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Abstract

This paper presents a co-regularization based approaemtiessipervised domain adaptation. Our
proposed approach (EA++) builds on the notion of augmerpedes (introduced in ESYADAPT
(EA) [1]) and harnesses unlabeled data in target domainrtbduassist the transfer of information
from sourceto target This semi-supervised approach to domain adaptation ismely simple to
implement and can be applied as a pre-processing step toupeyvised learner. Our theoretical
analysis (in terms of Rademacher complexity) of EA and EAkavsthat the hypothesis class of
EA++ has lower complexity (compared to EA) and hence resultighter generalization bounds.
Experimental results on sentiment analysis tasks reigfour theoretical findings and demonstrate
the efficacy of the proposed method when compared to EA asaselew other representative
baseline approaches.

1 Introduction

A domain adaptation approach for NLP tasks, termedYADAPT (EA), augments theource domairfieature space
using features from labeled datatarget domair[1]. EA is simple, easy to extend and implement as a prepsitgs
step and most importantly is agnostic of the underlyingsifees. However, EA requires labeled data in both source
and target, and hence applies to fully supervised domaiptatian setting®nly. In this paper! we propose a semi-
supervised approach to leverage unlabeled data fasEADAPT (which we call EA++) and theoretically, as well as
empirically, demonstrate its superior performance over EA

There exists prior work on supervised domain adaptatiod (aumlti-task learning) that can be related tavADAPT.

An algorithm for multi-task learning using shared parameeteas proposed for multi-task regularization [3] wherein
each task parameter was represented as sum of a mean par@thstetays same for all tasks) and its deviation
from this mean. SVMs were used as the base classifiers antgthrittam was formulated in the standard SVM dual
optimization setting. Subsequently, this framework wagmeaed to online multi-domain setting in [4]. Prior work
on semi-supervised approaches to domain adaptation ks exliterature. Extraction of specific features from the
available dataset was proposed [5, 6] to facilitate the tdiglomain adaptation. Co-adaptation [7], a combination of
co-training and domain adaptation, can also be consideredsemi-supervised approach to domain adaptation. A
semi-supervised EM algorithm for domain adaptation wapgsed in [8]. Similar to graph based semi-supervised
approaches, a label propagation method was proposed [8tilddte domain adaptation. Domain Adaptation Ma-
chine (DAM) [10] is a semi-supervised extension of SVMs fonthin adaptation and presents extensive empirical
results. Nevertheless, in almost all of the above caseprtposed methods either use specifics of the datasets or are
customized for some particular base classifier and henseniiticlear how the proposed methods can be extended to
other existing classifiers.

A preliminary version [2] of this work appeared in the DANLR®#kshop at ACL 2010.
2\We definesupervised domain adaptati@s having labeled data in basburceandtargetandunsupervised domain adaptation

as having labeled data in ongpurce In semi-supervised domain adaptatiome also have access to both labeled and unlabeled
data intarget



As mentioned earlier, EA is remarkably general in the selmgtit can be used as a pre-processing step in conjunction
with any base classifier. However, one of the prime limitasiof EA is its incapability to leverage unlabeled data.
Given its simplicity and generality, it would be interesgfito extend EA to semi-supervised settings. In this paper, we
propose EA++, a co-regularization based semi-supervigstmhsion to EA. We also present Rademacher complex-
ity based generalization bounds for EA and EA++. Our geigtibn bounds also apply to the approach proposed
in [3] for domain adaptation setting, where we are only coneéd with the error on target domain. The closest to our
work is a recent paper [11] that theoretically analyzes¥ADAPT. Their paper investigates the necessity to com-
binesupervisecandunsupervisedlomain adaptation (which the authors refer tdadledandunlabeledadaptation
frameworks, respectively) and analyzes the combinatiargumistake bounds (which is limited to perceptron-based
online scenarios). In addition, their work points out thasEADAPT is limited to only supervised domain adaptation.
On the contrary, our work extendssEYADAPT to semi-supervised settings and presents generalizadiamdobased
theoretical analysis which specifically demonstrate why+EAs better than EA.

2 Background

In this section, we introduce notations and provide a briefreiew of EASYADAPT [1].

2.1 Problem Setup and Notations

Let ¥ c R? denote the instance space a¥ic= {—1,+1} denote the label space. L& (z,y) be the source
distribution andD; (z, y) be the target distribution. We have a set of source labelathplesL,(~ D;(z,y)) and a
set of target labeled examplés(~ D:(z,y)), where|Ly| = I, > |L:| = ;. We also have target unlabeled data
denoted byU;(~ D:(x)), where|U;| = u;. Our goal is to learn a hypothedis: X — Y having low expected error
with respect to the target domain. In this paper, we congiigear hypothesesnly. However, the proposed techniques
extend to non-linear hypotheses, as mentioned in [1]. ®oamd target empirical errors for hypothdsiare denoted
by é(h, fs) andé.(h, f;) respectively, wherg, and f; are the true source and target labeling functions. Simgjlarl
the corresponding expected errors are denoted @by, /) ande;(h, f;). We will use shorthand notations &f, &, ¢
ande; wherever the intention is clear from context.

2.2 EasyAdapt (EA)

Let us denot&? as theoriginal space. EA operates in augmentedpace denoted by c R3¢ (for a single pair of
source and target domain). Ferdomains, thewugmentedpace blows up t&(*+1?, The augmented feature maps
®5, &' : X — X for source and target domains are definedag) = (x, x, 0) and®*(x) = (x, 0, x) wherex
ando are vectors irR?, and0 denotes a zero vector of dimensi@nThe firstd-dimensional segment corresponds to
commonality between source and target, the seebdiinensional segment corresponds to the source domaie whil
the last segment corresponds to the target domain. Soudctaaget domain examples are transformed using these
feature maps and the augmented features so constructedssedponto the underlying supervised classifier. One of
the most appealing properties oAEYADAPT is that it is agnostic of the underlying supervised classifeang used to
learn in theaugmentedpace. Almost angtandard supervised learning approagbr e.g., SVMs, perceptrons) can be
used to learn #inear hypothesid € R3? in the augmented space. Let us deriote (gc, 8s, 8t), Where each of.,

gs, gt is of dimensiont, and represent theommonsource-specifiandtarget-specificomponents ok, respectively.
During prediction on target data, the incoming target sawps$ transformed to obtaif®’(x) andh is applied on this
transformed sample. This is equivalent to applyigg + g¢) onx. A intuitive insight into why this simple algorithm
works so well in practice and outperforms most state-ofdttealgorithms is given in [1]. Briefly, it can be thought
to be simultaneously training two hypothesés: = (g. + gs) for source domain antl; = (g. + g¢) for target
domain. The commonality between the domains is represéntgd whereags andg; capture the idiosyncrasies of
the source and target domain, respectively.

3 EA++: EA using unlabeled data

As discussed in the previous section, thresEEADAPT algorithm is attractive because it performs very well encpity
and can be used in conjunction with any underlying supetJisear classifier One drawback of ESYADAPT is its
inability to leverage unlabeled target data which is usualailable in large quantities in most practical scenarins
this section, we extend EA to semi-supervised settingsanhdintaining the desirable classifier-agnostic property.



3.1 Motivation

In multi-view approach to semi-supervised learning [12ffedent hypotheses are learned using differeietvs of

the dataset. Thereafter, unlabeled data is utilized tcegodarize these learned hypotheses by making them agree on
unlabeled samples. In domain adaptation, the source aget @ata come from two different distributions. However,

if the source and target domains aeasonably closeve can employ a similar form of regularization using unlade
data. A prior co-regularization based idea to harness efddlilata in domain adaptation tasks demonstrated improved
empirical results [10]. However, their technique applisthe particular base classifier they consider and hence doe
not extend to other supervised classifiers.

3.2 EA++: EASYADAPT with unlabeled data

In our proposed semi-supervised approach, the source eget taypotheses are made to agree on unlabeled data.
We refer to this algorithm as EA++. Recall thad&rADAPT learns dinear hypothesidi € R3? in the augmented
space. The hypothesis contains common, source-specific and target-specific gpbtheses and is expressed as
h = (g, gs, g¢). In original space (ref. Section 2.2), this is equivalent to learning ure® specific hypothesis

hs = (g. + gs) and a target specific hypothetis = (g. + gt ).

In EA++, we want the source hypothegdis and the target hypothesls, to agree on the unlabeled data. For an
unlabeled target sampig € U; C R?, the goal of EA++ is to make the predictionslaf andh; onx;, agree with
each other. Formally, it aims to achieve the following cdioai:

hg - x; ~ hy - X3 <= (8c +8s) - Xi ® (8¢ + 8t) - Xi
<~ (gs - gt) X R0 = <gca s gt> ’ <0, Xi, 7Xi> ~ 0. (3-1)

The above expression leads to the definition of a new featapdti : X’ — X for unlabeled data given byr* (x) =

(0, x, —x). Every unlabeled target sample is transformed using the &¥dp. The augmented feature space that
results from the application of three feature maps, nandely,), ®¢(-) and®“(-) on source labeled samples, target
labeled samples and target unlabeled samples is summarizeglre 1(a).

As shown in Eqg. 3.1, during the training phase, EA++ assigm®dicted value close tfor each unlabeled sample.
However, it is worth noting that during the test phase, EA+edjcts labels from two classes:1 and —1. This
warrants further exposition of the implementation spegifitich is deferred until the next subsection.
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Figure 1: (a) Diagrammatic representation of feature augation in EA and EA++, (b) Loss functions for clasg,
class—1 and their summation.

3.3 Implementation

In this section, we present implementation specific detdilSA++. For concreteness, we consider SVM as the base
supervised learner. However, these details hold for athipervised linear classifiersin the dual form of SVM
optimization function, the labels are multiplied with feegs. Since, we want the predicted labels for unlabeled data
to be0 (according to Eqg. 3.1), multiplication by zero will make tinelabeled samples ineffective in the dual form of



the cost function. To avoid this, we create as many copieb“gk) as there are labels and assign each label to one
copy of ®*(x). For the case of binary classification, we create two cogfiesery augmented unlabeled sample, and
assign+1 label to one copy and 1 to the other. The learner attempts to balance the loss ofwhedpies, and tries

to make the prediction on unlabeled sample equél tBigure 1(b) shows the curves of the hinge loss for class
class—1 and their summation. The effective loss for each unlabedetpde is similar to the sum of losses feit and

—1 classes (shown in Figure 1(b)c).

4 Generalization Bounds

In this section, we present Rademacher complexity baseergkeration bounds for EA and EA++. First, we define
hypothesis classes for EA and EA++ using an alternate fation. Second, we present a theorem (Theorem 4.1)
which relategmpiricalandexpectecrror for the general case and hence applies to both thessandtarget domains.
Third, we prove Theorem 4.2 which relates thepected target erroto theexpected source errofFourth, we present
Theorem 4.3 which combines Theorem 4.1 and Theorem 4.2 so ra@tate theexpected target erroto empirical
errors in source and target (which is the main goal of the ggization bounds presented in this paper). Finally, all
that remains is to bound the Rademacher complexity of thewshypothesis classes.

4.1 Define Hypothesis Classes for EA and EA++

Our goal now is to define the hypothesis classes for EA and Egoras to make the theoretical analysis feasible.
Both EA and EA++ train hypotheses in the augmented space R3¢. The augmented hypothedisis trained
using data from both domains, and the three sub-hypothgses é. + g¢) of d-dimension are treated in a different
manner for source and target data. We use an alternate fationubf the hypothesis classes and work in the original
spaceY C R%. As discussed briefly in Section 2.2, EA can be thought to Imeisaneously training two hypotheses
hs = (g + gs) andhy = (gc + g¢) for source and target domains, respectively. We considecéise when the
underlying supervised classifier in augmented space usgsaaed.»-norm regularizer of the forrﬁf1||2 (as usedin
SVM). This is equivalent to imposing the regularizgee >+ ||gs| >+ lgc]|*) = (|[ge|*+|[hs—ge|*+|[he —ge|I?).
Differentiating this regularizer w.r.tg. givesg. = (hs + ht)/3 at the minimum, and the regularizer reduces to
3 (/[hs|[> 4 [[h¢||* + ||hs — he||?). Thus, EA can be thought to be minimizing the sum of empiricairce error on
h, empirical target error oh; and this regularizer. The cost functi@ 4 (hy, h2) can now be written as:

aés(hy) + (1 — a)é(hg) + Ar||he|[? + X2 [ha||* + A|[hy — ha|?>, and (hs, hy) = arg min Opa (41)
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The EA algorithm minimizes this cost function ovief andhs jointly to obtainhg andh;. The EA++ algorithm
uses target unlabeled data, and encourhgesdh; to agree on unlabeled samples (Eg. 3.1). This can be thofight o
as having an additional regularizer of the fopy ., (hs(zi) — hg (x;))% in the cost function. The cost function for
EA++ (denoted a® + (h1, h2)) can then be written as:

aés(hy) + (1= a)é;(ha) + Ml[h|]” + Xof[ha|* + A|lhy — ha||* + Xy > (ha(z:) — ha(w:))” (4.2)
ieUy

Both EA and EA++ give equal weights to source and target éngpierrors, sow turns out to bed.5. We use
hyperparameters;, A2, A, and\,, in the cost functions to make them more general. Howeverxplaiaed earlier,
EA implicitly sets all these hyperparameteis (2, ) to the same value (which will be.5(1) = + in our case,
since the weights in the entire cost function are multipbgdr = 0.5). The hyperparameter for unlabeled data)(
is 0.5 in EA++. We assume that the loggy, h.x) is bounded byi for the zero hypothesl = 0. This is true for
many popular loss functions including square loss and hioge wheny € {—1,+1}. One possible way [13] of
defining the hypotheses classes is to substitute triviabthgsed; = ho = 0 in both the cost functions which makes
all regularizers and co-regularizers equal to zero and blousds the cost function@g4 and Q.. This gives us
Qra(0,0) < 1andQ,,(0,0) < 1 sinceé, (0),€:(0) < 1. Without loss of generality, we also assume that final
source and target hypotheses can only reduce the costdaoragicompared to the zero hypotheses. Hence, the final
hypothesis paifhs, h¢) that minimizes the cost functions is contained in the follapypaired hypothesis classes for
EA and EA++,

H :={(h1,h2) : Ay |[hy|]* + Aa|/hz|[* + A[[hy — hy|]* <1}

Hor = {(h1,h2) : Arl[ha|? + Aol [hz|® + Ahy — bl + A, Y (ha(e) — ha(e))? <1} (43)
€U,



The source hypothesis class for EA is the set abauch that the paiih1, ho) isinH. Similarly, the target hypothesis
class for EA is the set of all; such that the paifh, h2) is in H. Consequently, the source and target hypothesis
classes for EA can be defined as:

Jiai=1{h1: X — R, (hy,hs) € H} and j,éA :={h2: X = R, (hy,hs) € H} (4.4)
Similarly, the source and target hypothesis classes forEdye defined as:
jj+ = {1’11 X = R, (h17h2) S H++} and jiJr = {h2 X = R, (h17h2) < H++} (45)

Furthermore, we assume that our hypothesis class is cordpoisreal-valued functions over an RKHS with repro-
ducing kernek(-,-), k :X xX — R. Let us define the kernel matrix and partition it correspagdo source labeled,
target labeled and target unlabeled data as shown below:

As><s CVs><t Ds><u

K= C£><s Bixt  FEixu ; (4.6)
D;Xs E’{l,Xt FUXU

where ‘s’, 't and ‘U’ indicate terms corresponding to soeitabeled, target labeled and target unlabeled, respbctive

4.2 Relate empirical and expected error (for both source andarget)

Having defined the hypothesis classes, we now proceed tinaj#aeralization bounds for EA and EA++. We have
the following standard generalization bound based on tlteRacher complexity of a hypothesis class [13].

Theorem 4.1. Suppose the uniform Lipschitz condition holds for : )2 — [0,1], i.e., |L(y1,y) —

L(ya,y)] < M|y1 — y2|, wherey, 1,92 € Y andy; # v2. Then for anyd € (0,1) and for m samples
(X1, Y1), (X2,Y2),...,(Xm, Ys) drawn i.i.d. from distributiorD, we have with probability at leagtl — §) over
random draws of samples,

e(f) < e(f) +2MR,.(F) + %(2 +3/1n(2/6)/2).

wheref € F is the class of functions mappidg — ), andRm(}") is the empirical Rademacher complexity/6f
defined adi,,,(F) := Ey[supjer |25 oiha(x;)|).

If we can bound the complexity of hypothesis classgs, and. 7% ,, we will have a uniform convergence bound on
the difference of expected and empirical errdes(f) — €:(h)| and|es(h) — és(h)|) using Theorem 4.1. However, in
domain adaptation setting, we are also interested in thedwithat relate expected target error to total empiricalrerr
on source and target samples. The following sections airatieee this goal.

4.3 Relate source expected error and target expected error

The following theorem provides a bound on the differencexgfeeted target error and expected source error. The
bound is in terms ofjs := €:(fs, ft), Vs := es(h}, fi) andvy := e.(h}, fi), wheref, and f; are the source and target
labeling functions, and; is the optimal target hypothesis in target hypothesis cl#salso usesiya (Ds, D:)—
distance [14], which is defined asp;,, ;,,<# 2|es(h1, ha) — €:(h1, he)|. Thedyax —distance measures the distance
between two distribution using a hypothesis class-spediftance measure. If the two domains are close to each
other,ns anddyan (D5, D;) are expected to be small. On the contrary, if the domainsaaraepart, these terms will

be big and the use of extra source samples may not help inngaarbetter target hypothesis. These two terms also
represent the notion of adaptability in our case.

Theorem 4.2. Suppose the loss function is M-Lipschitz as defined in Thedr&, and obeys triangle inequality. For
any two source and target hypotheggsh, (which belong to different hypotheses classes), we have

1
et(ht,ft) - es(hsvfs) SM”ht - thES |:\/ k(zax):| + §dHtAHt(DS’Dt) + 15 + Vs + Vg

where™; is the target hypothesis class, ah(, -) is the reproducing kernel for the RKH&,, v, andv; are defined
as above.

Proof. Please see Appendix A in the supplement. O



4.4 Relate target expected error with source and target empical errors

EA and EA++ learn source and target hypotheses jointly. $aethpirical error in one domain is expected to have
its effect on the generalization error in the other domairthis section, we aim to bound the target expected error in
terms of source and target empirical errors. The followheprem achieves this goal.

Theorem 4.3. Under the assumptions and definitions used in Theorem 4.Thedrem 4.2, with probability at least
1 — 6 we have

er(he, f1) < = (Es(hs, fs) + & (e, f2)) + %(QMRm(HS) +2M R (H2)) + % (% + %) (2 + 3v/In(2/5)/2)

1

2
1 1 1

+ 3 MlIhe = ol | B [VR(,2)| + Jdroar, (Dsy D) + 5 (0 + v + 1)

foranyh, andh,. H, andH; are the source hypothesis class and the target hypothesis,akespectively.

Proof. We first use Theorem 4.1 to boutd(h:) — € (h:)) and(es(hs) — €5(hs)). The above theorem directly follows
by combining these two bounds and Theorem 4.2. O

This bound provides better a understanding of how the tange¢cted error is governed by both source and target
empirical errors, and hypotheses class complexities. Aétsvior is expected since both EA and EA++ learn source
and target hypotheses jointly. We also note that the boufidhéorem 4.3 depends dfhs — h:||, which apparently
might give an impression that the best possible thing to tiorisake source and target hypotheses equal. However, due
to joint learning of source and target hypotheses (by opgtimgithe cost function of Eq. 4.1), making the source and
target hypotheses close will increase the source empgeicat, thus loosening the bound of Theorem 4.3. Noticing
that||hs, — h]|?> < ; for both EA and EA++, the bound can be made independetitigf— k.|| although with a
sacrifice on the tightness. We note that Theorem 4.1 can alsséd to bound the target generalization error of EA
and EA++ in terms of only target empirical error. Howeverthié number of labeled target samples is extremely
low, this bound can be loose due to inverse dependency onemwhbarget samples. Theorem 4.3 bounds the target
expected error using the averages of empirical errors, fRadeer complexities, and sample dependent terms. If the
domains are reasonably close and the number of labeledessaneples is much higher than target samples, this can
provide a tighter bound compared to Theorem 4.1.

Finally, we need the Rademacher complexities of sourceanget hypothesis classes (for both EA and EA++) to be
able to use Theorem 4.3, which are provided in the next sextio

4.5 Bound the Complexity of EA and EA++ Hypothesis Classes

The following theorems bound the Rademacher complexith@target hypothesis classes for EA and EA++.

45.1 EASYADAPT (EA)

Theorem 4.4. For the hypothesis clasg}, , defined in Eq. 4.4 we hav%% < Rn(Thy) < QCZ:EA where,

Rp(TL4) = E, SWpp,eqe |22, 0iha(@)], (Cha)? = (ﬁ)tr(m and B is the kernel sub-matrix de-
2+ (x5 +3

fined as in Eq. 4.6.

Proof. Please see Appendix B in the supplement. O

The complexity of target class decreases with an increatbeinalues of hyperparameters. It decreases more rapidly
with change in\y compared to\ and A\, which is also expected sincg is the hyperparameter directly influencing
the target hypothesis. The kernel block sub-matrix cooedmg to source samples does not appear in the bound.
This result in conjunction with Theorem 4.1 gives a boundtanttirget generalization error.

To be able to use the bound of Theorem 4.3, we need the Rademamhplexity of the source hypothesis class.
Due to the symmetry of paired hypothesis class (Eqg. 4.3),irand ho up to scalar parameters, the complex-



ity of source hypothesis class can be similarly bounded%y% < Ru(Tg ) < QCZEA where (C44)? =

(ﬁ) tr(A), andA is the kernel block sub-matrix corresponding to source $asnp
1+ (55 +%

4.5.2 EASYADAPT++ (EA++)

. . . 2Ct A
Theorem 4.5. For the hypothesis class7{  defined in Eq. 4.5 we haVe% = < Rn(Jiy) <
ct .
% where, R, (Jf,) = Egsuph2€ji+|zioih2(z)| and (CL )? = (%)tr(B) —

AZ‘F(ﬁ“ri)
2

Au (z\/\1+/\:\\;+/\1/\2) tr (B(I + kF)"'E'), wherek = y Qi
Proof. Please see Appendix C in the Supplement. O

The second termifC"._, )? is always positive since the trace of a positive definite mamositive. So, the unlabeled
data results in a reduction of complexity over the labeletd dase (Theorem 4.4). Thieace term in the reduction
can also be written &5, ||Ez-||%l+kF),1 , whereE; is thei’th column of matrixE and|| - ||% is the norm induced by a
positive definite matrixZ. SinceF; is the vector representing the inner product thf target sample with all unlabeled
samples, this means that the reduction in complexity isgntognal to thesimilarity between target unlabeled samples
and target labeled samples. This result in conjunction Witkorem 4.1 gives a bound on the target generalization
error in terms of target empirical error.

To be able to use the bound of Theorem 4.3, we need the Rademaminplexity of source hypothesis class too.
Again, as in case of EA, using the symmetry of paired hypasheassH . (Eg. 4.3) inh; andhs up to scalar

parameters, the complexity of source hypothesis class eamtilarly bounded by}—\/5 265* < Rm(jj+) < 2(’;‘?*,
2
where(C3 ,)? = (W)”M) - (m) tr (D(I + kF)~'D’), andk is defined similarly

as in Theorem 4.5. Thigace term can again be interpreted as before, which implies beatdduction in source class
complexity is proportional to theimilarity between source labeled samples and target unlabeled sample

5 Experiments

We follow experimental setups similar to [1] but report oumpérical results for the task of sentiment classification
using the ENTIMENT data provided by [15]. The task of sentiment classificatioa binary classification task which
corresponds to classifying a review as positive or negdtiveiser reviews of eight product types (apparel, books,
DVD, electronics, kitchen, music, video, and other) cdkbeifromamazon.comWe quantify the domain divergences
in terms of theA4-distance [16] which is computed [17] from finite samples ofirce and target domain using the
proxy A-distance [16]. For our experiments, we consider the fdthgwdomain-pairs: (a) DVB-BOOKS (roxy
A-distance$.7616) and, (b) KITCHEN-APPAREL (proxy A-distance$.0459). As in [1], we use an averaged
perceptron classifier from the Megam framework (implemigmtedue to [18]) for all the aforementioned tasks. The
training sample size varies frohk to 16%. In all cases, the amount of unlabeled target data is equia¢timtal amount

of labeled source and target data.

We compare the empirical performance of EA++ with a few ottaselines, namely, (a)d&RCEONLY (classifier
trained on source labeled samples), (BRGETONLY -FULL (classifier trained on the same number of target labeled
samples as the number of source labeled sample®URSEONLY), (¢) TARGETONLY (classifier trained on small
amount of target labeled samples, roughly one-tenth of theust of source labeled samples iDB&RCEONLY), (d)

ALL (classifier trained on combined labeled samples@f SCEONLY and TARGETONLY), (e) EA (classifier trained

in augmented feature spao@ the same input training set as 1y, (f) EA++ (classifier trained imugmented feature
spaceon the same input training set as EA and an equal amount dbeleldiargetdata). All these approaches were
tested on the entire amount of availatdegettest data.

Figure 2 presents the learning curves for (@)U&CEONLY, (b) TARGETONLY-FULL, (c) TARGETONLY, (d) ALL,
(e) EA, and (f) EA++ (EA with unlabeled data). The x-axis regents the number of training samples on which the
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Figure 2: Test accuracy of &RCEONLY, TARGETONLY-FULL, TARGETONLY, ALL, EA, EA++ (with unlabeled
data) for, (a) DVD~BOOKS (proxy.A-distance®.7616), (b) KITCHEN—APPAREL (proxy.A-distance$.0459)

predictor has been trained. At this point, we note that thalmr of training samples vary depending on the partic-
ular approach being used. FOOSRCEONLY, TARGETONLY-FULL and TARGETONLY, it is just the corresponding
number of labeled source or target samples, respectivelyAEL and EA, it is the summation of labeled source and
target samples. For EA++, thevalue plotted denotes the amount of unlabeled target dad (in addition to an
equal amount of source+target labeled data, aslin é&r EA). We plot this number for EA++, just to compare its
improvement over EA when using an additional (and equal)uarhof unlabeled target data. This accounts for the
differentx values plotted for the different curves. In all cases, thexig-denotes the error rate.

As can be seen, for both the cases, EA++ outperforasyBDAPT. For DVD—BOOKS, the domains are far apart
as denoted by a higbroxy.A-distance. Hence , ARGETONLY -FULL achieves the best performance and EA++ almost
catches up for large amounts of training data. For diffenremhber of sample points, EA++ gives relative improve-
ments in the range a@f.36% — 9.14%, as compared to EA. The domains KITCHEN and APPAREL can bsidered

to be reasonably close due to their low domain divergencacelghis domain pair is more amenable for domain adap-
tation as is demonstrated by the fact that the other appesa@URCEONLY, TARGETONLY, ALL) perform better

or atleast as good assRGETONLY-FuLL. However, as earlier, EA++ once again outperforms all tleggroaches
including TARGETONLY -FULL. Due to the closeness of the two domains, additional undabéata in EA++ helps

it in outperforming BRRGETONLY-FULL. At this point, we also note that EA performs poorly for sorases, which
corroborates with prior experimental results [1]. For iégaset, EA++ yields relative improvements in the range of
14.08% — 39.29% over EA for different number of sample points experimentétthwSimilar trends were observed
for other tasks and datasets (refer Figure 3 of [2]).

6 Conclusions

We proposed a semi-supervised extension to an existing idoadaptation technique (EA). Our approach EA++,
leverages unlabeled data to improve the performance of Eih. s extension, EA++ applies to bdilly supervised
andsemi-supervisedomain adaptation settings. We have formulated EA and EAterims of co-regularization, an
idea that originated in the context of multiview learnin@[19]. Our proposed formulation also bears resemblance
to existing work [20] in semi-supervised (SSL) literaturlieh has been studied extensively in [21, 22, 23]. The
difference being, while in SSL one would try to make the twews (on unlabeled data) agree, in domain adaptation
the aim is to make the two hypotheses in source and target.adsing our formulation, we have presented theoretical
analysis of the superior performance of EA++ as compared\tddr empirical results further confirm the theoretical
findings. EA++ can also be extended to the multiple sourdenget If we havek sources and a single target domain
then we can introduce a co-regularizer for each sourcetaajr. Due to space constraints, we defer details to a full
version.
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