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Abstract

Dimensionality reduction is often needed in many applications due to the high
dimensionality of the data involved. In this paper, we first analyze the scatter
measures used in the conventional linear discriminant analysis (LDA) model and
note that the formulation is based on the average-case view. Based on this analysis,
we then propose a new dimensionality reduction method called worst-case linear
discriminant analysis (WLDA) by defining new between-class and within-class
scatter measures. This new model adopts the worst-case view which arguably is
more suitable for applications such as classification. When the number of training
data points or the number of features is not very large, we relax the optimiza-
tion problem involved and formulate it as a metric learning problem. Otherwise,
we take a greedy approach by finding one direction of the transformation at a
time. Moreover, we also analyze a special case of WLDA to show its relationship
with conventional LDA. Experiments conducted on several benchmark datasets
demonstrate the effectiveness of WLDA when compared with some related di-
mensionality reduction methods.

1 Introduction

With the development of advanced data collection techniques, large quantities of high-dimensional
data are commonly available in many applications. While high-dimensional data can bring us more
information, processing and storing such data poses many challenges. From the machine learning
perspective, we need a very large number of training data points to learn an accurate model due
to the so-called ‘curse of dimensionality’. To alleviate these problems, one common approach is
to perform dimensionality reduction on the data. An assumption underlying many dimensionality
reduction techniques is that the most useful information in many high-dimensional datasets resides
in a low-dimensional latent space. Principal component analysis (PCA) [8] and linear discriminant
analysis (LDA) [7] are two classical dimensionality reduction methods that are still widely used in
many applications. PCA, as an unsupervised linear dimensionality reduction method, finds a low-
dimensional subspace that preserves as much of the data variance as possible. On the other hand,
LDA is a supervised linear dimensionality reduction method which seeks to find a low-dimensional
subspace that keeps data points from different classes far apart and those from the same class as
close as possible.

The focus of this paper is on the supervised dimensionality reduction setting like that for LDA. To set
the stage, we first analyze the between-class and within-class scatter measures used in conventional
LDA. We then establish that conventional LDA seeks to maximize the average pairwise distance
between class means and minimize the average within-class pairwise distance over all classes. Note
that if the purpose of applying LDA is to increase the accuracy of the subsequent classification task,
then it is desirable for every pairwise distance between two class means to be as large as possible and
every within-class pairwise distance to be as small as possible, but not just the average distances.
To put this thinking into practice, we incorporate a worst-case view to define a new between-class



scatter measure as the minimum of the pairwise distances between class means, and a new within-
class scatter measure as the maximum of the within-class pairwise distances over all classes. Based
on the new scatter measures, we propose a novel dimensionality reduction method called worst-case
linear discriminant analysis (WLDA). WLDA solves an optimization problem which simultaneously
maximizes the worst-case between-class scatter measure and minimizes the worst-case within-class
scatter measure. If the number of training data points or the number of features is not very large,
e.g., below 100, we propose to relax the optimization problem and formulate it as a metric learning
problem. In case both the number of training data points and the number of features are large, we
propose a greedy approach based on the constrained concave-convex procedure (CCCP) [24, 18] to
find one direction of the transformation at a time with the other directions fixed. Moreover, we also
analyze a special case of WLDA to show its relationship with conventional LDA. We will report
experiments conducted on several benchmark datasets.

2  Worst-Case Linear Discriminant Analysis

We are given a training set of n data points, D = {x;,...,%,} C R% Let D be partitioned into
C > 2 disjoint classes II;, i = 1,...,C, where class II; contains n, examples. We perform linear
dimensionality reduction by finding a transformation matrix W € R*7,

2.1 Objective Function

We first briefly review the conventional LDA. The between-class scatter matrix and within-class
scatter matrix are defined as
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where m; = n% inenk x; 1s the class mean of the kth class Il and m = %Z?:l x; 1is the

sample mean of all data points. Based on the scatter matrices, the between-class scatter measure and
within-class scatter measure are defined as

m = tr(WTSbW), Nw = tr(WTSwW),
where tr(-) denotes the trace of a square matrix. LDA seeks to find the optimal solution of W that

maximizes the ratio 7 /7,, as the optimality criterion.

By using the fact that m = % Zgzl niMmy, we can rewrite Sy as

c c
1 _ _ _ _ \T
Sb = ﬁ Zannj(m, — mj)(mz — mj) .
i=1 j=1
According to this and the definition of the within-class scatter measure, we can see that LDA tries
to maximize the average pairwise distance between class means {im;} and minimize the average
within-class pairwise distance over all classes. Instead of taking this average-case view, our WLDA
model adopts a worst-case view which arguably is more suitable for classification applications.
We define the sample covariance matrix for the kth class IIj as
1 _ _
Sk=— Y (xi—my)(x; —my)". M

Nk
x,; €Iy

Unlike LDA which uses the average of the distances between each class mean and the sample mean
as the between-class scatter measure, here we use the minimum of the pairwise distances between
class means as the between-class scatter measure:

pp = min {tr(wT(ﬁli — ﬁlj)(ﬁlz — rﬁj)TW) } 2)
5]

Also, we define the new within-class scatter measure as
pu = max {tr(W'S,;W) |, 3)

which is the maximum of the average within-class pairwise distances.



Similar to LDA, we define the optimality criterion of WLDA as the ratio of the between-class scatter
measure to the within-class scatter measure:

max J(W) = o
W Pw

st.  W'W =1, )
where I,. denotes the r x r identity matrix. The orthonormality constraint in problem (4) is widely

used by many existing dimensionality reduction methods. Its role is to limit the scale of each column
of W and eliminate the redundancy among all columns of W.

2.2 Optimization Procedure

Since problem (4) is not easy to optimize with respect to W, we resort to formulate this dimen-
sionality reduction problem as a metric learning problem [22, 21, 4]. We define a new variable

> = WW7 which can be used to define a metric. Then we express p, and p,, in terms of X as

pp = min {tf((ﬁli —my)(m; — ﬁlj)Tz)}

i,j
pw = mlax{tr(siz)},

due to a property of the matrix trace that tr(AB) = tr(BA) for any matrices A and B with proper
sizes. The orthonormality constraint in problem (4) is non-convex with respect to W and cannot be
expressed in terms of 3.

We define a set M, as
My = {My | My = WW' W'W =1, W e R}

Apparently 3 € M,,. It has been shown in [16] that the convex hull of M,, can be precisely
expressed as a convex set M, given by

Me = {M, | tr(Mc) = 7,0 < M, < 1.},

where O denotes the zero vector or matrix of appropriate size and A < B means that the matrix
B — A is positive semidefinite. Each element in M,, is referred to as an extreme point of M..
Since M, consists of all convex combinations of the elements in M,,, M. is the smallest convex
set that contains M,,, and hence M,, C M. Then problem (4) can be relaxed as

min; ; {tr(SHE) }

max; {tr(SiE) }

s.t. tr(3)=r, 0 XX <1, 5)

max J(X) =
=

where S;; = (m; — m;)(m; — m;)7. For notational simplicity, we denote the constraint set as
C={X2|tr(X) =7,0 <3 <1,}. Table 1 shows an iterative algorithm for solving problem (5).

Table 1: Algorithm for solving optimization problem (5)
Input: {m;}, {S;} and r
1: Initialize X(©);
2:Fork =1,..., Njer
2.1: Compute the ratio vy, from X1 as: «ay, = J(E(kfl));
2.2: Solve the optimization problem
»k) = arg maxsec min, ; {tr(SijE)} — q, Max; {tr(Sl-E) };

23: If |[=) — B || n < & (here we set e = 107%)
break;

Output: ¥

We now present the solution of the optimization problem in step 2.2. It is equivalent to the following
problem

gné% Qv max {tr(SiZ) } — Hllyljn {tr(Si]' 2) } 6)



According to [3], we know that max; {tr (Sl- 2) } is a convex function because it is the maximum of

several convex functions, and min, ; {tr (Si j E) } is a concave function because it is the minimum of
several concave functions. Moreover, ay, is a positive scalar since oy, = J(Z(*~1). So problem (6)
is a convex optimization problem. We introduce new variables s and ¢ to simplify problem (6) as

min aps —t
3, s,t

s.t. tr(S:iX) < s, Vi
tr(SyX) >t >0, Vi, j
tr(X)=r, 0 XX <1, @)
Note that problem (7) is a semidefinite programming (SDP) problem [19] which can be solved using

a standard SDP solver. After obtaining the optimal X*, we can recover the optimal W* as the top r
eigenvectors of 3*. In the following, we will prove the convergence of the algorithm in Table 1.

Theorem 1 For the algorithm in Table 1, we have J(£(*)) > J(Z(=1),

Proof: We define g(X) = min; ; {tr(SijE)} — Qi max; {tr(SiE) } Then g(E(kfl)) = 0 since

min; ; S, (k=1 }
QE = { ( . Because E(k) = argmaxsecc 9(2) and E(k—l) c (C, we have
max; {tr(s,iE(k—l))}

g(Z*)) > g(=*=1)) = 0. This means
min; ; { (s”z“))}
max; {tr(S, M)}
which implies that J(E(k)) > J(E(kfl)), O

2[}’(81))
io1 Ad—it1

Theorem 2 For any 3 € C, we have 0 < J(X) <
value of S,,.

where \; is the ith largest eigen-

Proof: It is obvious that J(X) > 0. The numerator of .J(X) can be upper-bounded as
ZI 1 Z _ nin;tr(Sy;X)
Zz 1 Z =1 MM

Moreover, the denominator of .JJ(X) can be lower-bounded as

min {tr sljz)} = 2tr(SyX) < 2tr(S). ®)

#4r(S: 3 d - r
max {tr(SlE)} 2 %I‘() (SwE) Z Z )\d7i+1)\i Z Z )\d—i+1, (9)
! Doy M i=1 i=1
where ;\i is the ith largest eigenvalue of 3 and satisfies 0 < 5\1- < 1 and Ele 5\2» = r due to the
constraints C on 3. By utilizing Eqgs. (8) and (9), we can reach the conclusion. O

From Theorem 2, we can see that J(X) is bounded and our method is non-decreasing. So our
method can achieve a local optimum when converged.

2.3 Optimization in Dual Form

In the previous subsection, we need to solve the SDP problem in problem (7). However, SDP is
not scalable to high dimensionality d. In many real-world applications to which dimensionality
reduction is applied, the number of data points n is much smaller than the dimensionality d. Under
such circumstances, speedup can be obtained by solving the dual form of problem (4) instead.

It is easy to show that the solution of problem (4) satisfies W = X A [14] where X = (x1,...,X,)
is the data matrix and A € R™*". Then problem (4) can be formulated as

min; {tr(ATXTSinA)}

max
A max; {tr (ATXTS,-XA)}
s.t. ATKA =1,, (10)



where K = X7 X is the linear kernel matrix. Here we assume that K is positive definite since the
data points are independent and identically distributed and d is much larger than n. We define a new

variable B = K2 A and problem (10) can be reformulated as
min; ; {tr(BTK* 3 XTS, ; XK~ 5 B) }

max
B

max; {tr(BTK~3X7S, XK~ 1B) }
st. B'B=I,. (11)

Note that problem (11) is almost the same as problem (4) and so we can use the same relaxation
technique above to solve problem (11). In the relaxed problem, the variable > = BB” used to
define the metric in the dual form is of size n x n which is much smaller than that (d x d) of X in
the primal form when n < d. So solving the problem in the dual form is more efficient. Moreover,
the dual form facilitates kernel extension of our method.

2.4 Alternative Optimization Procedure

In case the number of training data points n and the dimensionality d are both large, the above
optimization procedures will be infeasible. Here we introduce yet another optimization procedure
based on a greedy approach to solve problem (4) when both n and d are large.

We find the first column of W by solving problem (4) where W is a vector, then find the second
column of W by assuming the first column is fixed, and so on. This procedure consists of 7 steps.
In the kth step, we assume that the first £ — 1 columns of W have been obtained and we find the
kth column according to problem (4). We use Wj,_1 to denote the matrix in which the first £ — 1
columns are already known and the constraint in problem (4) becomes

T T
wipwr =1, Wi_;wr =0.

When k =1, W£_1 can be viewed as an empty matrix and the constraint W,{_lwk = 0 does not
exist. So in the kth step, we need to solve the following problem

. s
min -
Wk ,S,t t

T .

s.t. wi Siwr +a; —s <0, Vi

t —wi (my — my)(m; —my) wy — by <0, Vi, j

s,t >0

wiw, <1, Wi_,wp =0, (12)
where a; = tr(W{flsiWk_l) and b;; = tr(W%ﬁl(ﬁli —1m;)(m; — rﬁj)TWk_l). In the last
constraint of problem (12), we relax the constraint on wy, as W{Wk < 1 to make it convex.

The function £ is not convex with respect to (s, ¢

2 since the Hessian matrix is not positive semidef-
inite. So the objective function of problem (12) is non-convex. Moreover, the second constraint in
problem (12), which is the difference of two convex functions, is also non-convex. We rewrite the

objective function as

)T

s (s+1)? (s—1)?

t 4t a4
which is also the difference of two convex functions since f(x,y) = % for y > 0 is convex
with respect to x and y according to [3]. Then we can use the constrained concave-convex pro-
cedure (CCCP) [24, 18] to optimize problem (12). More specifically, in the (I + 1)th iteration of
CCCP, we replace the non-convex parts of the objective function and the second constraint with

their first-order Taylor expansions at the solution {s() (), w,(cl)} in the [th iteration and solve the
following problem

1)2
min M —cs+ 2t
WSyt 4
s.t. WkTSZ'W;C +a; —s<0, Ve
t— Q(W](Cl))T(ﬁli — l‘flj)(ﬁll — Iflj)TWk + hg) — bij <0, VZ,]
s,t >0
wiwi < 1, Wi_jwy =0, (13)



( .
where ¢ = 321)(7)1 and hg) — (w")T(m; — m;)(m; —m;)"w". By putting an upper bound on
2 2
(SZ:) ,ie., (SZ:) < wu, and using the fact that
(s+1)* Hs+1H
— < <
ym <u(u,t>0) & 7t27u+t,
where || - |2 denotes the 2-norm of a vector, we can reformulate problem (13) into a second-order
cone programming (SOCP) problem [12] which is more efficient than SDP:
min u—cs+c’t
W ,U,S,t
s.t. wkTsiwk +a; —s<0, Vs
t— Q(W](Cl))T(ﬁli — rflj)(ﬁll — Ile)TWk + hg) — bij <0, Vl,j
HSJFIH <wu+twithwu,s,t >0
u—tll2

wiwe <1, Wi_wi = 0. (14)

2.5 Analysis

It is well known that in binary classification problems when both classes are normally distributed
with the same covariance matrix, the solution given by conventional LDA is the Bayes optimal
solution. We will show here that this property still holds for WLDA.

The objective function for WLDA in a binary classification problem is formulated as

WT(IYM — ﬁlg)(ﬁll — ﬂlQ)TW
max
w max{wTS;w, wT'S,w}
s.t. we Rt wiw < 1. (15)

Here, similar to conventional LDA, the reduced dimensionality r is set to 1. When the two classes
have the same covariance matrix, i.e., S; = So, the problem degenerates to the optimization problem
of conventional LDA since wI'S;w = wlSow for any w and w is the solution of conventional
LDA.! So WLDA also gives the same Bayes optimal solution as conventional LDA.

Since the scale of w does not affect the final solution in problem (15), we simplify problem (15) as
max WT(IYI1 — ﬁlg)(ITl1 — ﬁlQ)TW
s.t. wTslw <1, wT52w <1. (16)

Since problem (16) is to maximize a convex function, it is not a convex problem. We can still use
CCCP to optimize problem (16). In the (I 4 1)th iteration of CCCP, we need to solve the following
problem

max (w7 (1 — my)(my — ma) ' w
s.t. wiSiw <1, wl'Syw < 1. a7
The Lagrangian is given by
L=—(w")T (M — ) (@ — M) w + a(w' Siw — 1) + B(w' Sow — 1),

where @ > 0 and 8 > 0. We calculate the gradients of L with respect to w and set them to 0 to
obtain
W = (20581 —|— 2652)_1(1’T11 — ﬁlz)(ﬁll — ﬁlQ)TW(l).
From this, we can see that when the algorithm converges, the optimal w* satisfies
w* (20(*81 —+ Qﬂ*SQ)il(ﬁll — ﬁlg).
This is similar to the following property of the optimal solution in conventional LDA

w* S;l(ﬁll — 1’?12) o (n181 + TL2SQ)71(1’Y11 — 1’?12).

!"The constraint w’ w < 1in problem (15) only serves to limit the scale of w.



However, in our method, o* and * are not fixed but learned from the following dual problem
rgi[? %(ﬁll —m2)(aS1 + AS2) (M —m2) +a+ 8
s.t. a>0,8>0, (18)

2
where v = ( (m; — m2)Tw® ) . Note that the first term in the objective function of problem (18)
gl ) p

is just the scaled optimality criterion of conventional LDA when we assume the within-class scatter
matrix S,, to be S,, = &Sy + 8Ss. From this view, WLDA seeks to find a linear combination of S
and S» as the within-class scatter matrix to maximize the optimality criterion of conventional LDA
while controlling the complexity of the within-class scatter matrix as reflected by the second and
third terms of the objective function in problem (18).

3 Related Work

In [11], Li et al. proposed a maximum margin criterion for dimensionality reduction by changing
the optimization problem of conventional LDA to: maxw tr (WT(Sb - Sw)W). The objective

function has a physical meaning similar to that of LDA which favors a large between-class scatter
measure and a small within-class scatter measure. However, similar to LDA, the maximum margin
criterion also uses the average distances to describe the between-class and within-class scatter mea-
sures. Kocsor et al. [10] proposed another maximum margin criterion for dimensionality reduction.
The objective function in [10] is identical to that of support vector machine (SVM) and it treats the
decision function in SVM as one direction in the transformation matrix W.

In [9], Kim et al. proposed a robust LDA algorithm to deal with data uncertainty in classification
applications by formulating the problem as a convex problem. However, in many applications, it is
not easy to obtain the information about data uncertainty. Moreover, its limitation is that it can only
handle binary classification problems but not more general multi-class problems.

The orthogonality constraint on the transformation matrix W has been widely used by dimension-
ality reduction methods, such as Foley-Sammon LDA (FSLDA) [6, 5] and orthogonal LDA [23].
The orthogonality constraint can help to eliminate the redundant information in W. This has been
shown to be effective for dimensionality reduction.

4 Experimental Validation

In this section, we evaluate WLDA empirically on some benchmark datasets and compare WLDA
with several related methods, including conventional LDA, trace-ratio LDA [20], FSLDA [6, 5], and
MarginL.DA [11]. For fair comparison with conventional LDA, we set the reduced dimensionality
of each method compared to C' — 1 where C' is the number of classes in the dataset. After dimen-
sionality reduction, we use a simple nearest-neighbor classifier to perform classification. Our choice
of the optimization procedure follows this strategy: when the number of features d or the number
of training data points n is smaller than 100, the optimization method in Section 2.2 or 2.3 is used
depending on which one is smaller; otherwise, we use the greedy method in Section 2.4.

4.1 Experiments on UCI Datasets

Ten UCI datasets [1] are used in the first set of experiments. For each dataset, we randomly select
70% to form the training set and the rest for the test set. We perform 10 random splits and report
in Table 2 the average results across the 10 trials. For each setting, the lowest classification error is
shown in bold. We can see that WLDA gives the best result for most datasets. For some datasets,
e.g., balance-scale and hayes-roth, even though WLDA is not the best, the difference between it and
the best one is very small. Thus it is fair to say that the results obtained demonstrate convincingly
the effectiveness of WLDA.

4.2 Experiments on Face and Object Datasets

Dimensionality reduction methods have been widely used for face and object recognition applica-
tions. Previous research found that face and object images usually lie in a low-dimensional subspace



Table 2: Average classification errors on the UCI datasets. Here tr-LDA denotes the trace-ratio
LDA [20].

| Dataset [ LDA [ tr-LDA | FSLDA | MarginLDA [ WLDA |
diabetes 0.3233 | 0.3143 | 0.4039 0.4143 0.2996
heart 0.2448 | 0.2259 | 0.4395 0.2407 0.2157
liver 0.4001 | 0.3933 | 0.4365 0.5058 0.3779
sonar 0.2806 | 0.2895 | 0.3694 0.2806 0.2661

spambase 0.1279 | 0.1301 | 0.3093 0.1440 0.1260
balance-scale | 0.1193 | 0.1198 | 0.1176 0.1150 0.1174
iris 0.0244 | 0.0267 | 0.0622 0.0644 0.0211
hayes-roth 0.3125 | 0.3104 | 0.3104 0.2958 0.3050
waveform 0.1861 | 0.1865 | 0.2261 0.2303 0.1671
mfeat-factors | 0.0732 | 0.0518 | 0.0868 0.0817 0.0250

of the ambient image space. Fisherface (based on LDA) [2] is one representative dimensionality re-
duction method. We use three face databases, ORL [2], PIE [17] and AR [13], and one object
database, COIL [15], in our experiments. In the AR face database, 2,600 images of 100 persons
(50 men and 50 women) are used. Before the experiment, each image is converted to gray scale
and normalized to a size of 33 x 24 pixels. The ORL face database contains 400 face images of
40 persons, each having 10 images. Each image is preprocessed to a size of 28 x 23 pixels. In our
experiment, we choose the frontal pose from the PIE database with varying lighting and illumina-
tion conditions. There are about 49 images for each subject. Before the experiment, we resize each
image to a resolution of 32 x 32 pixels. The COIL database contains 1,440 grayscale images with
black background for 20 objects with each object having 72 different images.

In face and object recognition applications, the size of the training set is usually not very large since
labeling data is very laborious and costly. To simulate this realistic situation, we randomly choose
4 images of a person or object in the database to form the training set and the remaining images
to form the test set. We perform 10 random splits and report the average classification error rates
across the 10 trials in Table 3. From the result, we can see that WLDA is comparable to or even
better than the other methods compared.

Table 3: Average classification errors on the face and object datasets. Here tr-LDA denotes the
trace-ratio LDA [20].

[ Dataset [ LDA | tr-LDA | FSLDA | MarginLDA | WLDA |
ORL 0.1529 | 0.1042 | 0.0654 0.0536 0.0446
PIE 0.4305 | 0.2527 | 0.6715 0.2936 0.2469
AR 0.2498 | 0.1919 | 0.7726 0.4282 0.1965
COIL 0.2554 | 0.1737 | 0.1726 0.1653 0.1593

5 Conclusion

In this paper, we have presented a new supervised dimensionality reduction method by exploiting
the worst-case view instead of average-case view in the formulation. One interesting direction of
our future work is to extend WLDA to handle tensors for 2D or higher-order data. Moreover, we
will investigate the semi-supervised extension of WLDA to exploit the useful information contained
in the unlabeled data available in some applications.
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