voltage Vreset by the adaptation current.

The first pattern - tonic spiking with a sharp reset - can be reached by either setting b to a small
value and shrinking the adaptation time constant to make Vadapt follow V very fast - at least, the
adaptation constant must be small enough to enable Vadapt to regenerate b in the inter-spike interval
(ISI)- or by setting a to zero. Here, a has been set to zero, while gl has been doubled to keep the total
conductance at a similar level. Parameters between simulation and measurement are only roughly
mapped, as the precise mapping algorithm is still in progress - on a real chip there is a variation of
transistor parameters which still needs to be counterbalanced by parameter choice.

Spike-frequency adaptation is caused by enlarging Vadapt at each detected spike, while still staying
below the V-nullcline (equation 9). As metric, for adaptation [24] and [16] use the accommodation
index:

A =
1

N − k − 1

N∑
i=k

ISIi − ISIi−1

ISIi + ISIi−1
(11)

Here k determines the number of ISI excluded from A to exclude transient behavior [15, 24] and
can be chosen as one fifth for small numbers of ISIs [24]. The metric calculates the average of the
difference between two neighbored ISIs weighted by their sum, so it should be zero for ideal tonic
spiking. For our results we get an accommodation index of 0 ± 0.0003 for fast spiking neurons in
simulation and−0.0004±0.001 in measurement. For adaptation the values are 0.1256±0.0002 and
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(a) Tonic spiking
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(b) Spike frequency adaptation
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(c) Phasic burst
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(d) Tonic burst

Figure 6: Phase plane and transient plot from simulations and measurement results of the neuron
stimulated by a step current of 600 nA.

0.039 ± 0.001. As parameters have been chosen to reproduce the patterns obviously (adaptation is
switched of for tonic spiking and strong for spike frequency adaptation) they are a little bit extreme
in comparison to the calculated ones in [24] which are 0.0045±0.0023 for fast spiking interneurons
and 0.017± 0.004 for adapting neurons.

It is ambiguous to define a burst looking just at the spike frequency. We follow the definition used
in [16] and define a burst as one or more sharp resets followed by a broad reset. The bursting results
can be found in figure 6, too. To generate bursting behavior, the reset has to be set to a value above
the exponential threshold so that V is pulled upwards by the exponential directly after a spike.

As can be seen in figure 1, depending on the sharpness ∆t of the exponential term, the exact reset
voltage Vr might be critical in bursting, when reseting above the exponential threshold and the
nullcline is already steep at this point. The AdEx model is capable of irregular spiking in contrast
to the Izhikevich neuron [25] which uses a quadratic term to simulate the rise at a spike. The
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chaotic spiking capability of the AdEx model has been shown in [16]. In Hardware, we observe
that it is common to reach regimes, where the exact number of spikes in a burst is not constant, thus
the distance to the next spike or burst may differ in the next period. Another effect is that if the
equilibrium potential - the potential, where the nullclines cross - is near Vt, noise may cause the
membrane to cross Vt and hence generate a spike (Compare phase planes in figure 6 c) and d) ).

Figure 6 shows tonic bursting and phasic bursting. In phasic bursting, the nullclines are still crossing
in a stable fix point - the resting potential caused by adaptation, leakage and stimulus is below the
firing threshold of the exponential.

Patterns reproduced in experiment and simulations but not shown here are phasic spiking and initial
bursting.

4 Discussion

The main feature of our neuron is the capability of directly reproducing the AdEx model. It is neither
optimized to be low power nor small in size in contrast to postulations by Livi in [6]. Nevertheless,
it is low power in comparison to simulation on a supercomputer (estimated 100 µW in comparison
to 370 mW on a Blue Gene/P [26] at an acceleration factor of 104, computing time of Izhikevich
neuron model [23] used as estimate.) and does not consume much chip area in comparison to the
synapse array and communication infrastructure on the HICANN (figure 2). Complex indi-
vidual parameterization allows adaptation onto different models. As our model is working on an
accelerated time scale of up to 105 times faster than biological real time, it is neither possible nor
wanted to interact with systems relying on biological real time. Instead, by scaling the system up to
about a million neurons, it will be possible to do experiments which have never been feasible so far
due to the long duration of numerical simulations at this scale, i.e. allowing large parameter sweeps,
dense real-world stimuli as well as many repetitions of experiments for gaining statistics.

Due to the design approach - implementing an established model instead of developing a new model
fitting best to hardware devices - we gain a neuron allowing neuroscientist to do experiments without
being a hardware specialist.

5 Outlook

The neuron topology - several DenMems are interconnected to form a neuron - is predestined to be
enhanced to a multi-compartment model. This will be the next design step.

The simulations and measurements in this work qualitatively reproduce patterns observed in biology
and reproduced by the AdEx model in [16]. A method to directly map the parameters of the AdEx
quantitatively to the simulations has already been developed. This method needs to be enhanced to
a mapping onto the real hardware, counterbalancing mismatch and accounting for limited parameter
resolution.

Nested in the FACETS wafer-scale system, our neuron will complete the universality of the system
by a versatile core for analog computation. Encapsulation of the parameter mapping into low level
software and PyNN [12] integration of the system will allow computational neural scientists to do
experiments on the hardware and compare them to simulations, or to do large experiments, currently
not implementable in a simulation.
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Frégnac, Henry Markram, and Alain Destexhe. Minimal hodgkin–huxley type models for different classes
of cortical and thalamic neurons. Biological Cybernetics, 99(4):427–441, Nov 2008.

[23] Eugene M. Izhikevich. Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural
Networks, 15:1063–1070, 2004.

[24] Shaul Druckmann, Yoav Banitt, Albert Gidon, Felix Schrmann, Henry Markram, and Idan Segev. A
novel multiple objective optimization framework for constraining conductance-based neuron models by
experimental data. Front Neurosci, 1(1):7–18, Nov 2007.

[25] Eugene M. Izhikevich. Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks,
14:1569–1572, 2003.

[26] IBM. System blue gene solution. ibm.com/systems/deepcomputing/bluegene/, 2010.

9


