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Abstract

Intelligent agents are often faced with the need to choose actions with uncertain
consequences, and to modify those actions according to ongoing sensory process-
ing and changing task demands. The requisite ability to dynamically modify or
cancel planned actions is known as inhibitory control in psychology. We formal-
ize inhibitory control as a rational decision-making problem, and apply to it to the
classical stop-signal task. Using Bayesian inference and stochastic control tools,
we show that the optimal policy systematically depends on various parameters of
the problem, such as the relative costs of different action choices, the noise level
of sensory inputs, and the dynamics of changing environmental demands. Our
normative model accounts for a range of behavioral data in humans and animals
in the stop-signal task, suggesting that the brain implements statistically optimal,
dynamically adaptive, and reward-sensitive decision-making in the context of in-
hibitory control problems.

1 Introduction

In natural behavior as well as in engineering applications, there is often the need to choose, under
time pressure, an action among multiple options with imprecisely known consequences. For exam-
ple, consider the decision of buying a house. A wise buyer should collect sufficient data to make an
informed decision, but waiting too long might mean missing out on a dream home. Thus, balanced
against the informational gain afforded by lengthier deliberation is the opportunity cost of inaction.
Further complicating matters is the possible occurrence of a rare and unpredictably timed adverse
event, such as job loss or serious illness, that would require a dynamic reformulation of one’s plan of
action. This ability to dynamically modify or cancel a planned action that is no longer advantageous
or appropriate is known as inhibitory control in psychology.

In psychology and neuroscience, inhibitory control has been studied extensively using the stop-
signal (or countermanding) task [17]. In this task, subjects perform a simple two-alternative forced
choice (2AFC) discrimination task on a go stimulus, whereby one of two responses is required de-
pending on the stimulus. On a small fraction of trials, an additional stop signal appears after some
delay, which instructs the subject to withhold the discrimination or go response. As might be ex-
pected, the later the stop signal appears, the harder it is for subjects to stop the response [9] (see
Figure 3). The classical model of the stop-signal task is the race model [11], which posits a race
to threshold between independent go and stop processes. It also hypothesizes a stopping latency,
the stop-signal reaction time (SSRT), which is the delay between stop signal onset and successful
withholding of a go response. The (unobservable) SSRT is estimated as shown in Figure 1A, and is
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thought to be longer in patient populations associated with inhibitory deficit than in healthy controls
(attention-deficit hyperactivity disorder [1], obsessive-compulsive disorder [12], and substance de-
pendence [13]). Some evidence suggests a neural correlate of the SSRT [8, 14, 5]. Although the race
model is elegant in its simplicity and captures key experimental data, it is descriptive in nature and
does not address how the stopping latency and other elements of the model depend on various un-
derlying cognitive factors. Consequently, it cannot explain why behavior and stopping latency varies
systematically across different experimental conditions or across different subject populations.

We present a normative, optimal decision-making framework for inhibitory control. We formalize
interactions among various cognitive components: the continual monitoring of noisy sensory in-
formation, the integration of sensory inputs with top-down expectations, and the assessment of the
relative values of potential actions. Our model has two principal components: (1) a monitoring pro-
cess, based on Bayesian statistical inference, that infers the go stimulus identity within each trial, as
well as task parameters across trials, (2) a decision process, formalized in terms of stochastic con-
trol, that translates current belief state based on sensory inputs into a moment-by-moment valuation
of whether to choose one of the two go responses, or to wait longer. Given a certain belief state, the
relative values of the various actions depend both on experimental parameters, such as the fraction
of stop trials and the difficulty of go stimulus discrimination, as well as subject-specific parameters,
such as learning rate and subjective valuation of rewards and costs. Within our normative model of
inhibitory control, stopping latency is an emergent property, arising from interactions between the
monitoring and decision processes. We show that our model captures classical behavioral data in
the task, makes quantitative behavioral predictions under different experimental manipulations, and
suggests that the brain may be implementing near-optimal decision-making in the stop-signal task.

2 Sensory processing as Bayes-optimal statistical inference

We model sensory processing in the stop-signal task as Bayesian statistical inference. In the gen-
erative model (see Figure 1B for graphical model), there are two independent hidden variables,
corresponding to the identity of the go stimulus, d ∈ {0, 1}, and whether or not the current trial is
a stop trial, s ∈ {0, 1}. Priors over d and s reflect experimental parameters: e.g. P (d = 1) = .5,
P (s = 1) = .25 in typical stop signal experiments. Conditioned on d, a stream of iid inputs are
generated on each trial, x1, . . . , xt, . . ., where t indexes small increments of time within a trial,
p(xt|d = 0) = f0(xt), and p(xt|d = 1) = f1(xt). For simplicity, we assume f0 and f1 to be
Bernoulli distributions with distinct rate parameters qd and 1−qd, respectively. The dynamic vari-
able zt denotes the presence/absence of the stop signal: if the stop signal appears at time θ then
z1 = . . . = zθ−1 = 0 and zθ = zθ+1 = . . . = 1. On a go trial, s = 0, the stop-signal of course
never appears, P (θ =∞) = 1. On a stop trial, s = 1, we assume for simplicity that the onset of
the stop signal follows a constant hazard rate, i.e. θ is generated from an exponential distribution:
p(θ|s= 1) = λe−λθ. Conditioned on zt, there is a separate iid stream of observations associated
with the stop signal: p(yt|zt = 0) = g0(yt), and p(yt|zt = 1) = g1(yt). Again, we assume for
simplicity that g0 and g1 are Bernoulli distributions with distinct rate parameters qs and 1− qs,
respectively.

In the recognition model, the posterior probability associated with signal identity ptd , P (d=1|xt),
where xt,{x1, . . . , xt} denotes all the data observed so far, can be computed via Bayes’ Rule:

ptd =
pt−1d f1(xt)

pt−1d f1(xt) + (1− pt−1d )f0(xt)
=

p0dΠ
t
i=1f1(xi)

p0dΠ
t
i=1f1(xi) + (1− p0d)Πt

i=1f0(xi)

Inference about the stop signal is slightly more complicated due to the dynamics in zt. First, we
define ptz as the posterior probability that the stop signal has already appeared ptz , P{θ ≤ t|yt},
where yt,{y1, . . . , yt}. It can also be computed iteratively:

ptz =
g1(yt)(pt−1z + (1− pt−1z )h(t))

g1(yt)(pt−1z + (1− pt−1z )h(t)) + g0(yt)(1− pt−1z )(1− h(t))

where h(t) is the posterior probability that the stop-signal will appear in the next instant given it has
not appeared already, h(t),P (θ= t|θ > t−1,yt−1).

h(t) =
r · P (θ = t|s = 1)

r · P (θ > t− 1|s = 1) + (1− r)
=

rλe−λt

re−λ(t−1) + (1− r)
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Figure 1: Modeling inhibitory control in the stop-signal task. (A) shows the race model for behavior
in the stop-signal task [11]. Go and stop stimuli, separated by a stop signal delay (SSD), initiate
two independent processes that race to thresholds and determine trial outcome. On go trials, noise
in the go process results in a broad distribution over threshold-crossing times, i.e., the go reaction
time (RT) distribution. The stop process is typically modeled as deterministic, with an associated
stop signal reaction time or SSRT. The SSRT determines the fraction of go responses successfully
stopped: the go RT cumulative density function evaluated at SSD+SSRT should give the stopping
error rate at that SSD. Based on these assumptions, the SSRT is estimated from data given the go RT
distribution, and error rate as a function of SSD. (B) Graphical model for sensory input generation in
our Bayesian model. Two separate streams of observations, {x1, . . . , xt, . . .} and {y1, . . . , yt, . . .},
are associated with the go and stop stimuli, respectively. xt depend on the identity of the target,
d ∈ {0, 1}. yt depends on whether the current trial is a stop trial, s = {0, 1}, and whether the
stop-signal has already appeared by time t, zt∈{0, 1}.

where r = P (s= 1) is the prior probability of a stop trial. Note that h(t) does not depend on the
observations, since given that the stop signal has not yet appeared, whether it will appear in the next
instant does not depend on previous observations.

In the stop-signal task, a stop trial is considered a stop trial even if the subject makes the go response
early, before the stop signal is presented. Following this convention, we need to compute the pos-
terior probability that the current trial is a stop trial, denoted pts, which depends both on the current
belief about the presence of the stop signal, and the expectation that it will appear in the future:

pts , P (s = 1|yt) = ptz · 1 + (1− ptz) · P (s = 1|θ > t,yt)

where P (s=1|θ>t,yt) = P (s=1|θ>t) again does not depend on past observations:

P (s=1|θ>t)=
P (θ>t|s=1)P (s=1)

P (θ>t|s=1)P (s=1) + P (θ>t|s=0)P (s=0)
=

e−λt · r
e−λt · r + 1 · (1− r)

Finally, we define the belief state at time t to be the vector bt=(ptd, p
t
s).

Figure 2A shows the evolution of belief states for various trial types: (1) go trials, where no stop
signal appears, (2) stop error (SE) trials, where a stop signal is presented but a response is made,
and (3) stop success (SS) trials, where the stop signal is successfully processed to cancel the re-
sponse. For simplicity, only trials where d = 1 are shown, and θs on stop trials is 17 steps. Due to
stochasticity in the sensory information, the go stimulus is processed slower and the stop signal is
detected faster than average on some trials; these lead to successful stopping, with SE trials showing
the opposite trend. On all trials, ps shows an initial increase due to anticipation of the stop signal.
Parameters used for the simulation were chosen to approximate typical experimental conditions (see
e.g., Figure 3), and kept constant throughtout except where explicitly noted. The results do not
change qualitatively when these settings are varied (data not shown).

3 Decision making as optimal stochastic control

In order to understand behavior as optimal decision-making, we need to specify a loss function that
captures the reward structure of the task. We assume there is a deadline D for responding on go
trials, and an opportunity cost of c per unit time on each trial. In addition, there is a penalty cs
for choosing to respond on a stop-signal trial, and a unit cost for making an error on a go trial (by
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choosing the wrong discrimination response or exceeding the deadline for responding). Because
only the relative costs matter in the optimization, we can normalize the coefficients associated with
all the costs such that one of them is unit cost. Let τ denote the trial termination time, so that τ=D
if no response is made before the deadline, and τ <D if a response is made. On each trial, the policy
π produces a stopping time τ and a possible binary response δ∈{0, 1}. The loss function is:

l(τ, δ; d, s, θ,D) = cτ + cs1{τ<D,s=1} + 1{τ<D,δ 6=d,s=0} + 1{τ=D,s=0}
where 1{·} is the indicator function. The optimal decision policy minimizes the average or expected
loss, Lπ , 〈l(τ, δ; d, s,D)〉,

Lπ = c〈τ〉+ csrP (τ <D|s=1) + (1−r)P (τ <D, δ 6=d|s=0) + (1−r)P (τ=D|s=0) .

Minimizing Lπ over the policy space directly is computationally intractable, but the dynamic pro-
gramming principle provides an iterative relationship, the optimality equation, in terms of the value
function (defined in terms of costs here), V t(bt)

V t(bt) = min
a

[∫
p(bt+1|bt; a)V t+1(bt+1)dbt+1

]
,

where a ranges over all possible actions. In our model, the action space consists of {go, wait}, with
the corresponding expected costs (also known as Q-factors), Qtg(b

t) and Qtw(bt), respectively.

Qtg(b
t) = ct+ csp

t
s + (1− pts)min(ptd, 1− ptd)

Qtw(bt) = 1{D>t+1}〈V t+1(bt+1)|bt〉bt+1 + 1{D=t+1}(c(t+ 1) + 1− pts)
V t(bt) = min(Qtg, Q

t
w)

The value function is the smaller of the Q-factors Qtg and Qtw, and the optimal decision policy
chooses the action corresponding to the smallest Q-factor. Note that the go action results in either
δ=1 or δ=0, depending on whether pτd is greater or smaller than .5, respectively. The dependence
ofQtw on V t+1 allows us to recursively compute the value function backwards in time. Given V t+1,
we can compute 〈V t+1〉 by summing over the uncertainty about the next observations xt+1, yt+1,
since the belief state bt+1 is a deterministic function of bt and the observations.
〈V t+1(bt+1)|bt〉bt =

∑
xt+1,yt+1

p(xt+1, yt+1|bt)V t+1(bt+1(bt, xt+1, yt+1))

p(xt+1, yt+1|bt) = p(xt+1|ptd)p(yt+1|pts)
p(xt+1|ptd) = ptdf1(xt+1) + (1− ptd)f0(xt+1)

p(yt+1|pts) = (ptz + (1− ptz)h(t+ 1))g1(yt+1) + (1− ptz)(1− h(t+ 1))g0(yt+1)

The initial condition of the value function can be computed exactly at the deadline since there is only
one outcome (subject is no longer allowed to go or stop): V D(bD) = cD + (1− pDs ). We can then
compute {V t}Dt=1 and the corresponding optimal decision policy backwards in time from t=D−1
to t= 1. In our simulations, we do so numerically by discretizing the probability space for pts into
1000 bins; ptd is represented exactly using its sufficient statistics. Note that dynamic programming
is merely a convenient tool for computing the exact optimal policy. Our results show that humans
and animals behave in a manner consistent with the optimal policy, indicating that the brain must
use computations that are similar in nature. The important question of how such a policy may be
computed or approximated neurally will be explored in future work.

Figure 2B demonstrates graphically how the Q-factors Qg , Qw evolve over time for the trial types
indicated in Figure 2A. Reflecting the sensory processing differences, SS trials show a slower drop
in the cost of going, and a faster increase after the stop signal is processed; this is the converse
of stop error trials. Note that although the average trajectory Qg does not dip below Qw in the
non-canceled (error) stop trials, there is substantial variability in the individual trajectories under a
Bernoulli observation model, and each one of them dips below Qw at some point. The histograms
show reaction time distributions for go and SE trials.

4 Results

4.1 Model captures classical behavioral data in the stop-signal task

We first show that our model captures the basic behavioral results characteristic of the stop-signal
task. Figure 3 compares our model predictions to data from Macaque monkeys performing a version
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Figure 2: Mean trajectories of posteriors and Q-factors. (A) Evolution of the average belief states
pd and ps corresponding to go and stop signals, for various trials–GO: go trials, SS: stop trials
with successfully canceled response, SE: stop error trials. Stochasticity results in faster or slower
processing of the two sensory input streams; these lead to stop success or error. For simplicity, d = 1
for all trials in the figure. The stop signal is presented at θs = 17 time steps (dashed vertical line);
the initial rise in ps corresponds to anticipation of a potential stop signal. (B) Go and Wait costs for
the same partitioning of trials, along with the reaction time distributions for go and SE trials. On SE
trials, the cost of going drops faster, and crosses below the cost of waiting before the stop signal can
be adequately processed. Although the average go cost does not drop below the average wait cost,
each individual trajectory crosses over at various time points, as indicated by the RT histograms.
Simulation parameters: qd = 0.68, qs = 0.72, λ = 0.1, r = 0.25, D = 50 steps, cs = 50 ∗ c, where
c = 0.005 per time step. c is approximately the rate at which monkeys earn rewards in the task,
which is equivalent to assuming that the cost of time (opportunity cost) should be set by the reward
rate. Unless otherwise stated, these parameters are used in all the subsequent simulations. Thickness
of lines indicates standard errors of the mean.

Figure 3: Optimal decision-making model captures classical behavioral effects in the stop-signal
task. (A) Inhibition function: errors on stop trials increase as a function of SSD. (B) Effect repro-
duced by our model. (C) Discrimination RT is faster on non-canceled stop trials than go trials. (D)
Effect reproduced by our model. (A,C) Data of two monkeys performing the stopping task (from
[9]).

of the stop-signal task [9]. One of the basic measures of performance is the inhibition function,
which is the average error rate on stop trials as a function of SSD. Error increases as SSD increases,
as shown in the monkeys’ behavior and also in our model (Figure 3A;B). Another classical result
in the stop-signal task is that RT’s on non-canceled (error) stop trials are on average faster than
those on go trials (Figure 3C). Our model also reproduces this result (Figure 3D). Intuitively, this
is because inference about the go stimulus identity can proceed slowly or rapidly on different trials,
due to noise in the observation process. Non-canceled trials are those in which pd happens to evolve
rapidly enough for a go response to be initiated before the stop signal is adequately processed. Go
trial RT’s, on the other hand, include all trajectories, whether pd happens to evolve quickly or not
(see Figure 2).
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4.2 Effect of stop trial frequency on behavior

The overall frequency of stop signal trials has systematic effects on stopping behavior [6]. As the
fraction of stop trials is increased, go responses slow down and stop errors decrease in a graded
fashion (Figure 4A;B). In our model (Figure 4C;D), the stop signal frequency, r, influences the
speed with which a stop signal is detected, whereby larger r leads to greater posterior belief that
a stop signal is present, and also greater confidence that a stop signal will appear soon even it has
not already. It therefore controls the tradeoff between going and stopping in the optimal policy. If
stop signals are more prevalent, the optimal decision policy can use that information to make fewer
errors on stop trials, by delaying the go response, and by detecting the stop signal faster.

Even in experiments where the fraction of stop trials is held constant, chance runs of stop or go
trials may result in fluctuating local frequency of stop trials, which in turn may lead to trial-by-trial
behavioral adjustments due to subjects’ fluctuating estimate of r. Indeed, subjects speed up after
a chance run of go trials, and slow down following a sequence of stop trials [6] (see Figure 4E).
We model these effects by assuming that subjects believe that the stop signal frequency rk on trial
k has probability α of being the same as rk−1 and probability 1 − α of being re-sampled from a
prior distribution p0(r), chosen in our simulations to be a beta distribution with a bias toward small
r (infrequent stop trials). Previous work has shown that this is essentially equivalent to using a
causal, exponential window to estimate the current rate of stop trials [20], where the exponential
decay constant is monotonically related to the assumed volatility in the environment in the Bayesian
model. The probability of trial k being a stop trial, P (sk=1|sk−1), where sk,{s1, . . . , sk}, is

P (sk = 1|sk−1) =

∫
P (sk = 1|rk)p(rk|sk−1)drk =

∫
rkp(rk|sk−1)drk = 〈rk|sk−1〉 .

In other words, the predictive probability of seeing a stop trial is just the mean of the predictive
distribution p(rk|sk−1). We denote this mean as r̂k. The predictive distribution is a mixture of the
previous posterior distribution and a fixed prior distribution, with α and 1−α acting as the mixing
coefficients, respectively:

p(rk|sk−1) = αp(rk−1|sk−1) + (1− α)p0(rk)

and the posterior distribution is updated according to Bayes’ Rule:

p(rk|sk) ∝ P (sk|rk)p(rk|sk−1) .

As shown in Figure 4F, our model successfully explains observed sequential effects in behavioral
data. Since the majority of trials (75%) are go trials, a chance run of go trials impacts RT much
less than a chance run of stop trials. The figure also shows results for different values of α, with all
other parameters kept constant. These values encode different expectations about volatility in the
stop trial frequency, and produce slightly different predictions about sequential effects. Thus, α may
be an important source of individual variability observed in the data, along with the other model
parameters.

Recent data shows that neural activity in the supplementary eye field is predictive of trial-by-trial
slowing as a function of the recent stop trial frequency [15]. Moreover, microstimulation of supple-
mentary eye field neurons results in slower responses to the go stimulus and fewer stop errors [16].
Together, this suggests that supplementary eye field may encode the local frequency of stop trials,
and influence stopping behavior in a statistically appropriate manner.

4.3 Influence of reward structure on behavior

The previous section demonstrated how adjustments to behavior in the face of experimental manip-
ulations can be seen as instances of optimal decision-making in the stop signal task. An important
component of the race model for stopping behavior [11] is the SSRT, which is thought to be a stable,
subject-specific index of stopping ability. In this section, we demonstrate that the SSRT can be seen
as an emergent property of optimal decision-making, and is consequently modified in predictable
ways by experimental manipulation.

Leotti & Wager showed that subjects can be biased toward stopping or going when the relative
penalties associated with go and stop errors are experimentally manipulated [10]. Figure 5A;B
show that as subjects are biased toward stopping, they make fewer stop trial errors and have slower
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Figure 4: Effect of global and local frequency of stop trials on behavior. We compare model predic-
tions with experimental data from a monkey performing the stop-signal task (adapted from Emeric et
al., 2007). (A) Go reaction times shift to the right (slower), as the fraction of stop trials is increased.
(B) Inhibitory function (stop error rate as a function of SSD) shifts to the right (fewer errors), as
the fraction of stop trials is increased. Data adapted from [6]. (C;D) Our model predicts similar
effects. (E) Sequential effects in reaction times from 6 subjects showing faster go RTs following
longer sequences of go trials (columns 1-3), and slower RTs following longer sequences of stop
trials (columns 4-6, data adapted from [6]). (F) Our model reproduces these changes; the parameter
α controls the responsiveness to trial history, and may explain inter-subject differences. Values of
alpha: low=0.85, med=0.95, high=0.98.

go responses. Our model reproduces this behavior when cs, the parameter representing the cost of
stopping, is set to small, medium and high values. Increasing the cost of a stop error induces an
increase in reaction time and an associated decrease in the fraction of stop errors. This is a direct
consequence of the optimal model attempting to minimize the total expected cost – with stop errors
being more expensive, there is an incentive to slow down the go response in order to minimize the
possibility of missing a stop signal.

Critically, the SSRT in the human data decreases with increasing bias toward stopping (Figure 5C).
Although the SSRT is not an explicit component of our model, we can nevertheless estimate it from
the reaction times and fraction of stop errors produced by our model simulations, following the race
model’s prescribed procedure [11]. Essentially, the SSRT is estimated as the difference between
mean go RT and the SSD at which 50% stop errors are committed (see Figure 1). By reconciling
the competing demands of stopping and going in an optimal manner, the estimated SSRT from
our simulations is automatically adjusted to mimic the observed human behavior (Figure 5F). This
suggests that the SSRT emerges naturally out of rational decision-making in the task.

5 Discussion

We presented an optimal decision-making model for inhibitory control in the stop-signal task. The
parameters of the model are either set directly by experimental design (cost function, stop frequency
and timing), or correspond to subject-specific abilities that can be estimated from behavior (sensory
processing); thus, there are no “free” parameters. The model successfully captures classical behav-
ioral results, such as the increase in error rate on stop trials with the increase of SSD, as well as the
decreases in average response time from go trials to error stop trials. The model also captures more
subtle changes in stopping behavior, when the fraction of stop-signal trials, the penalties for various
types of errors, and the history of experienced trials are manipulated. The classical model for the task
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Figure 5: Effect of reward on stopping. (A-C) Data from human subjects performing a variant of
the stop-signal task where the ratio of rewards for quick go responses and successful stopping was
varied, inducing a bias towards going or stopping (Data from [10]). An increased bias towards
stopping (i.e., fewer stop errors, (A)) is associated with an increase in the average reaction time on
go trials (B), and a decrease in the stopping latency or SSRT (C). (D-F) Our model captures this
change in SSRT as a function of the inherent tradeoff between RT and stop errors. Values of cs:
low=0.15, med=0.25, high=0.5.

(the race model) does not directly explain or quantitatively predict these changes in behavior. More-
over, the stopping latency measure prescribed by the race model (the SSRT) changes systematically
across various experimental manipulations, indicating that it cannot be used as a simplistic, global
measure of inhibitory control for each subject. Instead, inhibitory control is a multifaceted function
of factors such as subject-specific sensory processing rates, attentional factors, and internal/external
bias towards stopping or going, which are explicitly related to parameters in our normative model.

The close correspondence of model predictions with human and animal behavior suggests that the
computations necessary for optimal behavior are exactly or approximately implemented by the brain.
We used dynamic programming as a convenient tool to compute the optimal monitoring and deci-
sional computations, but the brain is unlikely to use this computationally expensive method. Recent
studies of the frontal eye fields (FEF, [8]) and superior colliculus [14] of monkeys show neural re-
sponses that diverge on go and correct stop trials, indicating that they may encode computations
leading to the execution or cancellation of movement. It is possible that optimal behavior can be
approximated by a diffusion process implementing the race model [4, 19], with the rate and thresh-
old parameters adjusted according to task demands. In future work, we will study more explicitly
how optimal decision-making can be approximated by a diffusion model implementation of the
race model (see e.g., [18], and how the parameters of such an implementation may be set to reflect
task demands. We will also assess alternatives to the race model, in the form of other approximate
algorithms, in terms of their ability to capture behavioral data and explain neural data.

One major aim of our work is to understand how stopping ability and SSRT arise from various
cognitive factors, such as sensitivity to rewards, learning capacity related to estimating stop signal
frequency, and the rate at which sensory inputs are processed. This composite view of stopping
ability and SSRT may help explain group differences in stopping behavior, in particular, differences
in SSRT observed in a number of psychiatric and neurological conditions, such as substance abuse
[13], attention-deficit hyperactivity disorder [1], schizophrenia [3], obsessive-compulsive disorder
[12], Parkinson’s disease [7], Alzheimer’s disease [2], et cetera. One of our goals for future research
is to map group differences in stopping behavior to the parameters of our model, thus gaining insight
into exactly which cognitive components go awry in each dysfunctional state.
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