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Abstract

The Random Projection Tree (RREE) structures proposed in [1] are space par-
titioning data structures that automatically adapt to aasinotions of intrinsic
dimensionality of data. We prove new results for both the RBEFMAX and
the RPTREE-MEAN data structures. Our result for RREE-MAX gives a near-
optimal bound on the number of levels required by this datactire to reduce
the size of its cells by a facter> 2. We also prove a packing lemma for this data
structure. Our final result shows that low-dimensional fads have bounded
Local Covariance Dimension. As a consequence we show thARREMEAN
adapts to manifold dimension as well.

1 Introduction

The Curse of Dimensionality [2] has inspired research iesghdirections in Computer Science and
has led to the development of several novel techniques sudimeensionality reduction, sketching

etc. Almost all these techniques try to map data to lower dsimal spaces while approximately

preserving useful information. However, most of these néplies do not assume anything about
the data other than that they are imbedded in some high diorei&uclidean space endowed with

some distance/similarity function.

As it turns out, in many situations, the data is not simplttecad in the Euclidean space in arandom
fashion. Often, generative processes impose (non-limkgagndencies on the data that restrict the
degrees of freedom available and result in the data havimgriinsic dimensionality. There exist
several formalizations of this concept of intrinsic dimenglity. For example, [1] provides an
excellent example of automated motion capture in which gelaumber of points on the body of
an actor are sampled through markers and their coordinatesférred to an animated avatar. Now,
although a large sample of points is required to ensure lafditecovery of all the motions of the
body (which causes each captured frame to lie in a very higtedsional space), these points are
nevertheless constrained by the degrees of freedom offigrédte human body which are very few.

Algorithms that try to exploit such non-linear structuredata have been studied extensively re-
sulting in a large number dflanifold Learningalgorithms for example [3, 4, 5]. These techniques
typically assume knowledge about the manifold itself or dag¢a distribution. For example, [4]
and [5] require knowledge about the intrinsic dimensidgalf the manifold whereas [3] requires a
sampling of points that is “sufficiently” dense with respecsome manifold parameters.

Recently in [1], Dasgupta and Freund proposed space paititj algorithms that adapt to the in-
trinsic dimensionality of data and do not assume explicavdedge of this parameter. Their data
structures are akin to thie-d tree structure and offer guaranteed reduction in the &fizbe cells

after a bounded number of levels. Such a size reduction imwiEnse use in vector quantization [6]
and regression [7]. Two such tree structures are presamféfH each adapting to a different notion
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of intrinsic dimensionality. Both variants have alreadurid numerous applications in regression
[7], spectral clustering [8], face recognition [9] and ineaguper-resolution [10].

1.1 Contributions

The RPTREE structures are new entrants in a large family of space jmanititg data structures such
ask-d trees [11], BBD trees [12], BAR trees [13] and several wil{see [14] for an overview). The
typical guarantees given by these data structures are ébltbwing types :

1. Space Partitioning Guarantee: There exists a bounH(s), s > 2 on the number of levels
one has to go down before all descendants of a node of'seree of sizeA /s or less. The
size of a cell is variously defined as the length of the longiel&t of the cell (for box-shaped
cells), radius of the cell, etc.

2. Bounded Aspect Ratio: There exists a certain “roundedness” to the cells of thee-tthis
notion is variously defined as the ratio of the length of thrgkest to the shortest side of the
cell (for box-shaped cells), the ratio of the radius of thekest circumscribing ball of the
cell to that of the largest ball that can be inscribed in tHk et.

3. Packing Guarantee: Given a fixed ballB of radiusk and a size parameteythere exists a
bound on the number of disjoint cells of the tree that arez greater than and intersect
B. Such bounds are usually arrived at by first proving a bounithemspect ratio for cells
of the tree.

These guarantees play a crucial role in algorithms for fppt@imate nearest neighbor searches
[12] and clustering [15]. We present new results for the RBPEFMAX structure for all these types
of guarantees. We first present a bound on the number of Iezlsred for size reduction by any
given factor in an RPREE-MAX. Our result improves the bound obtainable from resultseres!

in [1]. Next, we prove an “effective” aspect ratio bound foPIRREE-M AX. Given the randomized
nature of the data structure it is difficult to directly bouhe aspect ratios of all the cells. Instead
we prove a weaker result that can nevertheless be explaitgivé a packing lemma of the kind
mentioned above. More specifically, given a bia)lwe prove an aspect ratio bound for the smallest
cell in the RPTREE-MAX that completely containB.

Our final result concerns the RREE-MEAN data structure. The authors in [1] prove that this
structure adapts to theocal Covariance Dimensionf data (see Section 5 for a definition). By
showing that low-dimensional manifolds have bounded l@taariance dimension, we show its
adaptability to the manifold dimension as well. Our reseltbnstrates the robustness of the notion
of manifold dimension - a notion that is able to connect to@ngetric notion of dimensionality such
as the doubling dimension (proved in [1]) as well as a statishotion such as Local Covariance
Dimension (this paper).

Due to lack of space we relegate some proofs tdSheplementary Materialocument and present
proofs of only the main theorems here. All results cited frtimer papers are presentedastsin
this paper. We will denote b (zx, r), a closed ball of radius centered at. We will denote byd,
the intrinsic dimensionality of data and 1y, the ambient dimensionality (typicalty < D).

2 TheRPTREE-MAX structure

The RPTREE-MAX structure adapts to the doubling dimension of data (seeitiefilbelow). Since
low-dimensional manifolds have low doubling dimensiore(fg Theorem 22) hence the structure
adapts to manifold dimension as well.

Definition 1. The doubling dimension of a sétc R” is the smallest integet such that for any
ball B(z,r) C RP, the setB(x,r) N S can be covered by balls of radiusr/2.

The RPTREE-MAX algorithm is presented data imbeddedRii having doubling dimensio. The
algorithm splits data lying in a cell’ of radiusA by first choosing a random directianc R?,
projecting all the data insid€ onto that direction, choosing a random vailie the rangd—1, 1] -
6A/+/D and then assigning a data pointo the left child ifz - v < mediarf{z-v:z € C}) +4
and the right child otherwise. Since it is difficult to get tveact value of the radius of a data set,



the algorithm settles for a constant factor approximatethe value by choosing an arbitrary data
pointz € C and using the estimatd = max({||z — y|| : y € C}).

The following result is provenin [1] :

Fact 2(Theorem 3in [1]) There is a constant; with the following property. Suppose &P TREE-
MAX is built using a data se6 ¢ R” . Pick any cellC in the RPTREE-MAX; suppose that
S N C has doubling dimensiof d. Then with probability at least/2 (over the randomization in
constructing the subtree rooted @f), every descendadt’ more thanc;d log d levels belowC' has
radiug(C") < radius(C)/2.

In Sections 2, 3 and 4, we shall always assume that the datddudiing dimensioni and shall
not explicitly state this fact again and again. Let us cossektensions of this result to bound the
number of levels it takes for the size of all descendants tdayen by a factos > 2. Let us analyze
the case ok = 4. Starting off in a cellC of radiusA, we are assured of a reduction in size by a
factor of2 afterc; dlog d levels. Hence al¢:¢!°e ¢ nodes at this level have radis/2 or less. Now
we expect that after; d log d more levels, the size should go down further by a factd tifereby
giving us our desired result. However, given the large nundbeéodes at this level and the fact
that the success probability in Fact 2 is just greater thaonatant bounded away froi it is not
possible to argue that afterd log d more levels the descendants of all these '°2 ¢ nodes will be

of radiusA/4 or less. It turns out that this can be remedied by utilizirgfthllowing extension of
the basic size reduction result in [1]. We omit the proof af #xtension.

Fact 3 (Extension of Theorem 3 in [1])For anyé > 0, with probability at least — ¢, every descen-
dantC” which is more tham; dlog d + log(1/9) levels belowC' has radiugC’) < radius(C)/2.

This gives us a way to boost the confidence and do the follomymdownL = ¢;d log d + 2 levels
from C to get the the radius of all thgs: @108 4+2 descendants down /2 with confidencd —1/4.
Afterward, go an additional’ = ¢;dlogd + L + 2 levels from each of these descendants so that
for any cell at levelL, the probability of it having a descendant of raditisA /4 after L' levels is
less thanL-. Hence conclude with confidence at least ; — &7 - 2© > $ that all descendants
of C after2L + c1dlogd + 2 have radius< A/4. This gives a way to prove the following result :
Theorem 4. There is a constant, with the following property. For any > 2, with probability at
leastl —1/4, every descendant’ which is more tham; - s- d log d levels below” has radiugC”) <
radiug(C)/s.

Proof. Refer to Supplementary Material O

Notice that the dependence on the factas linear in the above result whereas one expects it to
be logarithmic. Indeed, typical space partitioning altforis such a&-d trees do give such guar-
antees. The first result we prove in the next section is a baunthe number of levels that is
poly-logarithmic in the size reduction facter

3 A generalized size reduction lemma foRPTREE-M AX

In this section we prove the following theorem :

Theorem 5(Main). There is a constant; with the following property. Suppose & P TREE-M AX
is built using data se5 ¢ R” . Pick any cellC in the RPTREE-MAX; suppose thats N C
has doubling dimensiort d. Then for anys > 2, with probability at leastl — 1/4 (over the
randomization in constructing the subtree rooted’at for every descendant’ which is more than
cs - log s - dlog sd levels belowC, we have radiug”’) < radiugC)/s.

Compared to this, data structures such as [12] give det@sticiguarantees for such a reduction in
Dlog s levels which can be shown to be optimal (see [1] for an exampleus our result is optimal
but for a logarithmic factor. Moving on with the proof, let aensider a cell’ of radiusA in the
RPTREE-MAX that contains a datasSthaving doubling dimensios d. Then for anye > 0, a
repeated application of Definition 1 shows that fiean be covered using at maxst'os(1/¢) palls

of radiuseA. We will cover S N C using balls of radius%oAT\/E so thatO ((sd)?) balls would
A

suffice. Now consider all pairs of these balls, the distarete/ben whose centersis% ~ 550s7d"



neutral split
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Figure 1: BallsB; and B are of radius\ /s+/d and their centers ar/s — A/s+/d apart.

If random splits separate data from all such pairs of badlsfor no pair does any cell contain data
from both balls of the pair, then each resulting cell woultyaontain data from pairs whose centers
are closer thaﬁ} - ﬁsﬁ' Thus the radius of each such cell would be at ndbst.

We fix such a pair of balls calling thef; andBs. A split in the RPTREE-MAX is said to begood
with respect to this pair if it sends points insid® to one child of the cell in the RPREE-M AX
and points inside3; to the otherpadif it sends points from both balls to both children amelitral
otherwise (See Figure 1). We have the following propertfesrandom split :

Lemma 6. Let B = B(z,0) be a ball contained inside aRPTREE-MAX cell of radiusA that
contains a datasef of doubling dimensiod. Lets us say that a random split splits this ball if the
split separates the data s&tinto two parts. Then a random split of the cell spi2swith probability

36vVd
atmost=2=.

Proof. Refer to Supplementary Material O

Lemma 7. Let B; and B; be a pair of balls as described above contained in the€ehat contains
data of doubling dimensioéh Then a random split of the cell is a good split with respechts pair
with probability at least--.

Proof. Refer to Supplementary Material. Proof similar to that ofrirea 9 of [1]. O

Lemma 8. Let By and B; be a pair of balls as described above contained in the€Cdhat contains
data of doubling dimensio#. Then a random split of the cell is a bad split with respectiis pair
with probability at most—.

Proof. The proof of a similar result in [1] uses a conditional proligbargument. However the
technique does not work here since we require a bound thatassely proportional te. We instead
make a simple observation that the probability of a bad splipper bounded by the probability that
one of the balls is split since for any two eventsand B, P [A N B] < min{P [A],P[B]}. The
result then follows from an application of Lemma 6. O

We are now in a position to prove Theorem 5. What we will prevhat starting with a pair of balls

in a cellC, the probability that some cetllevels below has data from both the balls is exponentially
small ink. Thus, after going enough number of levels we can take a woond over all pairs of
balls whose centers are well separated (whicr(’h((an)Qd) in number) and conclude the proof.

Proof. (of Theorem 5) Consider a cell of radiusA in the RPTREE-MAX and fix a pair of balls
contained insid& with radii A/960s+v/d and centers separated by at leAsgts — A/960sv/d. Let



p§ denote the probability that a celllevels belowC has a descendarjtlevels below itself that
contains data points from both the balls. Then the followinfls :

Lemma 9. p) < (1 — G—QS)prc_l.
Proof. Refer to Supplementary Material. Proof similar to that ofrirea 11 of [1]. O

Note that this gives ug) < (1 — G—és)k as a corollary. However using this result would require us

to go downk = Q(sdlog(sd)) levels beforey) = W which results in a bound that is worse
(by a factor logarithmic irs) than the one given by Theorem 4. This can be attributed teritel

probability of a good split for a tiny pair of balls in largellse However, here we are completely
neglecting the fact that as we go down the levels, the radiet§ go down as well and good splits

become more frequent.

Indeed setting = 2 in Theorems 7 and 8 tells us that if the pair of balls were todrgained in a

cell of radiuss%2 then the good and bad split probabilities qfifg andﬁ respectively. This paves
way for an inductive argument : assume that with probability — 1/4, in L(s) levels, the size of
all descendants go down by a factoDenote b)pf] the probability of a good split in a cell at depth
I and byp! the corresponding probability of a bad split. $et= L(s/2) and letE be the event that

the radius of every cell at levél is less thans%. Let C’ represent a cell at depth. Then,

. 1 1 1
l > itinC’ . > . — ) > —
p, = [P[good splitinC’|E] - P[E] > 113 <1 4> 2 150
pi = P[bad splitinC’|E] - P[E] + P [bad splitinC’|-E] - P[-E]
PR SN S
640 640 4 = 512

Notice that now, for anyn > 0, we havep!, < (1 — %

k = 1* + cydlog(sd) and applying Lemma 9 gives y§ < (1

W. Thus we have

<

)m. Thus, for some constani, setting

o 6_§S)l* (1_ %)czldlog(sd) <

L(s) < L(s/2) + cadlog(sd)
which gives us the desired result on solving the recurrerecé (s) = O (dlog slog sd). O

4 A packing lemma for RPTREE-MAX

In this section we prove a probabilistic packing lemma forTRBE-MAX. A formal statement of
the result follows :

Theorem 10(Main). Given any fixed balB(z, R) C R, with probability greater than /2 (where
the randomization is over the construction of RETREE-MAX), the number of disjoinflRPTREE-

Max cells of radius greater than that intersectB is at most(%)o(d log dlog(dR/r))

Data structures such as BBD-trees give a bound of the f@rﬁé)D which behaves Iike{?)o(l)

- R
for fixed D. In comparison, our result behaves Iigé)o(log ") for fixed d. We will prove the
result in two steps : first of all we will show that with high frability, the ballB will be completely
inscribed in an RPREE-MAX cell C of radius no more tha® (Rd\/Elog d). Thus the number of

disjoint cells of radius at leastthat intersect this ball is bounded by the number of desaesad
C with this radius. To bound this number we then invoke Thedbseand conclude the proof.

4.1 An effective aspect ratio bound foRPTREE-MAX cells

In this section we prove an upper bound on the radius of thdlesh&RPTREE-MAX cell that
completely contains a given balt of radiusR. Note that this effectively bounds the aspect ratio
of this cell. Consider any cell’ of radiusA that containsB. We proceed with the proof by first
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Figure 2: BallsB; are of radiusA /512+/d and their centers ar& /2 far from the center oB.

showing that the probability tha® will be split before it lands up in a cell of radius/2 is at most
a quantity inversely proportional th. Note that we are not interested in all descendan€s obnly
the ones ones that contalh That is why we argue differently here. We consider ballsasfius

A/512+/d surroundingB at a distance ofA/2 (see Figure 2). These balls are made to cover the

annulus centered d of mean radius\ /2 and thicknesg\ /512v/d — clearlyd®@ balls suffice.
Without loss of generality assume that the centers of afig¢hmlls lie inC.

Notice that if B gets separated from all these balls without getting splihaprocess then it will
lie in a cell of radius< A/2. Fix a B; and call a random split of the RREE-MAX usefulif

it separatesB from B; anduselessf it splits B. Using a proof technique similar to that used in
Lemma 7 we can show that the probability of a useful split ieast— whereas Lemma 6 tells us

192
that the probability of a useless split is at mé@A@.

Lemma 11. There exists a constan such that the probability of a ball of radiuB in a cell of
radius A getting split before it lands up in a cell of radids/2 is at most%.

Proof. Refer to Supplementary Material O

We now state our result on the “effective” bound on aspeatsaif RPTREE-MAX cells.

Theorem 12. There exists a constan§ such that with probability> 1 — 1/4, a given (fixed) ball
B of radius R will be completely inscribed in aRPTREE-MAX cell C' of radius no more than

¢c6 - Rdv/dlogd.
Proof. Refer to Supplementary Material O

Proof. (of Theorem 10) Given a balB of radiusR, Theorem 12 shows that with probability at
least3/4, B will lie in a cell C of radius at most?’ = O (Rd\/ﬁlogd). Hence all cells of

radius atleast that intersect this ball must be either descendants or torsexfC'. Since we want

an upper bound on the largest number of such disjoint celisuffices to count the number of
descendants af' of radius no less than We know from Theorem 5 that with probability at least
3/4inlog(R’'/r)dlog(dR’/r) levels the radius of all cells must go belew The result follows by
observing that the RPREE-MAX is a binary tree and hence the number of children can be at most

gloa(R'/r)dlog(dR’/7) The success probability is at led8/4)? > 1/2. O



Figure 3: Locally, almost all the energy of the data is comizad in the tangent plane.

5 Local covariance dimension of a smooth manifold

The second variant of RRREE, namely RPREE-MEAN, adapts to the local covariance dimension
(see definition below) of data. We do not go into the detailthefguarantees presented in [1] due
to lack of space. Informally, the guarantee is of the follegvkind : given data that has small local
covariance dimension, on expectation, a data point in aofetldiusr in the RPTREE-MEAN will

be contained in a cell of radius - r in the next level for some constast < 1. The randomization

is over the construction of RRREE-MEAN as well as choice of the data point. This gives per-level
improvement albeit in expectation whereas REE-MAX gives improvement in the worst case but
after a certain number of levels.

We will prove that ad-dimensional Riemannian submanifold of R” has bounded local covari-
ance dimension thus proving that RRHE-M EAN adapts to manifold dimension as well.

Definition 13. A setS C R” has local covariance dimensidd, ¢, r) if there exists an isometry
M of R under which the se$ when restricted to any ball of radiushas a covariance matrix for
which somel diagonal elements contribute(d — ¢) fraction of its trace.

This is a more general definition than the one presented iwlil¢h expects the tog eigenvalues

of the covariance matrix to account fo( h— ¢) fraction of its trace. However, all that [1] requires
for the guarantees of RRREE-MEAN to hold is that there exist orthonormal directions such that
a (1 — ¢) fraction of the energy of the dataset i.g;_ . ||z — mean(S)||* is contained in those
dimensions. This is trivially true wheM is ad-dimensional affine set. However we also expect
that for small neighborhoods on smooth manifolds, mostefthergy would be concentrated in the
tangent plane at a point in that neighborhood (see Figura@ged, we can show the following :

Theorem 14(Main). Given a data sef C M whereM is ad-dimensional Riemannian manifold
with condition number, then for any < X, S has local covariance dimensic(ni, €, ‘/327)

For manifolds, the local curvature decides how small a risghood should one take in order to
expect a sense of “flathess” in the non-linear surface. Bhgsiantified using th€ondition Number

7 of M (introduced in [16]) which restricts the amount by which thanifold can curve locally.
The condition number is related to more prevalent notion®cdl curvature such as the second
fundamental form [17] in that the inverse of the conditiomoer upper bounds the norm of the
second fundamental form [16]. Informally, if we restrictreelves to regions of the manifold of
radiusr or less, then we get the requisite flatness properties. Stigmalized in [16] as follows.
For any hyperplan& c R” and a vectopr € R¢, letv (7") denote the projection af onto7".

Fact 15 (Implicit in Lemma 5.3 of [16]) SupposeM is a Riemannian manifold with condition
numberr. For anyp € M andr < \fer,e < 1, let M’ = B(p,r) N M. LetT = T,(M) be the
tangent space at. Then for anye,y € M/, ||lz)(T) — yy(T)||*> > (1 — €)[|z — y]|%.

This already seems to give us what we want - a large fractidheofength between any two points

on the manifold lies in the tangent plane - i.e. drdimensions. However in our case we have
to show that for some-dimensional plane”, >_, .« [|(z — 1), (P)? > (1 —€) > eqllz—pl?

7



wheren = mean(S). The problem is that we cannot apply Fact 15 since there isiregysthat the
mean will lie on the manifold itself. However it turns out thertain points on the manifold can act
as “proxies” for the mean and provide a workaround to the lerab

Proof. (of Theorem 14) Refer to Supplementary Material O

6 Conclusion

In this paper we considered the two random projection treepgsed in [1]. For the RPREE-
MAX data structure, we provided an improved bound (Theorem ®)@number of levels required
to decrease the size of the tree cells by any fagtor 2. However the bound we proved is poly-
logarithmic ins. It would be nice if this can be brought down to logarithmiccs it would directly
improve the packing lemma (Theorem 10) as well. More spetifiche packing bound would

O, g .
become(%)o(l)instead of(%)o(1 ¢ %) for fixed d.
As far as dependence ans concerned, there is room for improvement in the packingia. We
have shown that the smallest cell in the RFEEE-M AX that completely contains a fixed bdh of
radiusR has an aspect ratio no more tk(ar(d\/E log d) since it has a ball of radiuB inscribed in

it and can be circumscribed by a ball of radius no more tdiRdv/d log d ). Any improvementin
the aspect ratio of the smallest cell that contains a givéimnlilhalso directly improve the packing
lemma.

Moving on to our results for the RARREE-MEAN, we demonstrated that it adapts to manifold di-
mension as well. However the constants involved in our qutemare pessimistic. For instance,
the radius parameter in the local covariance dimensionvisrgas@ - this can be improved to

V;’ if one can show that there will always exists a pairg B(zo,r) N .M at which the function
g:x € M — ||z — p attains a local extrema.

We conclude with a word on the applications of our results. wasalready mentioned, packing
lemmas and size reduction guarantees for arbitrary faetagypically used in applications for
nearest neighbor searching and clustering. However, #ygdécations (viz [12], [15]) also require
that the tree have bounded depth. The RBEMAX is a pure space partitioning data structure that
can be coerced by an adversarial placement of points int@lzeprimarily left-deep or right-deep
tree having deptf)(n) wheren is the number of data points.

Existing data structures such as BBD Trees remedy this byrating space partitioning splits with
data partitioning splits. Thus every alternate split iscémt to send at most a constant fraction
of the points into any of the children thus ensuring a depét b logarithmic in the number of
data points. A similar technique is used in [7] to bound thptdeof the version of RPREE-
MaXx used in that paper. However it remains to be seen if the sdaokectin be used to bound the
depth of RPREE-MAX while maintaining the packing guarantees because altheugh “space
partitioning” splits do not seem to hinder Theorem 5, theythaler Theorem 10 (more specifically
they hinder Theorem 11).

We leave open the question of a possible augmentation of RERRE-M AX structure, or a better
analysis, that can simultaneously give the following goteas :

1. Bounded Depth: depth of the tree should kgn), preferably(log n)° ")

. i R (dlog E)O(])
2. Packing Guarantee: of the form(£) v

3. Space Partitioning Guarantee: assured size reduction by factoin (dlog s)°") levels
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