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Abstract

We define a data dependent permutation complexity for a hypothesis setH, which
is similar to a Rademacher complexity or maximum discrepancy. The permutation
complexity is based (like the maximum discrepancy) on dependent sampling. We
prove a uniform bound on the generalization error, as well asa concentration result
which means that the permutation estimate can be efficientlyestimated.

1 Introduction

Assume a standard setting with dataD = {(xi, yi)}n
i=1, where(xi, yi) are samplediid from the joint

distributionp(x, y) onR
d×{±1}. LetH = {h : R

d 7→ {±1}} be a learning model which produces
a hypothesisg ∈ H when givenD (we useg for the hypothesis returned by the learning algorithm
andh for a generic hypothesis inH). We assume the 0-1 loss, so the in-sample error isein(h) =
1
2n

∑n
i=1(1 − yih(xi)). The out-sample erroreout(h) = 1

2 E [(1 − yh(x))]; the expectation is over
the joint distributionp(x, y). We wish to boundeout(g). To do so, we will bound|eout(h) − ein(h)|
uniformly overH for all distributionsp(x, y); however, the bound itself will depend on the data,
and hence the distribution. The classic distribution independent bound is the VC-bound (Vapnik and
Chervonenkis, 1971); the hope is that by taking into accountthe data one can get a tighter bound.
The data dependentpermutation complexity1 for H is defined by:

PH(n, D) = Eπ

[

max
h∈H

1

n

n
∑

i=1

yπi
h(xi)

]

.

Here,π is a uniformly random permutation on{1, . . . , n}. PH(n, D) is an intuitively plausible
measure of the complexity of a model, measuring its ability to correlate with a random permutation
of the target values. The difficulty in analyzingPH is that{yπi

} is an ordered random sample
from y = [y1, . . . , yn], sampledwithout replacement; as such it is a dependent sampling from a
data driven distribution. Analogously, we may define thebootstrap complexity, using the bootstrap
distributionB ony, where each sampleyB

i is independent and uniformly random overy1, . . . , yn:

BH(n, D) = EB

[

max
h∈H

1

n

n
∑

i=1

yB
i h(xi)

]

.

When the averagey-valueȳ = 0, the bootstrap complexity is exactly the Rademacher complexity
(Bartlett and Mendelson, 2002; Fromont, 2007; Kääriäinen and Elomaa, 2003; Koltchinskii, 2001;
Koltchinskii and Panchenko, 2000; Lozano, 2000; Lugosi andNobel, 1999; Massart, 2000):

RH(n, D) = Er

[

max
h∈H

1

n

n
∑

i=1

rih(xi)

]

,

1For simplicity, we assume thatH is closed under negation; generally, all the results hold with the complex-
ities defined using absolute values, so for examplePH(n, D) = Eπ

ˆ

maxh∈H

˛

˛

1

n

P

n

i=1
yπih(xi)

˛

˛

˜

.
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wherer is a random vector of i.i.d. fair±1’s. The maximum discrepancy complexity measure
∆H(n, D) is similar to the Rademacher complexity, with the expectation overr being restricted to
thoser satisfying

∑n
i=1 ri = 0,

∆H(n, D) = Er

[

max
h∈H

1

n

n
∑

i=1

riyih(xi)

]

.

Whenȳ = 0, the permutation complexity is the maximum discrepancy; the permutation complexity
is to maximum discrepancy as the bootstrap complexity is to the Rademacher complexity. The per-
mutation complexity maintains a little more information regarding the distribution. Indeed we prove
a uniform bound very similar to the uniform bound obtained using the Rademacher complexity:

Theorem 1 With probability at least1 − δ, for everyh ∈ H,

eout(h) ≤ ein(h) + PH(n, D) + 13

√

1

2n
ln

6

δ
.

The probability in this theorem is with respect to the data distribution. The challenge in proving this
theorem is to accomodate samples (yπi

) constructed according to the data, and in a dependent way.
Using our same proof technique, one can also obtain a similaruniform bound with the bootstrap
complexity, where the samples are independent, but according to the data. The proof starts with the
standard ghost sample and symmetrization argument. We thenneed to handle the data dependent
sampling in the complexity measure, and this is done by introducing asecond ghost data setto
govern the sampling. The crucial aspect about sampling according to a second ghost data set is
that the samples are now independent of the data; this is acceptable, provided the two methods of
sampling are close enough; this is what constitutes the meatof the proof given in Section 2.2.

For a given permutationπ, one can computemaxh∈H
1
n

∑n
i=1 yπi

h(xi) using an empirical risk
minimization; however, the computation of the expectationover permutations is an exponential task,
which needless to say is not feasible. Fortunately, we can establish that the permutation complexity
is concentrated around its expectation, which means that inprinciple a single permutation suffices
to compute the permutation complexity. Letπ be a single random permutation.

Theorem 2 For an absolute constantc ≤ 6 +
√

2/ ln 2, with probability at least1 − δ,

PH(n, D) ≤ sup
h∈H

1

n

n
∑

i=1

yπi
h(xi) + c

√

1

2n
ln

3

δ
.

The probability here is with respect to random permutations(i.e., it holds for any data set). It is easy
to show concentration for the bootstrap complexity about its expectation – this follows from Mc-
Diarmid’s inequality because the samples are independent.The complication with the permutation
complexity is that the samples are not independent. Nevertheless, we can show the concentration
indirectly by first relating the two complexities for any data set, and then using the concentration of
the bootstrap complexity (see Section 2.3).

Empirical Results. For a single random permutation, with probability at least1 − δ,

eout(h) ≤ ein(h) + sup
h∈H

1

n

n
∑

i=1

yπi
h(xi) + O

(

√

1

n
ln

1

δ

)

.

Asymptotically, one random permutation suffices; in practice, one should average over a few. In-
deed, a permutation based validation estimate for model selection has been extensively tested (see
Magdon-Ismail and Mertsalov (2010) for details); for classification, this permutation estimate is the
permutation complexity after removing a bias term. It outperformed LOO-cross validation and the
Rademacher complexity on real data. We restate those results here, comparing model selection us-
ing the permutation estimate versus using the Rademacher complexity (using real data sets from the
UCI Machine Learning repository (Asuncion and Newman, 2007)). The performance metric is the
regret when compared to oracle model selection on a held out set (lower regret is better). We con-
sidered two model selection tasks: choosing the number of leafs in a decision tree; and, selectingk
in thek-nearest neighbor method. The results reported here are averaged over several (10,000 or
more) random splits of the data into a training set and held out set. We define a learning episode as
an empirical risk minimization onO(n) data points.
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10 Learning Episodes 100 Learning Episodes
Data n Decision Trees k-NN Decision Trees k-NN

Perm. Rad. Perm. Rad. Perm. Rad. Perm. Rad.
Abalone 3,132 0.02 0.02 0.09 0.12 0.02 0.02 0.04 0.04
Ionosphere 263 0.18 0.19 0.75 0.84 0.16 0.17 0.70 0.83
M.Mass 667 0.06 0.06 0.11 0.12 0.05 0.05 0.11 0.11
Parkinsons 144 0.34 0.40 0.32 0.44 0.34 0.41 0.33 0.43
Pima Ind. 576 0.07 0.07 0.12 0.15 0.07 0.07 0.11 0.14
Spambase 3,450 0.07 0.07 0.43 0.54 0.06 0.07 0.43 0.55
Transfusion 561 0.08 0.09 0.12 0.19 0.08 0.09 0.12 0.19
WDBC 426 0.24 0.37 0.33 0.50 0.23 0.34 0.34 0.51
Diffusion 2,665 0.03 0.02 0.06 0.04 0.03 0.02 0.06 0.03

The permutation complexity appears to dominate most of the time (especially whenn is small);
and, when it fails to dominate, it is as good or only slightly worse than the Rademacher estimate.
It is not surprising that asn increases, the performances of the various complexities converges.
Asymptotically, one can deduce several relationships between them, for example the maximum
discrepancy can be asymptotically bounded from above and below by the Rademacher complexity.
Similarly, (see Lemma 5), the bootstrap and permutation complexities are equal, asymptotically. The
small sample performance of the complexities as bounding tools is not easy to discern theoretically,
which is where the empirics comes in. An intuition for why thepermutation complexity performs
relatively well is because it maintains more of the true datadistribution. Indeed, the permutation
method for validation was found to work well empirically, even in regression (Magdon-Ismail and
Mertsalov, 2010); however, our permutation complexity bound only applies to classification.

Open Questions. Can the permutation complexity bound be extended beyond classification to (for
example) regression with bounded loss? The permutation complexity displays a bias for severely
unbalanced data; can this bias be removed. We conjecture that it should be possible to get a better
uniform bound in terms ofEπ[maxh∈H

1
n

∑n
i=1(yπi

− ȳ)h(xi)].

1.1 Related Work

Out-sample error estimation has extensive coverage, both in the statistics and learning commuities.

(i) Statistical methodstry to estimate the out-sample error asymptotically inn, and give consis-
tent estimates under certain model assumptions, for example: final prediction error (FPE) (Akaike,
1974); Generalized Cross Validation (GCV) (Craven and Wahba, 1979); or, covariance-type penal-
ties (Efron, 2004; Wang and Shen, 2006). Statistical methods tend to work well when the model has
been well specified. Such methods are not our primary focus.

(ii) Sampling methods, such as leave-one-out cross validation (LOO-CV), try to estimate the out-
sample error directly. Cross validation is perhaps the mostused validation method, dating as far
back as 1931 (Larson, 1931; Wherry, 1931, 1951; Katzell, 1951; Cureton, 1951; Mosier, 1951;
Stone, 1974). The permutation complexity uses a “sampled” data set on which to compute the
complexity; other than this superficial similarity, the estimates are inherently different.

(iii) Bounds. The most celebrated uniform bound on generalization erroris the distribution inde-
pendent bound of Vapnik-Chervonenkis (VC-bound) (Vapnik and Chervonenkis, 1971). Since the
VC-dimension may be hard to compute, empirical estimates have been suggested, (Vapniket al.,
1994). The VC-bound is optimal among distribution independent bounds; however, for a particular
distribution, it could be sub-optimal. Several data dependent bounds have already been mentioned,
which can typically be estimated in-sample via optimization: maximum discrepancy (Bartlettet al.,
2002); Rademacher-style penalties (Bartlett and Mendelson, 2002; Fromont, 2007; Kääriäinen and
Elomaa, 2003; Koltchinskii, 2001; Koltchinskii and Panchenko, 2000; Lozano, 2000; Lugosi and
Nobel, 1999; Massart, 2000); margin based bounds, for example (Shawe-Tayloret al., 1998). Gen-
eralizations to Gaussian and symmetric, bounded variancer have also been suggested, (Bartlett and
Mendelson, 2002; Fromont, 2007) . One main application of such bounds is that any such approx-
imate estimate of the out-sample error (which satisfies somebound of the form of the permutation
complexity bound) can be used for model selection, after adding a (small) penalty for the “complex-
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ity of model selection” (see Bartlettet al. (2002)). In practice, this penalty for the complexity of
model selection is ignored (as in Bartlettet al. (2002)).

(iv) Permutation Methodsare not new to statistics (Good, 2005; Gollandet al., 2005; Wiklundet al.,
2007). Gollandet al. (2005) show concentration for a permutation based test of significance for the
improved performance of a more complex model, using the Rademacher complexity. We directly
give a uniform bound for the out-sample error in terms of a permutation complexity, answering a
question posed in (Gollandet al., 2005) which asks whether there is a direct link between permu-
tation statistics and generalization errors. Indeed, Magdon-Ismail and Mertsalov (2010) construct a
permutation estimate for validation which they empirically test in both classification and regression
problems. For classification, their estimate is related to the permutation complexity.

Most relevant to this work are Rademacher penalties and the corresponding (sampling without re-
placement) maximum discrepancy. Bartlettet al. (2002) give a uniform bound using the maximum
discrepancy which is in some sense a uniform bound based on a sampling without replacement
(dependent sampling); however, the sampling distributionis fixed, independent of the data. It is
illustrative to briefly sketch the derivation of the maximumdiscrepancy bound. Adapting the proof
in Bartlettet al.(2002) and ignoring terms which areO

(

( 1
n ln 1

δ )1/2
)

, with probability at least1−δ:

eout(h) ≤ ein(h) + sup
h∈H

{eout(h) − ein(h)}
(a)

≤ ein(h) + ED sup
h∈H

{eout(h) − ein(h)} ,

(b)
= ein(h) + ED sup

h∈H

{

ED′

1

2n

n
∑

i=1

yih(xi) − y′
ih(x′

i)

}

,

(c)

≤ ein(h) + ED,D′ max
h∈H

{

1

2n

n
∑

i=1

yih(xi) − y′
ih(x′

i)

}

,

(d)

≤ ein(h) + ED,D′ max
h∈H







1

n

n/2
∑

i=1

yih(xi) − y′
ih(x′

i)







,

= ein(h) + ED∆H(n, D)
(e)

≤ ein(h) + ∆H(n, D),

(a) follows from McDiarmid’s inequality becauseeout(h) − ein(h) is stable to a single point pertur-
bation for everyh, hence the supremum is also stable; in (b) appears a ghost data set and (c) follows
by convexity of the supremum; in (d), we break the sum into twoequal parts, which adds the factor
of two; finally, (e) follows again by McDiarmid’s inequalitybecause∆H is stable to single point
perturbations. The discrepancy automatically drops out from using the ghost sample; this does not
happen with data dependent permutation sampling, which is where the difficulty lies.

2 Permutation Complexity Uniform Bound

We now give the proof of Theorem 1. We will adapt the standard ghost sample approach in VC-type
proofs and the symmetrization trick in (Giné and Zinn, 1984) which has greatly simplified VC-style
proofs. In general, high probability results are with respect to the distribution over data sets. Our
main bounding tool will be McDiarmid’s inequality:

Lemma 1 (McDiarmid (1989)) LetXi ∈ Ai be independent; supposef :
∏

i

Ai 7→ R satisfies

sup
(x1,...,xn)∈

Q

i Ai

z∈Aj

|f(x) − f(x1, . . . , xj−1, z, xj+1, . . . , xn)| ≤ cj ,

for j = 1, . . . , n. Then, with probability at least1 − δ,

f(X1, . . . , Xn) ≤ Ef(X1, . . . , Xn) +

√

√

√

√

1

2

n
∑

i=1

c2
i ln

1

δ
.

We also obtainEf ≤ f +
√

1
2

∑n
i=1 c2

i ln 1
δ by using−f in McDiarmid’s inequality.
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2.1 Permutation Complexity

The out-sample permutation complexity of a model is:

PH(n) = EDPH(n, D) = ED,π

[

max
h∈H

1

n

n
∑

i=1

yπi
h(xi)

]

,

where the expectation is over the dataD = (x1, y1), . . . , (xn, yn) and a random permutationπ. Let
D′ differ from D only in one example,(xj , yj) → (x′

j , y
′
j).

Lemma 2 |PH(n, D) − PH(n, D′)| ≤ 4
n .

Proof: For any permutationπ and everyh ∈ H, the sum
∑n

i=1 yπi
h(xi) changes by at most4 in

going fromD to D′; thus, the maximum overh ∈ H changes by at most4.

Lemma 2 together with McDiarmid’s inequality implies a concentration ofPH(n, D) aboutPH(n),
which means we can work withPH(n, D) instead of the unknownPH(n).

Corollary 1 With probability at least1 − δ, PH(n) ≤ PH(n, D) + 4

√

1

2n
ln

1

δ
.

Sinceein(h) = 1
2 (1 − 1

n

∑n
i=1 yih(xi)), the empirical risk minimizergπ on the permuted targets

y
π can be used to computePH(n, D) for a particular permutationπ.

2.2 Bounding the Out-Sample Error

To boundsuph∈H{eout(h) − ein(h)}, we first use the standard ghost sample and symmetrization
arguments typical of modern generalization error proofs (see for example Bartlett and Mendelson
(2002); Shawe-Taylor and Cristianini (2004)). Letr

′′ = [r′′1 , . . . , r′′n] be a±1 sequence.

Lemma 3 With probability at least1 − δ:

sup
h∈H

{eout(h) − ein(h)} ≤ ED,D′

[

sup
h∈H

{

1

2n

n
∑

i=1

r′′i (yih(xi) − y′
ih(x′

i))

}]

+

√

1

2n
ln

1

δ
.

Proof: We proceed as in the proof of the maximum discrepancy bound inSection 1.1:

sup
h∈H

{eout(h) − ein(h)}
(a)

≤ ED,D′

[

sup
h∈H

{

1

2n

n
∑

i=1

yih(xi) − y′
ih(x′

i)

}]

+

√

1

2n
ln

1

δ
,

(b)
= ED,D′

[

sup
h∈H

{

1

2n

n
∑

i=1

r′′i (yih(xi) − y′
ih(x′

i))

}]

+

√

1

2n
ln

1

δ
.

In (a), theO(( 1
n ln 1

δ )1/2) term is from applying McDiarmid’s inequality becauseein(h) changes by
at most1n if one data point changes, and so the supremum changes by at most that much; (b) follows
becauser′′i = −1 corresponds to exchangingxi,x

′
i in the expectation which does not change the

expectation (it amounts to relabeling of random variables).

Lemma 3 holds for anarbitrary sequencer′′ which is independent ofD, D′; we can take the expec-
tation with respect tor′′, for arbitrarily distributedr′′, as long asr′′ is independent ofD, D′.

2.2.1 Generating Permutations with ±1 Sequences

Fix y; for a given permutationπ, define a corresponding±1 sequencerπ by rπ

i = yπi
yi; then,

yπi
= rπ

i yi. Thus, giveny, for each of then! permutationsπ1, . . . , πn!, we have a correspond-
ing ±1 sequencerπi ; we thus obtain a multiset of sequencesSy = {rπ1 , . . . , rπn!} (there may be
repetitions as two different permutations may result in thesame sequence of±1 values); we thus
have a mapping from permutations to the±1 sequences inSy. If r, a random vector of±1s, is
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uniform onSy, thenr.y (componentwise product) is uniform over the permutations of y. We say
thatSy generates the permutations ony. Similarly, we can defineSy′ , the generator of permutations
ony

′. Unfortunately,Sy, Sy′ depend onD, D′, and so we can’t take the expectation uniformly over
(for example)r ∈ Sy. We can overcome this by introducing a second ghost sampleD′′ to “approx-
imately” generate the permutations fory,y′, ultimately allowing us to prove the main result.

Theorem 3 With probability at least1 − 5δ,

sup
h∈H

{eout(h) − ein(h)} ≤ PH(n) + 9

√

1

2n
ln

1

δ
,

We obtain Theorem 1 by combining Theorem 3 with Corollary 1.

2.2.2 Proof of Theorem 3

Let D′′ be asecond, independentghost sample, andSy′′ the generator of permutations fory
′′. In

Lemma 3, take the expectation overr
′′ uniform onSy′′ . The first term on the RHS becomes

ED,D′,D′′

1

n!

∑

π

[

sup
h∈H

1

2n

n
∑

i=1

r′′i (π)(yih(xi) − y′
ih(x′

i))

]

, (1)

where each permutationπ induces a particular sequencer
′′(π) ∈ Sy′′ (previously we usedrπ

i
which is nowri(π)). Consider the sequencesr, r′ corresponding to the permutations ony andy

′.
The next lemma will ultimately relate the expectation over permutations in the second ghost data set
to the permutations overD, D′.

Lemma 4 With probability at least1 − 2δ, there is a one-to-one mapping from the sequences in
Sy′′ = {r′′(π)}π to Sy = {r(π)}π such that

∣

∣

∣

∣

∣

1

2n

n
∑

i=1

(r′′i − ri(r
′′))yih(xi)

∣

∣

∣

∣

∣

≤
√

8

n
ln

1

δ
,

for everyr′′ ∈ Sy′′ and everyh ∈ H (we writer(r′′) to denote the sequencer ∈ Sy to whichr
′′ is

mapped). Similarly, there exists such a mapping fromSy′′ to Sy′ .

The probability here is with respect toy, y
′ andy

′′. This lemma says that the permutation generat-
ing setsSy′′ , Sy′ , andSy are essentially equivalent.

Proof: We can (without loss of generality) reorder the points inD′′ so that the firstk′′ are+1, so
y′′
1 = · · · = y′′

k′′ = +1, and the remaining are−1. Similarily, we can order the points inD so that
the firstk are+1, so y1 = · · · = yk = +1. We now construct the mapping fromSy′′ to Sy as
follows. For a given permutationπ, we mapr′′(π) ∈ Sy′′ to r(π) ∈ Sy. This mapping is clearly
bijective since every permutation corresponds uniquely toa sequence inSy (andSy′′).

Let ri = yπi
yi andr′′i = y′′

πi
y′′

i . If ri 6= r′′i , eitheryπi
6= y′′

πi
or yi 6= y′′

i . Sincey andy
′′ disagree

on exactly|k− k′′| locations (and similarly foryπ andy
′′
π

), the number of locations wherer andr
′′

disagree is therefore at most2|k − k′′|. Thus, for anyr′′ and anyh ∈ H,
∣

∣

∣

∣

∣

1

2n

n
∑

i=1

(r′′i − ri(r
′′))yih(xi)

∣

∣

∣

∣

∣

≤ 1

2n

n
∑

i=1

|r′′i − ri(r
′′)| |yih(xi)|

=
1

2n

n
∑

i=1

|r′′i − ri(r
′′)| ≤ 2|k − k′′|

n
.

We observe that
∑n

i=1(yi − y′′
i ) = 2(k − k′′) and so,

∣

∣

∣

∣

∣

1

2n

n
∑

i=1

(r′′i − ri(r
′′))yih(xi)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(yi − y′′
i )

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n

n
∑

i=1

zi

∣

∣

∣

∣

∣

,

wherezi = yi − y′′
i . Sincey andy

′′ are identically distributed,zi are independent and zero mean.
We consider the functionf(z1, . . . , zn) = 1

n

∑n
i=1 zi. Sincezi ∈ {0,±2}, if you change one of the
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zi, f changes by at most4n , and so the conditions hold to apply McDiarmid’s inequalityto f . Thus,

using the symmetry ofzi, with probability at least1 − 2δ,
∣

∣

8
n

∑n
i=1 zi

∣

∣ ≤
√

1
2n ln 1

δ .

GivenD, D′, D′′, assume the mappings which are known to exist by the previouslemma arer(r′′)
andr′(r′′). We can rewrite the internal summand in the expression of Equation (1) using the equality

r′′i (yih(xi) − y′
ih(x′

i)) = (r′′i − ri(r
′′) + ri(r

′′))yih(xi) − (r′′i − r′i(r
′′) + r′i(r

′′))y′
ih(x′

i).

Using Lemma 4, we can, with probability at least1 − 2δ, bound the term which involves(r′′i −
ri(r

′′)) in Equation (1); and, similarly, with probability at least1− 2δ, we bound the term involving
(r′′i − r′i(r

′′)). Thus, with probability at least1 − 4δ, the expression in Equation (1) is bounded by:

ED,D′,D′′

1

n!

∑

π

[

sup
h∈H

1

2n

n
∑

i=1

(ri(r
′′)yih(xi) − r′i(r

′′)y′
ih(x′

i))

]

+ 2

√

8

n
ln

1

δ
,

wherer′′(π) cycles through the sequences inSy′′ . Since the mappingsr(r′′) andr
′(r′′) are one-to-

one,r(r′′).y cycles through the permutations ofy, and similarly forr′(r′′).y′. SinceH is closed
under negation, we finally obtain the bound

ED
1

n!

∑

π

[

sup
h∈H

1

2n

n
∑

i=1

yπi
h(xi)

]

+ ED′

1

n!

∑

π

[

sup
h∈H

1

2n

n
∑

i=1

y′
πi

h(x′
i)

]

+ 2

√

8

n
ln

1

δ
;

Using this in Lemma 3, with probability at least1 − 5δ,

sup
h∈H

{eout(h) − ein(h)} ≤ PH(n) + 9

√

1

2n
ln

1

δ
.

Commentary. (i) The permutation complexity bound needs empirical risk minimization, which is
notoriously hard; however, if thesamealgorithm is used for learning as well as computingP , we can
view it as optimization over a constrained hypothesis set (this is especially so with regularization);
the bounds now hold. (ii) The same proof technique can be usedto get a bootstrap complexity
bound; the result is similar. (iii) One could boundPH for VC function classes, showing that this
data dependent bound is asymptotically no worse than a VC-type bound. Bounding permutation
complexity on specific domains could follow the methods in Bartlett and Mendelson (2002).

2.3 Estimating PH(n, D) Using a Single Permutation

We now prove Theorem 2, which states that one can essentiallyestimatePH(n, D) (an average over
all permutations) bysuph∈H

1
n

∑n
i=1 yπi

h(xi), using just a single randomly selected permutationπ.
Our proof is indirect: we will linkPH to the bootstrap complexityBH. The bootstrap complexity
is concentrated via an easy application of McDiarmid’s inequality, which will ultimately allow us to
conclude that the permutation estimate is also concentrated. The bootstrap distributionB constructs
a random sequenceyB of n independent uniform samples fromy1, . . . , yn; the key requirement is
thatyB

i are independent samples. There arenn (not distinct) possible bootstrap sequences.

Lemma 5 |BH(n, D) − PH(n, D)| ≤ 1√
n

.

Proof: Let k be the number ofyi which are+1; we condition onκ, the number of+1 in the
bootstrap sample. SupposeB|κ samples uniformly among all sequences withκ entries being+1.

BH(n, D) = Eκ EB|κ

[

sup
h∈H

1

n

n
∑

i=1

yB
i h(xi)

∣

∣

∣

∣

∣

κ

]

,

The key observation is that we can generate all samples uniformly according toB|κ by first gener-
ating a random permutation and then selecting randomly|k − κ| +1’s (or−1’s) to flip, so:

EB|κ

[

sup
h∈H

1

n

n
∑

i=1

yB
i h(xi)

∣

∣

∣

∣

∣

κ

]

= EF|k−κ|
Eπ

[

sup
h∈H

1

n

n
∑

i=1

yF
πi

h(xi)

]

.
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(F denotes the flipping random process.) SinceyF
πi

differs fromyπi
in exactly|k − κ| positions,

sup
h∈H

1

n

n
∑

i=1

yπi
h(xi) −

2|k − κ|
n

≤ sup
h∈H

1

n

n
∑

i=1

yF
πi

h(xi) ≤ sup
h∈H

1

n

n
∑

i=1

yπi
h(xi) +

2|k − κ|
n

.

Thus,

|BH(n, D) − PH(n, D)| ≤ 2

n
Eκ [|k − κ|].

SinceEκ[|k − κ|] ≤
√

Var[k − κ] ≤ 1
2

√
n (becauseκ is binomial), the result follows.

In addition to furthering our cause toward the proof of Theorem 2, Lemma 5 is interesting in its own
right, because it says that permutation and bootstrap sampling are asymptotically similar. The nice
thing about the bootstrap estimate is that the expectation is over independentyB

1 , . . . , yB
n . Since the

bootstrap complexity changes by at most2
n if you change one sample, by McDiarmid’s inequality,

Lemma 6 For a random bootstrap sampleB, with probability at least1 − δ,

BH(n, D) ≤ sup
h∈H

1

n

n
∑

i=1

yB
i h(xi) + 2

√

1

2n
ln

1

δ
.

We now prove concentration for estimatingPH(n, D). As in the proof of Lemma 5, generateyB

in two steps. First generateκ, the number of+1’s in y
B ; κ is binomial. Now, generate a random

permutationyπ , and flip (as appropriate) a randomly selected|k−κ| entries, wherek is the number
of +1’s in y. If we apply McDiarmid’s inequality to the function which equals the number of
+1’s, we immediately get that with probability at least1 − 2δ, |κ − k| ≤ (1

2n ln 1
δ )1/2. Thus, with

probability at least1 − 2δ, yB differs fromy
π in at most(2n ln 1

δ )1/2 positions. Each flip changes
the complexity by at most2, hence, with probability at least1 − 2δ,

sup
h∈H

1

n

n
∑

i=1

yB
i h(xi) ≤ sup

h∈H

1

n

n
∑

i=1

yπi
h(xi) + 4

√

1

2n
ln

1

δ
.

We conclude that for a random permutationπ, with probability at least1 − 3δ,

BH(n, D) ≤ sup
h∈H

1

n

n
∑

i=1

yπi
h(xi) + 6

√

1

2n
ln

1

δ
.

Now, combining with Lemma 5, we obtain Theorem 2 after a little algebra, becauseδ < 1.

We have not only established thatPH is concentrated, but we have also established a general con-
nection between the permutation and bootstrap based estimates. In this particular case, we see that
sampling with and without replacement are very closely related. In practice, sampling without re-
placement can be very different, because one is never in the truly asymptotic regime. Along that
vein, even though we have concentration, it pays to take the average over a few permutations.
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