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Abstract

Regularization technique has become a principled tool for statistics and machine
learning research and practice. However, in most situations, these regularization
terms are not well interpreted, especially on how they are related to the loss func-
tion and data. In this paper, we propose a robust minimax framework to interpret
the relationship between data and regularization terms for a large class of loss
functions. We show that various regularization terms are essentially correspond-
ing to different distortions to the original data matrix. This minimax framework
includes ridge regression, lasso, elastic net, fused lasso, group lasso, local coordi-
nate coding, multiple kernel learning, etc., as special cases. Within this minimax
framework, we further give mathematically exact definition for a novel represen-
tation called sparse grouping representation (SGR), and prove a set of sufficient
conditions for generating such group level sparsity. Under these sufficient con-
ditions, a large set of consistent regularization terms can be designed. This SGR
is essentially different from group lasso in the way of using class or group infor-
mation, and it outperforms group lasso when there appears group label noise. We
also provide some generalization bounds in a classification setting.

1 Introduction

A general form of estimating a quantity w ∈ Rn from an empirical measurement set X by minimiz-
ing a regularized or penalized functional is

ŵ = argmin
w

{L(Iw(X )) + λJ (w)}, (1)

where Iw(X ) ∈ Rm expresses the relationship between w and data X , L(.) := Rm → R+ is a
loss function, J (.) := Rn → R+ is a regularization term and λ ∈ R is a weight. Positive integers
n,m represent the dimensions of the associated Euclidean spaces. Varying in specific applications,
the loss function L has lots of forms, and the most often used are these induced (A is induced
by B, means B is the core part of A) by squared Euclidean norm or squared Hilbertian norms.
Empirically, the functional J is often interpreted as smoothing function, model bias or uncertainty.
Although Equation (1) has been widely used, it is difficult to establish a general mathematically
exact relationship between L and J . This directly encumbers the interpretability of parameters in
the model selection. It would be desirable if we can represent Equation (1) by a simpler form

ŵ = argmin
w

L
′

(I
′

w(X )). (2)

Obviously, Equation (2) provides a better interpretability for the regularization term in Equation (1)
by explicitly expressing the model bias or uncertainty as a variable of the relationship functional. In
this paper, we introduce a minimax framework and show that for a large family of Euclidean norm
induced loss functions, an equivalence relationship between Equation (1) and Equation (2) can be
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established. Moreover, the model bias or uncertainty will be expressed as distortions associated
with certain functional spaces. We will give a series of corollaries to show that well-studied lasso,
group lasso, local coordinate coding, multiple kernel learning, etc., are all special cases of this novel
framework. As a result, we shall see that various regularization terms associated with lasso, group
lasso, etc., can be interpreted as distortions that belong to different distortion sets.

Within this framework, we further investigate a large family of distortion sets which can generate
a special type of group level sparsity which we call sparse grouping representation (SGR). Instead
of merely designing one specific regularization term, we give sufficient conditions for the distortion
sets to generate the SGR. Under these sufficient conditions, a large set of consistent regularization
terms can be designed. Compared with the well-known group lasso which uses group distribution
information in a supervised learning setting, the SGR is an unsupervised one and thus essentially
different from the group lasso. In a novel fault-tolerance classification application, where there
appears class or group label noise, we show that the SGR outperforms the group lasso. This is not
surprising because the class or group label information is used as a core part of the group lasso while
the group sparsity produced by the SGR is intrinsic, in that the SGR does not need the class label
information as priors. Finally, we also note that the group level sparsity is of great interests due to
its wide applications in various supervised learning settings.

In this paper, we will state our results in a classification setting. In Section 2 we will review some
closely related work, and we will introduce the robust minimax framework in Section 3. In Section
4, we will define the sparse grouping representation and prove a set of sufficient conditions for
generating group level sparsity. An experimental verification on a low resolution face recognition
task will be reported in Section 5.

2 Related Work

In this paper, we will mainly work with the penalized linear regression problem and we shall review
some closely related work here. For penalized linear regression, several well-studied regularization
procedures are ridge regression or Tikhonov regularization [15], bridge regression [10], lasso [19]
and subset selection [5], fused lasso [20], elastic net [27], group lasso [25], multiple kernel learning
[3, 2], local coordinate coding [24], etc. The lasso has at least three prominent features to make itself
a principled tool among all of these procedures: continuous shrinkage and automatic variable selec-
tion at the same time, computational tractability (can be solved by linear programming methods) as
well as inducing sparsity. Recent results show that lasso can recover the solution of l0 regularization
under certain regularity conditions [8, 6, 7]. Recent advances such as fused lasso [20], elastic net
[27], group lasso [25] and local coordinate coding [24] are motivated by lasso [19].

Two concepts closely related to our work are the elastic net or grouping effect observed by [27] and
the group lasso [25]. The elastic net model hybridizes lasso and ridge regression to preserve some
redundancy for the variable selection, and it can be viewed as a stabilized version of lasso [27] and
hence it is still biased. The group lasso can produce group level sparsity [25, 2] but it requires the
group label information as prior. We shall see that in a novel classification application when there
appears class label noise [22, 18, 17, 26], the group lasso fails. We will discuss the differences of
various regularization procedures in a classification setting. We will use the basic schema for the
sparse representation classification (SRC) algorithm proposed in [21], and different regularization
procedures will be used to replace the lasso in the SRC.

The proposed framework reveals a fundamental connection between robust linear regression and
various regularized techniques using regularization terms of l0, l1, l2, etc. Although [11] first intro-
duced a robust model for least square problem with uncertain data and [23] discussed a robust model
for lasso, our results allow for using any positive regularization functions and a large family of loss
functions.

3 Minimax Framework for Robust Linear Regression

In this section, we will start with taking the loss function L as squared Euclidean norm, and we will
generalize the results to other loss functions in section 3.4.
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3.1 Notations and Problem Statement

In a general M (M > 1)-classes classification setting, we are given a training dataset T =
{(xi, gi)}

n
i=1, where xi ∈ Rp is the feature vector and gi ∈ {1, · · · ,M} is the class label for

the ith observation. A data (observation) matrix is formed as A = [x1, · · · , xn] of size p×n. Given
a test example y, the goal is to determine its class label.

3.2 Distortion Models

Assume that the jth class Cj has nj observations x
(j)
1 , · · · , x

(j)
nj . If x belongs to the jth class, then

x ∈ span{x
(j)
1 , · · · , x

(j)
nj }. We approximate y by a linear combination of the training examples:

y = Aw + η, (3)

where w = [w1, w2, · · · , wn]T is a vector of combining coefficients; and η ∈ Rp represents a vector
of additive zero-mean noise. We assume a Gaussian model v ∼ N(0, σ2I) for this additive noise,
so a least squares estimator can be used to compute the combining coefficients.

The observed training dataset T may have undergone various noise or distortions. We define the
following two classes of distortion models.

Definition 1: A random matrix ∆A is called bounded example-wise (or attribute) distortion
(BED) with a bound λ, denoted as BED(λ), if ∆A := [d1, · · · , dn], dk ∈ Rp, ||dk||2 ≤ λ, k =
1, · · · , n. where λ is a positive parameter.

This distortion model assumes that each observation (signal) is distorted independently from the
other observations, and the distortion has a uniformly upper bounded energy (“uniformity” refers to
the fact that all the examples have the same bound). BED includes attribute noise defined in [22,
26], and some examples of BED include Gaussian noise and sampling noise in face recognition.

Definition 2: A random matrix ∆A is called bounded coefficient distortion (BCD) with bound f ,
denoted as BCD(f), if ||∆Aw||2 ≤ f(w),∀w ∈ Rp, where f(w) ∈ R+ .

The above definition allows for any distortion with or without inter-observation dependency. For
example, we can take f(w) = λ||w||2, and Definition 2 with this f(w) means that the maximum
eigenvalue of ∆A is upper limited by λ. This can be easily seen as follows. Denote the maximum
eigenvalue of ∆A by σmax(∆A). Then we have

σmax(∆A) = sup
u,v 6=0

uT ∆Av

||u||2||v||2
= sup

u6=0

||∆Au||2
||u||2

,

which is a standard result from the singular value decomposition (SVD) [12]. That is, the condition
of ||∆Aw||2 ≤ λ||w||2 is equivalent to the condition that the maximum eigenvalue of ∆A is upper
bounded by λ. In fact, BED is a subset of BCD by using triangular inequality and taking special
forms of f(w). We will use D := BCD to represent the distortion model.

Besides the additive residue η generated from fitting models, to account for the above distortion
models, we shall consider multiplicative noise by extending Equation (3) as follows:

y = (A + ∆A)w + η, (4)

where ∆A ∈ D represents a possible distortion imposed to the observations.

3.3 Fundamental Theorem of Distortion

Now with the above refined linear model that incorporates a distortion model, we estimate the model
parameters w by minimizing the variance of Gaussian residues for the worst distortions within a
permissible distortion set D. Thus our robust model is

min
w∈Rp

max
∆A∈D

||y − (A + ∆A)w||2. (5)

The above minimax estimation will be used in our robust framework.

An advantage of this model is that it considers additive noise as well as multiplicative one within
a class of allowable noise models. As the optimal estimation of the model parameter in Equation
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(5), w∗, is derived for the worst distortion in D, w∗ will be insensitive to any deviation from the
underlying (unknown) noise-free examples, provided the deviation is limited to the tolerance level
given by D. The estimate w∗ thus is applicable to any A + ∆A with ∆A ∈ D. In brief, the
robustness of our framework is offered by modeling possible multiplicative noise as well as the
consequent insensitivity of the estimated parameter to any deviations (within D) from the noise-free
underlying (unknown) data. Moreover, this model can seamlessly incorporate either example-wise
noise or class noise, or both.

Equation (5) provides a clear interpretation of the robust model. In the following, we will give a
theorem to show an equivalence relationship between the robust minimax model of Equation (5)
and a general form of regularized linear regression procedure.

Theorem 1. Equation (5) with distortion set D(f) is equivalent to the following generalized regu-
larized minimization problem:

min
w∈Rp

||y − Aw||2 + f(w). (6)

Sketch of the proof: Fix w = w∗ and establish equality between upper bound and lower bound.

||y − (A + ∆A)w∗||2 ≤ ||y − Aw∗||2 + ||∆Aw∗||2

≤ ||y − Aw∗||2 + f(w∗).

In the above we have used the triangle inequality of norms. If y − Aw∗ 6= 0, we define u =
(y − Aw∗)/||y − Aw∗||2. Since max

∆A∈D
f(∆A) ≥ f(∆A∗), by taking ∆A∗ = −uf(w∗)t(w∗)T /k,

where t(w∗
i ) = 1/w∗

i for w∗
i 6= 0, t(w∗

i ) = 0 for w∗
i = 0 and k is the number of non-zero w∗

i (note
that w∗ is fixed so we can define t(w∗)), we can actually attain the upper bound. It is easily verified
that the expression is also valid if y − Aw∗ = 0.

Theorem 1 gives an equivalence relationship between general regularized least squares problems
and the robust regression under certain distortions. It should be noted that Equation (6) involves
min ||.||2, and the standard form for least squares problem uses min ||.||22 as a loss function. It
is known that these two coincide up to a change of the regularization coefficient so the following
conclusions are valid for both of them. Several corollaries related to l0, l1, l2, elastic net, group
lasso, local coordinate coding, etc., can be derived based on Theorem 1.

Corollary 1: l0 regularized regression is equivalent to taking a distortion set D(f l0) where
f l0(w) = t(w)wT , t(wi) = 1/wi for wi 6= 0, t(wi) = 0 for wi = 0.

Corollary 2: l1 regularized regression (lasso) is equivalent to taking a distortion set D(f l1) where
f l1(w) = λ||w||1.

Corollary 3: Ridge regression (l2) is equivalent to taking a distortion set D(f l2) where f l2(w) =
λ||w||2.

Corollary 4: Elastic net regression [27] (l2 + l1) is equivalent to taking a distortion set D(fe)
where fe(w) = λ1||w||1 + λ2||w||22, with λ1 > 0, λ2 > 0.

Corollary 5: Group lasso [25] (grouped l1 of l2) is equivalent to taking a distortion set D(fgl1)
where fgl1(w) =

∑m
j=1 dj ||wj ||2, dj is the weight for jth group and m is the number of group.

Corollary 6: Local coordinate coding [24] is equivalent to taking a distortion set D(f lcc) where
f lcc(w) =

∑n
i=1 |wi|||xi − y||22, xi is ith basis, n is the number of basis, y is the test example.

Similar results can be derived for multiple kernel learning [3, 2], overlapped group lasso [16], etc.

3.4 Generalization to Other Loss Functions

From the proof of Theorem 1, we can see the Euclidean norm used in Theorem 1 can be generalized
to other loss functions too. We only require the loss function is a proper norm in a normed vector
space. Thus, we have the following Theorem for a general form of Equation (1).

Theorem 2. Given the relationship function Iw(X ) = y − Aw and J ∈ R+ in a normed vector
space, if the loss functional L is a norm, then Equation (1) is equivalent to the following minimax
estimation with a distortion set D(J ):

min
w∈Rp

max
∆A∈D(J )

L(y − (A + ∆A)w). (7)
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4 Sparse Grouping Representation

4.1 Definition of SGR

We consider a classification application where class noise is present. The class noise can be viewed
as inter-example distortions. The following novel representation is proposed to deal with such dis-
tortions.

Definition 3. Assume all examples are standardized with zero mean and unit variance. Let ρij =
x

T
i xj be the correlation for any two examples xi, xj ∈ T. Given a test example y, w ∈ Rn is defined

as a sparse grouping representation for y, if both of the following two conditions are satisfied,
(a) If wi ≥ ǫ and ρij > δ, then |wi − wj | → 0 (when δ → 1) for all i and j.
(b) If wi < ǫ and ρij > δ, then wj → 0 (when δ → 1) for all i and j.
Especially, ǫ is the sparsity threshold, and δ is the grouping threshold.

This definition requires that if two examples are highly correlated, then the resulted coefficients
tend to be identical. Condition (b) produces sparsity by requiring that these small coefficients will
be automatically thresholded to zero. Condition (a) preserves grouping effects [27] by selecting
all these coefficients which are larger than a certain threshold. In the following we will provide
sufficient conditions for the distortion set D(J ) to produce this group level sparsity.

4.2 Group Level Sparsity

As known, D(l1) or lasso can only select arbitrarily one example from many identical candidates
[27]. This leads to the sensitivity to the class noise as the example lasso chooses may be mislabeled.
As a consequence, the sparse representation classification (SRC), a lasso based classification schema
[21], is not suitable for applications in the presence of class noise. The group lasso can produce
group level sparsity, but it uses group label information to restrict the distribution of the coefficients.
When there exists group label noise or class noise, group lasso will fail because it cannot correctly
determine the group. Definition 3 says that the SGR is defined by example correlations and thus it
will not be affected by class noise.

In the general situation where the examples are not identical but have high within-class correlations,
we give the following theorem to show that the grouping is robust in terms of data correlation. From
now on, for distortion set D(f(w)), we require that f(w) = 0 for w = 0 and we use a special form
of f(w), which is a sum of components fj(w),

f(w) = µ

n
∑

j=1

fj(wj).

Theorem 3. Assume all examples are standardized. Let ρij = x
T
i xj be the correlation for any two

examples. For a given test example y, if both fi 6= 0 and fj 6= 0 have first order derivatives, we
have

|f
′

i − f
′

j | ≤
2||y||2

µ

√

2(1 − ρij). (8)

Sketch of the proof: By differentiating ||y − Aw||22 +
∑

fj with respect to wi and wj respectively,

we have −2xT
i {y − Aw} + µf

′

i = 0 and −2xT
j {y − Aw} + µf

′

j = 0. The difference of these two

equations is f
′

i − f
′

j =
2(xT

i −xT
j )r

µ
where r = y − Aw is the residual vector. Since all examples are

standardized, we have ||xT
i − xT

j ||
2
2 = 2(1− ρij) where ρ = xT

i xj . For a particular value w = 0, we

have ||r||2 = ||y||2, and thus we can get ||r||2 ≤ ||y||2 for the optimal value of w. Combining r and
||xT

i − xT
j ||2, we proved the Theorem 3.

This theorem is different from the Theorem 1 in [27] in the following aspects: a) we have no re-
strictions on the sign of the wi or wj ; b) we use a family of functions which give us more choices to
bound the coefficients. As aforementioned, it is not necessary for fi to be the same with fj and we

even can use different growth rates for different components; and c) f
′

i (wi) does not have to be wi

and a monotonous function with very small growth rate would be enough.
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As an illustrative example, we can choose fi(wi) or fj(wj) to be a second order function with

respect to wi or wj . Then the resulted |f
′

i − f
′

j | will be the difference of the coefficients λ|wi −wj |
with a constant λ. If the two examples are highly correlated and µ is sufficiently large, then we can
conclude that the difference of the coefficients will be close to zero.

The sparsity implies an automatic thresholding ability with which all small estimated coefficients
will be shrunk to zero, that is, f(w) has to be singular at the point w = 0 [9]. Incorporating this
requirement with Theorem 3, we can achieve group level sparsity: if some of the group coefficients
are small and automatically thresholded to zero, all other coefficients within this group will be reset
to zero too. This correlation based group level sparsity does not require any prior information on the
distribution of group labels.

To make a good estimator, there are still two properties we have to consider: continuity and un-
biasedness [9]. In short, to avoid instability, we always require the resulted estimator for w be a

continuous function; and a sufficient condition for unbiasedness is that f
′

(|w|) = 0 when |w| is
large. Generally, the requirement of stability is not consistent with that of sparsity. Smoothness
determines the stability and singularity at zero measures the degree of sparsity. As an extreme ex-
ample, l1 can produce sparsity while l2 does not because l1 is singular while l2 is smooth at zero;
at the same time, l2 is more stable than l1. More details regarding these conditions can be found in
[1, 9].

4.3 Sufficient Condition for SGR

Based on the above discussion, we can readily construct a sparse grouping representation based
on Equation (5) where we only need to specify a distortion set D(f∗(w)) satisfying the following
sufficient conditions:

Lemma 1: Sufficient condition for SGR.
(a). f∗

j

′′

∈ R+ for all f
′

j 6= 0.
(b). f∗

j is continuous and singular at zero with respect to wj for all j.

(c). f∗
j

′

(|wj |) = 0 for large |wj | for all j.
Proof: Together with Theorem 3, it is easy to be verified.

As we can see, the regularization term λl1 +(1−λ)l22 proposed by [27] satisfies the above condition
(a) and (b), but it fails to comply with (c). So, it may become biased for large |w|. Based on
these conditions, we can easily construct regularization terms f∗ to generate the sparse grouping
representation. We will call these f∗ as core functions for producing the SGR. As some concrete
examples, we can construct a large family of clipped µ1Lq + µ2l

2
2 where 0 < q ≤ 1 by restricting

f ′
i = wiI(|wi| < ǫ) + c for some constant ǫ and c. Also, SCAD [9] satisfies all three conditions

so it belongs to f∗. This gives more theoretic justifications for previous empirical success of using
SCAD.

4.4 Generalization Bounds for Presence of Class Noise

We will follow the algorithm given in [21] and merely replace the lasso with the SGR or group lasso.
After estimating the (minimax) optimal combining coefficient vector w∗ by the SGR or group lasso,
we may calculate the distance from the new test data y to the projected point in the subspace spanned
by class Ci:

di(A,w∗|Ci
) = di(A|Ci

, w∗) = ||y − Aw∗|Ci
||2 (9)

where w∗|Ci
represents restricting w∗ to the ith class Ci; that is, (w∗|Ci

)j = w∗
j 1(xj ∈ Ci), where

1(·) is an indicator function; and similarly A|Ci
represents restricting A to the ith class Ci.

A decision rule may be obtained by choosing the class with the minimum distance:

î = argmini∈{1,··· ,M}{di}. (10)

Based on these notations, we now have the following generalization bounds for the SGR in the
presence of class noise in the training data.

Theorem 4. All examples are standardized to be zero mean and unit variance. For an arbitrary
class Ci of N examples, we have p (p < 0.5) percent (fault level) of labels mis-classified into class
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Ck 6= Ci. We assume w is a sparse grouping representation for any test example y and ρij > δ (δ
is in Definition 3) for any two examples. Under the distance function d(A|Ci

, w) = d(A,w|Ci
) =

||y −Aw|Ci
||2 and f

′

j = w for all j, we have confidence threshold τ to give correct estimation î for
y, where

τ ≤
(1 − p) × N × (w0)2

d
,

where w0 is a constant and the confidence threshold is defined as τ = di(A|Ci
) − di(A|Ck

).
Sketch of the proof: Assume y is in class Ci. The correctly labeled (mislabeled, respectively) subset
for Ci is C1

i (C2
i , respectively) and the size of set C1

i is larger than that of C2
i . We use A1w to

denote Aw|C1

i
and A2w to denote Aw|C2

i
. By triangular inequality, we have

τ = ||y − Aw|C1

i
||2 − ||y − Aw|C2

i
||2

≤ ||A1w − A2w||2.

For each k ∈ C1
i , we differentiate with respect to wk and do the same procedure as in proof of

Theorem 3. Then summarizing all equalities for C1
i and repeating the same procedure for each

i ∈ C2
i . Finally we subtract the summation of C2

i from the summation of C1
i . Use the conditions

that w is a sparse grouping representation and ρij > δ, combing Definition 3, so all wk in class Ci

should be the same as a constant w0 while others → 0. By taking the l2-norm for both sides, we

have ||A1w − A2w||2 ≤ (1−p)N(w0)2

d
.

This theorem gives an upper bound for the fault-tolerance against class noise. By this theorem, we
can see that the class noise must be smaller than a certain value to guarantee a given fault correction
confidence level τ .

5 Experimental Verification

In this section, we compare several methods on a challenging low-resolution face recognition task
(multi-class classification) in the presence of class noise. We use the Yale database [4] which consists
of 165 gray scale images of 15 individuals (each person is a class). There are 11 images per subject,
one per different facial expression or configuration: center-light, w/glasses, happy, left-light, w/no
glasses, normal, right-light, sad, sleepy, surprised, and wink. Starting from the orignal 64 × 64
images, all images are down-sampled to have a dimension of 49. A training/test data set is generated
by uniformly selecting 8 images per individual to form the training set, and the rest of the database
is used as the test set; repeating this procedure to generate five random split copies of training/test
data sets. Five class noise levels are tested. Class noise level=p means there are p percent of labels
(uniformly drawn from all labels of each class) mislabeled for each class.

For SVM, we use the standard implementation of multiple-class (one-vs-all) LibSVM in Mat-
labArsenal1. For lasso based SRC, we use the CVX software [13, 14] to solve the corresponding
convex optimization problems. The group lasso based classifier is implemented in the same way as
the SRC. We use a clipped λl1 + (1 − λ)l2 as an illustrative example of the SGR, and the corre-
sponding classifier is denoted as SGRC. For lasso, group Lasso and the SGR based classifier, we
run through λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2} and report the best results for each classifier.
Figure 1 (b) shows the parameter range of λ that is appropriate for lasso, group lasso and the SGR
based classifier. Figure 1 (a) shows that the SGR based classifier is more robust than lasso or group
lasso based classifier in terms of class noise. These results verify that in a novel application when
there exists class noise in the training data, the SGR is more suitable than group lasso for generating
group level sparsity.

6 Conclusion

Towards a better understanding of various regularized procedures in robust linear regression, we
introduce a robust minimax framework which considers both additive and multiplicative noise or
distortions. Within this unified framework, various regularization terms correspond to different

1A matlab package for classification algorithms which can be downloaded from
http://www.informedia.cs.cmu.edu/yanrong/MATLABArsenal/MATLABArsenal.htm.
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Figure 1: (a) Comparison of SVM, SRC (lasso), SGRC and Group lasso based classifiers on the low
resolution Yale face database. At each level of class noise, the error rate is averaged over five copies
of training/test datasets for each classifier. For each classifier, the variance bars for each class noise
level are plotted. (b) Illustration of the paths for SRC (lasso), SGRC and group lasso. λ is the weight
for regularization term. All data points are averaged over five copies with the same class noise level
of 0.2.

distortions to the original data matrix. We further investigate a novel sparse grouping representation
(SGR) and prove sufficient conditions for generating such group level sparsity. We also provide a
generalization bound for the SGR. In a novel classification application when there exists class noise
in the training example, we show that the SGR is more robust than group lasso. The SCAD and
clipped elastic net are special instances of the SGR.
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