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Abstract

Boosting combines weak classifiers to form highly accurate predictors. Although
the case of binary classification is well understood, in the multiclass setting, the
“correct” requirements on the weak classifier, or the notion of the most efficient
boosting algorithms are missing. In this paper, we create a broad and general
framework, within which we make precise and identify the optimal requirements
on the weak-classifier, as well as design the most effective, in a certain sense,
boosting algorithms that assume such requirements.

1 Introduction

Boosting [17] refers to a general technique of combining rules of thumb, or weak classifiers, to form
highly accurate combined classifiers. Minimal demands are placed on the weak classifiers, so that a
variety of learning algorithms, also called weak-learners, can be employed to discover these simple
rules, making the algorithm widely applicable. The theory of boosting is well-developed for the case
of binary classification. In particular, the exact requirements on the weak classifiers in this setting
are known: any algorithm that predicts better than random on any distribution over the training set
is said to satisfy the weak learning assumption. Further, boosting algorithms that minimize loss as
efficiently as possible have been designed. Specifically, it is known that the Boost-by-majority [6]
algorithm is optimal in a certain sense, and that AdaBoost [11] is a practical approximation.

Such an understanding would be desirable in the multiclass setting as well, since many natural clas-
sification problems involve more than two labels, e.g. recognizing a digit from its image, natural
language processing tasks such as part-of-speech tagging, and object recognition in vision. How-
ever, for such multiclass problems, a complete theoretical understanding of boosting is lacking. In
particular, we do not know the “correct” way to define the requirements on the weak classifiers, nor
has the notion of optimal boosting been explored in the multiclass setting.

Straightforward extensions of the binary weak-learning condition to multiclass do not work. Requir-
ing less error than random guessing on every distribution, as in the binary case, turns out to be too
weak for boosting to be possible when there are more than two labels. On the other hand, requiring
more than 50% accuracy even when the number of labels is much larger than two is too stringent,
and simple weak classifiers like decision stumps fail to meet this criterion, even though they often
can be combined to produce highly accurate classifiers [9]. The most common approaches so far
have relied on reductions to binary classification [2], but it is hardly clear that the weak-learning
conditions implicitly assumed by such reductions are the most appropriate.

The purpose of a weak-learning condition is to clarify the goal of the weak-learner, thus aiding in
its design, while providing a specific minimal guarantee on performance that can be exploited by a
boosting algorithm. These considerations may significantly impact learning and generalization be-
cause knowing the correct weak-learning conditions might allow the use of simpler weak classifiers,
which in turn can help prevent overfitting. Furthermore, boosting algorithms that more efficiently
and effectively minimize training error may prevent underfitting, which can also be important.

In this paper, we create a broad and general framework for studying multiclass boosting that formal-
izes the interaction between the boosting algorithm and the weak-learner. Unlike much, but not all,
of the previous work on multiclass boosting, we focus specifically on the most natural, and perhaps



weakest, case in which the weak classifiers are genuine classifiers in the sense of predicting a single
multiclass label for each instance. Our new framework allows us to express a range of weak-learning
conditions, both new ones and most of the ones that had previously been assumed (often only im-
plicitly). Within this formalism, we can also now finally make precise what is meant by correct
weak-learning conditions that are neither too weak nor too strong.

We focus particularly on a family of novel weak-learning conditions that have an especially ap-
pealing form: like the binary conditions, they require performance that is only slightly better than
random guessing, though with respect to performance measures that are more general than ordinary
classification error. We introduce a whole family of such conditions since there are many ways of
randomly guessing on more than two labels, a key difference between the binary and multiclass set-
tings. Although these conditions impose seemingly mild demands on the weak-learner, we show that
each one of them is powerful enough to guarantee boostability, meaning that some combination of
the weak classifiers has high accuracy. And while no individual member of the family is necessary
for boostability, we also show that the entire family taken together is necessary in the sense that for
every boostable learning problem, there exists one member of the family that is satisfied. Thus, we
have identified a family of conditions which, as a whole, is necessary and sufficient for multiclass
boosting. Moreover, we can combine the entire family into a single weak-learning condition that is
necessary and sufficient by taking a kind of union, or logical OR, of all the members. This combined
condition can also be expressed in our framework.

With this understanding, we are able to characterize previously studied weak-learning conditions. In
particular, the condition implicitly used by AdaBoost. MH [19], which is based on a one-against-all
reduction to binary, turns out to be strictly stronger than necessary for boostability. This also applies
to AdaBoost.M1 [9], the most direct generalization of AdaBoost to multiclass, whose conditions
can be shown to be equivalent to those of AdaBoost.MH in our setting. On the other hand, the
condition implicit to Zhu et al.’s SAMME algorithm [21] is too weak in the sense that even when the
condition is satisfied, no boosting algorithm can guarantee to drive down the training error. Finally,
the condition implicit to AdaBoost.MR [19, 9] (also called AdaBoost.M2) turns out to be exactly
necessary and sufficient for boostability.

Employing proper weak-learning conditions is important, but we also need boosting algorithms that
can exploit these conditions to effectively drive down error. For a given weak-learning condition,
the boosting algorithm that drives down training error most efficiently in our framework can be
understood as the optimal strategy for playing a certain two-player game. These games are non-
trivial to analyze. However, using the powerful machinery of drifting games [8, 16], we are able to
compute the optimal strategy for the games arising out of each weak-learning condition in the family
described above. These optimal strategies have a natural interpretation in terms of random walks, a
phenomenon that has been observed in other settings [1, 6].

Our focus in this paper is only on minimizing training error, which, for the algorithms we derive,
provably decreases exponentially fast with the number of rounds of boosting. Such results can be
used in turn to derive bounds on the generalization error using standard techniques that have been
applied to other boosting algorithms [18, 11, 13]. (We omit these due to lack of space.)

The game-theoretic strategies are non-adaptive in that they presume prior knowledge about the edge,
that is, how much better than random are the weak classifiers. Algorithms that are adaptive, such as
AdaBoost, are much more practical because they do not require such prior information. We show
therefore how to derive an adaptive boosting algorithm by modifying one of the game-theoretic
strategies.

We present experiments aimed at testing the efficacy of the new methods when working with a very
weak weak-learner to check that the conditions we have identified are indeed weaker than others that
had previously been used. We find that our new adaptive strategy achieves low test error compared
to other multiclass boosting algorithms which usually heavily underfit. This validates the potential
practical benefit of a better theoretical understanding of multiclass boosting.

Previous work. The first boosting algorithms were given by Schapire [15] and Freund [6], followed
by their AdaBoost algorithm [11]. Multiclass boosting techniques include AdaBoost.M1 and Ad-
aBoost.M2 [11], as well as AdaBoost.MH and AdaBoost.MR [19]. Other approaches include [5, 21].
There are also more general approaches that can be applied to boosting including [2, 3, 4, 12]. Two
game-theoretic perspectives have been applied to boosting. The first one [10, 14] views the weak-



learning condition as a minimax game, while drifting games [16, 6] were designed to analyze the
most efficient boosting algorithms. These games have been further analyzed in the multiclass and
continuous time setting in [8].

2  Framework

We introduce some notation. Unless otherwise stated, matrices will be denoted by bold capital letters
like M, and vectors by bold small letters like v. Entries of a matrix and vector will be denoted as
M (i, 7) or v(i), while M(7) will denote the ith row of a matrix. Inner product of two vectors u, v
is denoted by (u, v). The Frobenius inner product of two matrices Tr(MM’') will be denoted by
M e M'. The indicator function is denoted by 1 [-]. The distribution over the set {1, ..., k} will be
denoted by A{1,...,k}.

In multiclass classification, we want to predict the labels of examples lying in some set X. Each
example x € X has a unique y label in the set {1, ..., k}, where k > 2. We are provided a training
set of labeled examples {(z1,y1),-- -, (Tm, Ym)}-

Boosting combines several mildly powerful predictors, called weak classifiers, to form a highly
accurate combined classifier, and has been previously applied for multiclass classification. In this
paper, we only allow weak classifier that predict a single class for each example. This is appealing,
since the combined classifier has the same form, although it differs from what has been used in much
previous work.

We adopt a game-theoretic view of boosting. A game is played between two players, Booster and
Weak-Learner, for a fixed number of rounds 7". With binary labels, Booster outputs a distribution
in each round, and Weak-Learner returns a weak classifier achieving more than 50% accuracy on
that distribution. The multiclass game is an extension of the binary game. In particular, in each
round ¢: (1) Booster creates a cost-matrix C; € R™** specifying to Weak-Learner that the cost
of classifying example z; as [ is C(i,1). The cost-matrix may not be arbitrary, but should conform
to certain restrictions as discussed below. (2) Weak-Learner returns some weak classifier h;: X —
{1,...,k} from a fixed space h; € H so that the cost incurred is C; o 15, = > | Cy(4, he(x;)),
is “small enough”, according to some conditions discussed below. Here by 1;, we mean the m x k
matrix whose (4, j)-th entry is 1 [h(i) = j]. (3) Booster computes a weight «v; for the current weak
classifier based on how much cost was incurred in this round.

At the end, Booster predicts according to the weighted plurality vote of the classifiers returned in

each round:
T

H(z) £ argmax fr(xz,1), where fr(z,1) £ Z 1 [he(x) =1 a. (1)
le{1,....k} =1

By carefully choosing the cost matrices in each round, Booster aims to minimize the training error
of the final classifer H, even when Weak-Learner is adversarial. The restrictions on cost-matrices
created by Booster, and the maximum cost Weak-Learner can suffer in each round, together define
the weak-learning condition being used. For binary labels, the traditional weak-learning condition
states: for any non-negative weights w(1),...,w(m) on the training set, the error of the weak
classfier returned is at most (1/2 —~/2) ). w;. Here v parametrizes the condition. There are many
ways to translate this condition into our language. The one with fewest restrictions on the cost-
matrices requires labeling correctly should be less costly than labeling incorrectly: Vi : C(i,y;) <
C(i,7;), while the restriction on the returned weak classifier h requires less cost than predicting
randomly: Y-, C(i, h(z;)) < 3, {(3 —2) C(i,%:) + (3 + %) C(i,y;) } . By the correspondence
w(i) = C(4,9;) — C(i, y;), we may verify the two conditions are the same.

We will rewrite this condition after making some simplifying assumptions. Henceforth, without
loss of generality, we assume that the true label is always 1. Let C®™ C R™*2 consist of matrices
C which satisfy C(i,1) < C(i,2). Further, let UY" € R™*? be the matrix whose each row is
(1/2 ++/2,1/2 — ~y/2). Then, Weak-Learner searching space H satisfies the binary weak-learning
condition if: VC € C"™, 3h e H : C o (1 — U‘Z/i") < 0. There are two main benefits to this refor-
mulation. With linear homogeneous constraints, the mathematics is simplified, as will be apparent
later. More importantly, by varying the restrictions C®™ on the cost vectors and the matrix U™, we
can generate a vast variety of weak-learning conditions for the multiclass setting k¥ > 2 as we now
show.



Let C C R™** and matrix B € R™**, which we call the baseline; we say a weak classifier space
'H satisfies the condition (C, B) if

VCeC,3heH: Ce(l,—B)<0, ie., ic(i,h(i)) <3 (c(i),B()). ()
=1 1=

=1

In (2), the variable matrix C specifies how costly each misclassification is, while the baseline B
specifies a weight for each misclassification. The condition therefore states that a weak classi-
fier should not exceed the average cost when weighted according to baseline B. This large class
of weak-learning conditions captures many previously used conditions, such as the ones used by
AdaBoost.M1 [9], AdaBoost. MH [19] and AdaBoost.MR [9, 19] (see below), as well as novel con-
ditions introduced in the next section.

By studying this vast class of weak-learning conditions, we hope to find the one that will serve the
main purpose of the boosting game: finding a convex combination of weak classifiers that has zero
training error. For this to be possible, at the minimum the weak classifiers should be sufficiently rich
for such a perfect combination to exist. Formally, a collection H of weak classifiers is eligible for
boosting, or simply boostable, if there exists a distribution A on this space that linearly separates the
data: Vi : argmax;e gy gy 2_nen MP)L[h(z:) = I] = y;. The weak-learning condition plays two
roles. It rejects spaces that are not boostable, and provides an algorithmic means of searching for the
right combination. Ideally, the second factor will not cause the weak-learning condition to impose
additional restrictions on the weak classifiers; in that case, the weak-learning condition is merely a
reformulation of being boostable that is more appropriate for deriving an algorithm. In general, it
could be too strong, i.e. certain boostable spaces will fail to satisfy the conditions. Or it could be foo
weak i.e., non-boostable spaces might satisfy such a condition. Booster strategies relying on either
of these conditions will fail to drive down error; the former due to underfitting, and the latter due
to overfitting. In the next section we will describe conditions captured by our framework that avoid
being too weak or too strong.

3 Necessary and sufficient weak-learning conditions

The binary weak-learning condition has an appealing form: for any distribution over the examples,
the weak classifier needs to achieve error not greater than that of a random player who guesses
the correct answer with probability 1/2 + ~. Further, this is the weakest condition under which
boosting is possible as follows from a game-theoretic perspective [10, 14] . Multiclass weak-learning
conditions with similar properties are missing in the literature. In this section we show how our
framework captures such conditions.

In the multiclass setting, we model a random player as a baseline predictor B € R™** whose rows
are distributions over the labels, B(i) € A {1,..., k}. The prediction on example 7 is a sample from
B(i). We only consider the space of edge-over-random baselines By C R™*% who have a faint
clue about the correct answer. More precisely, any baseline B € B in this space is y more likely
to predict the correct label than an incorrect one on every example i: VI £ 1, B(i,1) > B(i,1) + 7,
with equality holding for some [.

When k = 2, the space B consists of the unique player UE’:“, and the binary weak-learning
condition is given by (C"", U';i"). The new conditions generalize this to k£ > 2. In particular, define

C®" to be the multiclass extension of C®™: any cost-matrix in C*" should put the least cost on the
correct label, i.e., the rows of the cost-matrices should come from the set {c¢ € R¥ : VI, ¢(1) < ¢(0) }.
Then, for every baseline B € B2, we introduce the condition (C**, B), which we call an edge-
over-random weak-learning condition. Since C e B is the expected cost of the edge-over-random
baseline B on matrix C, the constraints (2) imposed by the new condition essentially require better
than random performance.

‘We now present the central results of this section. The seemingly mild edge-over-random conditions
guarantee eligibility, meaning weak classifiers that satisfy any one such condition can be combined
to form a highly accurate combined classifier.

Theorem 1 (Sufficiency). If a weak classifier space H satisfies a weak-learning condition (C*", B),
for some B € B, then H is boostable.



The proof involves the Von-Neumann Minimax theorem, and is in the spirit of the ones in [10]. On
the other hand the family of such conditions, taken as a whole, is necessary for boostability in the
sense that every eligible space of weak classifiers satisfies some edge-over-random condition.

Theorem 2 (Relaxed necessity). For every boostable weak classifier space H, there exists ay > 0
and B € BY" such that H satisfies the weak-learning condition (C",B).

The proof shows existence through non-constructive averaging arguments. Theorem 2 states that
any boostable weak classifier space will satisfy some condition in our family, but it does not help
us choose the right condition. Experiments in Section 5 suggest (Ceor, U ) is effective with very
simple weak-learners compared to popular boosting algorithms. (Here U, € B is the edge-over-
random baseline closest to uniform; it has weight (1 — +)/k on incorrect labels and (1 — v)/k + v
on the correct label.) However, there are theoretical examples showing each condition in our family
is too strong (supplement).

A perhaps extreme way of weakening the condition is by requiring the performance on a cost matrix
to be competitive not with a fixed baseline B € B, but with the worst of them:

VC eC*,Fdh e H:Cely < max CeB. 3)

BeBwr

Condition (3) states that during the course of the same boosting game, Weak-Learner may choose
to beat any edge-over-random baseline B € BY™, possibly a different one for every round and every
cost-matrix. This may superficially seem much too weak. On the contrary, this condition turns out
to be equivalent to boostability. In other words, according to our criterion, it is neither too weak nor
too strong as a weak-learning condition. However, unlike the edge-over-random conditions, it also
turns out to be more difficult to work with algorithmically.

Furthermore, this condition can be shown to be equivalent to the one used by AdaBoost.MR [19, 9].
This is perhaps remarkable since the latter is based on the apparently completely unrelated all-pairs
multiclass to binary reduction: the MR condition is given by (CMR, Bl,\y’[R), where CMR consists of
cost-matrices that put non-negative costs on incorrect labels and whose rows sum up to zero, while
BMR ¢ R™>* i5 the matrix that has + on the first column and — on all other columns(supplement).
Further, the MR condition, and hence (3), can be shown to be neither too weak nor too strong.

Theorem 3 (MR). A weak classifier space 'H satisfies AdaBoost. MR’s weak-learning condition
(CMR BI,‘Y’IR) if and only if it satisfies (3). Moreover; this condition is equivalent to being boostable.

Next, we illustrate the strengths of our random-over-edge weak-learning conditions through concrete
comparisons with previous algorithms.

Comparison with SAMME. The SAMME algorithm of [21] requires the weak classifiers to
achieve less error than uniform random guessing for multiple labels; in our language, their weak-
learning condition is (C = {(—t,t,¢,...):t>0},U,). As is well-known, this condition is
not sufficient for boosting to be possible. In particular, consider the dataset {(a, 1), (b,2)} with
k = 3,m = 2, and a weak classifier space consisting of hi, ho which always predict 1, 2, respec-
tively. Since neither classifier distinguishes between a,b we cannot achieve perfect accuracy by
combining them in any way. Yet, due to the constraints on the cost-matrix, one of h1, ho will always
manage non-positive cost while random always suffers positive cost. On the other hand our weak-
learning condition allows the Booster to choose far richer cost matrices. In particular, when the
cost matrix is C = (c¢(1) = (—1,+1,0),¢(2) = (+1,—1,0)) € C, both classifiers in the above
example suffer more loss than the random player U, and fail to satisfy our condition.

Comparison with AdaBoost. MH. AdaBoost.MH is a popular multiclass boosting algorithm that is
based on the one-against-all reduction[19]. However, we show that its implicit demands on the weak
classifier space is too strong. We construct a classifier space that satisfies the condition (C*",U.))
in our family, but cannot satisfy AdaBoost. MH’s weak-learning condition.

Consider a space H that has, for every (1/k + v)m element subset of the examples, a classifier
that predicts correctly on exactly those elements. The expected loss of a randomly chosen classifier
from this space is the same as that of the random player U, . Hence H satisfies this weak-learning
condition. On the other hand, it can be shown (supplement) that AdaBoost. MH’s weak-learning
condition is the pair (CM", BM*), where CM™ has non-(positive)negative entries on (in)correct labels,

and where each row of the matrix B} is the vector (1/2 + 7/2,1/2 —~/2,...,1/2 —~/2). A



quick calculation shows that for any h € H, and C € CM" with —1 in the first column and zeroes
elsewhere, C o (1, — BM*) = 1/2 — 1/k. This is positive when k > 2, so that H fails to satisfy
AdaBoost.MH’s condition.

4 Algorithms

In this section we devise algorithms by analyzing the boosting games that employ our edge-over-
random weak-learning conditions. We compute the optimum Booster strategy against a completely
adversarial Weak-Learner, which here is permitted to choose weak classifiers without restriction,
i.e. the entire space " of all possible functions mapping examples to labels. By modeling Weak-
Learner adversarially, we make absolutely no assumptions on the algorithm it might use. Hence,
error guarantees enjoyed in this situation will be universally applicable. Our algorithms are derived
from the very general drifting games framework [16] for solving boosting games, in turn inspired
by Freund’s Boost-by-majority algorithm [6], which we review next.

The OS Algorithm. Fix the number of rounds 7" and an edge-over-random weak-learning condition
(C,B). For simplicity of presentation we fix the weights oy = 1 in each round. With {7 defined as
in (1), the optimum Booster payoff can be written as

m
i ... mi 1 L 1), 02),. ., k).
gm | max, duin, |, max, </m)§ (fr(@i, 1), fr(@i,2), ..., (e, k)
Cie(14, -B)<0 Cre(14,—B)<0 =

Here the function L : R¥ — R is error, but we can also consider other loss functions such as
exponential loss, hinge loss, etc. that upper-bound error and are proper: i.e. L(x) is increasing in
the weight of the correct label :(1), and decreasing in the weights of the incorrect labels z(1),1 # 1.

Directly analyzing the optimal payoff is hard. However, Schapire [16] observed that the payoffs
can be very well approximated by certain potential functions. Indeed, for any b € R* define the
potential function ¢? : R* — R by the following recurrence:
o0 =1L; ¢(s) = ceria ) pe AT {Einp [0F_1 (s + )] : Biup [c(D)] < (b,0)}, (4)
where e, € R is the unit-vector whose I/th coordinate is 1 and the remaining coordinates zero.
These potential functions compute an estimate ¢P (s;) of whether an example = will be misclassified,
based on its current state s; consisting of counts of votes received so far on various classes s;(I) =
i,;ll 1 [hy (x) =], and the number of rounds ¢ remaining. Using these functions, Schapire [16]
proposed a Booster strategy, aka the OS strategy, which, in round ¢, constructs a cost matrix C € C,
whose each row C(i) achieves the minimum of the right hand side of (4) with b replaced by B(i), ¢
replaced by 7' —t, and s replaced by current state s;(4). The following theorem provides a guarantee
for the loss suffered by the OS algorithm, and also shows that it is the game-theoretically optimum
strategy when the number of examples is large.

Theorem 4 (Extension of results in [16]). Suppose the weak-learning condition is given by (C,B), If

Booster employs the OS algorithm, then the average potential of the states (1/m) >\ | gb?(i) (s())
never increases in any round. In particular, loss suffered after T' rounds of play is at most
(1/m)>", (;5?(1)(0). Further, for any € > 0, when the loss function satisfies some mild condi-
tions, and m > T, k, 1/¢, no Booster strategy can achieve loss ¢ less than the above bound in T
rounds.

Computing the potentials. In order to implement the OS strategy using our weak-learning con-
ditions, we only need to compute the potential ¢ for distributions b € A {1, ..., k}. Fortunately,
these potentials have a very simple solution in terms of the homogeneous random-walk R% (x), the
random position of a particle after ¢ time steps, that starts at location x € R”, and in each step moves
in direction e; with probability b(1).

Theorem 5. If L is proper, and b € A{1,... k} satisfies VI : b(1) > b(l), then ¢P(s) =
E[L (RL(s))]. Furthermore, the vector achieving the minimum in the right hand side of (4) is
given by c(l) = ¢P (s +e;).

Theorem (5) implies the OS strategy chooses the following cost matrix in round ¢: ¢(i,l) =

l}(_i)t_l(st(i) + €;), where s;(4) is the state of example ¢ in round ¢. Therefore everything boils



down to computing the potentials, which is made possible by Theorem 5. There is no simple closed
form solution for the non-convex 0-1 loss L(s) = 1[s; < (max;>1 s;)]. However, using Theo-
rem 4, we can write the potential ¢, (s) explicitly, and then compute it using dynamic programming
in O(t3k) time. This yields very tight bounds.

To obtain a more efficient procedure, and one that we will soon show can be made adaptive, we next
focus on the exponential loss associated with AdaBoost that does have a closed form solution.

Lemma 1. If L(s) = exp(n2(s2 — s1)) + - - - + exp(nr(sk — $1)), where each n; is positive, then

the solution in Theorem 5 evaluates to ¢P(s) = ZfZQ(al)tem(sﬁsl), where a; = 1 — (b1 + b;) +
elb; + e Mby.

The proof by induction is straightforward. In particular, when the condition is (Ce‘”,U,y) and

n = (n,m,...), the relevant potential is ¢;(s) = /@(”y,n)tZLQ e"(1=51) where k(7y,n) =

1+ % (e"+em—2) — (1 —e")y. The cost-matrix output by the OS algorithm can be
simplified by rescaling, or adding the same number to each coordinate of a cost vector, without
affecting the constraints it imposes on a weak classifier, to the following form

") entsisn) 1> 1
c(i,l){(e e ifl >1,

5
(e —1) Y F yentims) il =1, ®)

With such a choice, Theorem 4 and the form of the potential guarantee that the average loss
(1/m) 3% L(s¢(i)) of the states s; (i) changes by a factor of at most (v, 7) every round. Hence

the final loss is at most (k — 1)x (v, 7).

Variable edges. So far we have required Weak-Learner to beat random by at least a fixed amount
~v > 0 in each round of the boosting game. In reality, the edge over random is larger initially,
and gets smaller as the OS algorithm creates harder cost matrices. Therefore requiring a fixed
edge is either unduly pessimistic or overly optimistic. If the fixed edge is too small, not enough
progress is made in the initial rounds, and if the edge is too large, Weak-Learner fails to meet the
weak-learning condition in latter rounds. We attempt to fix this via two approaches: prescribing a
decaying sequence of edges 71, ..., yr, or being completely flexible, aka adaptive, with respect to
the edges returned by the weak-learner. In either case, we only use the edge-over-random condition
(Cer, U, ), but with varying values of 7.

Fixed sequence of edges. With a prescribed sequence of edges 71, . . ., yr the weak-learning condi-
tion (C*", U") in each round ¢ is different. We allow the weights a1, . . . , ar to be arbitrary, but they
must be fixed in advance. All the results for uniform + and weights a; = 1 hold in this case as well.
In particular, by the arguments leading to (5), if we want to minimize 37" | S5 ) e/t /(DY
where f; is as defined in (1), then the following strategy is optimal: in round ¢ output the cost matrix

_ (e®t — 1) eft-1(B0)=fr-a(i1) ifl > 1,
cll) = (e —1) Yk, efrm1 G —fia Gl =1 ©

This will ensure that the expression 7", 75, e{fe(b)=f(:1)} changes by a factor of at most
K(7t, c¢) in each round. Hence the final loss will be at most (k — 1) Hthl KVt ).

Adaptive. In the adaptive setting, we depart from the game-theoretic framework in that Weak-
Learner is no longer adversarial. Further, we are no longer guaranteed to receive a certain sequence
of edges. Since the choice of cost-matrix in (6) does not depend on the edges, we could fix an
arbitrary set of weights a; in advance, follow the same algorithm as before and enjoy the same bound

Hthl K(7Y¢, o). The trouble with this is (7, o) is not less than 1 unless oy is small compared to
v¢. To ensure progress, the weight o, must be chosen adaptively as a function of ;. Since we do not
know what edge we will receive, we choose the cost matrix as before but anticipating infinitesimally
small edge, in the spirit of [7], (and with some rescaling)

| - N () eft—1(8.3)=fr-1(3,1) ifl > 1,
Clil) = lim Cali,)) £ 2 {( BN S I SIS Ry S
eft—1(.3)—fr-1(4,1) if I > 1,
= . Z;’C:Q eft—1(L)=Ffe-1(B1)  4f] =1, v
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Figure 1: Figure 1(a) plots the final test-errors of M1(black, dashed), MH(blue, dotted) and New method(red,
solid) against the maximum tree-sizes allowed as weak classifiers. Figure 1(b) plots how fast the test-errors of
these algorithms drop with rounds, when the maximum tree-size allowed is 5.

Since Weak-Learner cooperates, we expect the edge d; of the returned classifier h; on the supplied
cost-matrix lim,_,g C,, to be more than just infinitesimal. In that case, by continuity, there are non-
infinitesimal choices of the weight o such that the edge v achieved by h; on the cost-matrix C,,
remains large enough to ensure k(7 o) < 1. In fact, with any choice of ay, we get k (¢, o) <

1— 1(e™ —e )6 + 3 (e + e~ —2) (supplement). Tuning oy to 1 1In ifgf results in

K(y,00) < /1 — (5? . This algorithm is adaptive, and ensures that the loss, and hence error, after

T rounds is at most (k — 1) [[/_, v/1— 02 < (k — 1) exp {—(1/2) S 63}

5 Experiments

We report preliminary experimental results on six, varying multiclass UCI datasets.

The first set of experiments were aimed at determining
overall performance of our new algorithm. We compared

a standard implementation M1 of AdaBoost.M1 with C4.5 2

as weak learner, and the Boostexter implementation MH =1 B Newhiehor
of AdaBoost. MH using stumps [20], with the adaptive

algorithm described in Section 4, which we call New 7

method, using a naive greedy tree-searching algorithm |

Greedy for weak-learner. The size of trees was chosen

to be of the same order as the tree sizes used by M1. Test 1 H:- D:I

errors after 500 rounds of boosting are plotted in Figure 2.
The performance is comparable with M1 and far better
than MH (understandably since stumps are far weaker than

trees), even though our weak-learner is very naive com- Flicgureczl: Tih'is islaplm of the ﬁ?al tleSt'ermrs
pared to C45 of standar mp ementations of M1, MH an

New method after 500 rounds of boosting.

i
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We next investigated how each algorithm performs with

less powerful weak-classifiers, namely, decision trees whose size has been sharply limited to various
pre-specified limits. Figure 1(a) shows test-error plotted as a function of tree size. As predicted by
our theory, our algorithm succeeds in boosting the accuracy even when the tree size is too small
to meet the stronger weak learning assumptions of the other algorithms. The differences in perfor-
mance are particularly strong when using the smallest tree sizes.

More insight is provided by plots in Figure 1(b) of the rate of convergence of test error with rounds
when the tree size allowed is very small (5). Both M1 and MH drive down the error for a few rounds.
But since boosting keeps creating harder cost-matrices, very soon the small-tree learning algorithms
are no longer able to meet the excessive requirements of M1 and MH. However, our algorithm makes
more reasonable demands that are easily met by the weak learner.
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