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Abstract

We define a data dependent permutation complexity for a Ingsigt set{, which
is similar to a Rademacher complexity or maximum discrepafie permutation
complexity is based (like the maximum discrepancy) on ddpahsampling. We
prove a uniform bound on the generalization error, as well@mncentration result
which means that the permutation estimate can be efficiestlynated.

1 Introduction

Assume a standard setting with d&ta= {(x;,y;)}",, where(x;, y;) are sampledd from the joint
distributionp(x, y) onR< x {£1}. LetH = {h : R — {+1}} be alearning model which produces
a hypothesig € H when givenD (we useg for the hypothesis returned by the learning algorithm
andh for a generic hypothesis ik). We assume the 0-1 loss, so the in-sample erreq i) =

7= > 11 (1 = yih(x;)). The out-sample erratu(h) = 5 E [(1 — yh(x))]; the expectation is over
the joint distributionp(x, y). We wish to boun@o.(g). To do so, we will boundeoui(h) — ein(h)]
uniformly overH for all distributionsp(x, y); however, the bound itself will depend on the data,
and hence the distribution. The classic distribution ireejent bound is the VC-bound (Vapnik and
Chervonenkis, 1971); the hope is that by taking into accthutlata one can get a tighter bound.

The data dependepermutation complexityfor  is defined by:

Py (n,D) =E, lmea%(g Zym (x; ] .

Here, 7 is a uniformly random permutation ofl,...,n}. Py (n, D) is an intuitively plausible
measure of the complexity of a model, measuring its abititgdrrelate with a random permutation
of the target values. The difficulty in analyzifgy is that{y.,} is an ordered random sample
fromy = [v1,-..,yn], Sampledwithoutreplacement; as such it is a dependent sampling from a
data driven distribution. Analogously, we may define boatstrap complexityusing the bootstrap
distribution B on'y, where each sampig” is independent and uniformly random oygr . . . , y,:

By (n,D) =Eg lmax—Zth (x; ] .
When the averagg-valuey = 0, the bootstrap complexity is exactly the Rademacher caxitple

(Bartlett and Mendelson, 2002; Fromont, 2007; Kaagaiand Elomaa, 2003; Koltchinskii, 2001;
Koltchinskii and Panchenko, 2000; Lozano, 2000; Lugosildobel, 1999; Massart, 2000):

1 n
— ih(Xi)|
o 2 Tihlx >]

For simplicity, we assume that is closed under negation; generally, all the results hotH thie complex-
ities defined using absolute values, so for exarilgn, D) = Ex [maxper |2 37, yr,h(xi)|].

Ry(n, D) = E,




wherer is a random vector of i.i.d. faif-1's. The maximum discrepancy complexity measure
Ay (n, D) is similar to the Rademacher complexity, with the expegtativerr being restricted to
thoser satisfying)_" , r; = 0,

1 n
Ay (n, D) = E, llgleag -~ z; Tﬂhh(zz)] :
1=
Wheny = 0, the permutation complexity is the maximum discrepanaoy pérmutation complexity
is to maximum discrepancy as the bootstrap complexity isédRademacher complexity. The per-
mutation complexity maintains a little more informatioigaeding the distribution. Indeed we prove

a uniform bound very similar to the uniform bound obtainethgshe Rademacher complexity:

Theorem 1 With probability at least — 9, for everyh € H,

1 6
eout(h) < ein(h) + Pr(n, D) + 134/ o In 5

The probability in this theorem is with respect to the dasdribution. The challenge in proving this
theorem is to accomodate samplgs, ] constructed according to the data, and in a dependent way.
Using our same proof technique, one can also obtain a simniliorm bound with the bootstrap
complexity, where the samples are independent, but aceptdithe data. The proof starts with the
standard ghost sample and symmetrization argument. Wentbesh to handle the data dependent
sampling in the complexity measure, and this is done by ¢hteing asecond ghost data séb
govern the sampling. The crucial aspect about samplingrditwpto a second ghost data set is
that the samples are now independent of the data; this iptadale, provided the two methods of
sampling are close enough; this is what constitutes the af¢lé proof given in Section 2.2.

For a given permutatiomr, one can computeaxycy %Z?:l Y=, h(x;) using an empirical risk
minimization; however, the computation of the expectatieer permutations is an exponential task,
which needless to say is not feasible. Fortunately, we ciabksh that the permutation complexity
is concentrated around its expectation, which means thatimciple a single permutation suffices
to compute the permutation complexity. letbe a single random permutation.

Theorem 2 For an absolute constant< 6 4+ /2/In 2, with probability at least — ¢,

1< 1. 3
D)< sup =Y yrh(x:)+cy/—InZ.
Pr(n, )_Zggn;yl (xi) +¢y/ - In >

The probability here is with respect to random permutat{@rs it holds for any data set). It is easy
to show concentration for the bootstrap complexity abaiekpectation — this follows from Mc-
Diarmid’s inequality because the samples are independéet.complication with the permutation
complexity is that the samples are not independent. Nesteth, we can show the concentration
indirectly by first relating the two complexities for any daet, and then using the concentration of
the bootstrap complexity (see Section 2.3).

Empirical Results. For a single random permutation, with probability at lelast §,

1 & 1.1
eout(h) < ein(h sup — h(x; O —In—-].
out(h) < ein( )+hegn;ym (x;) + < o 5)
Asymptotically, one random permutation suffices; in piagtione should average over a few. In-
deed, a permutation based validation estimate for modetseh has been extensively tested (see
Magdon-Ismail and Mertsalov (2010) for details); for ciéisation, this permutation estimate is the
permutation complexity after removing a bias term. It oufpened LOO-cross validation and the
Rademacher complexity on real data. We restate thosesdwri, comparing model selection us-
ing the permutation estimate versus using the Rademachwglegity (using real data sets from the
UCI Machine Learning repository (Asuncion and Newman, 2D0The performance metric is the
regret when compared to oracle model selection on a heldeblosver regret is better). We con-
sidered two model selection tasks: choosing the numbesadd la a decision tree; and, selectihg

in the k-nearest neighbor method. The results reported here aragadover several (10,000 or
more) random splits of the data into a training set and hetdeu We define a learning episode as
an empirical risk minimization o®(n) data points.



10 L earning Episodes 100 L earning Episodes

Data n Decision Trees| k-NN Decision Trees| k-NN

Perm.| Rad. | Perm.| Rad. || Perm.| Rad. | Perm.| Rad.
Abalone 3,132 0.02 | 0.02 | 0.09 | 0.12]f 0.02 | 0.02 | 0.04 | 0.04
lonosphere| 263 0.18 0.19 | 0.75 | 0.84 || 0.16 0.17 | 0.70 | 0.83
M.Mass 667 0.06 | 0.06 | 0.11 | 0.12|| 0.05 | 0.05 | 0.11 | 0.112
Parkinsons | 144 0.34 0.40 | 032 | 0.44 | 034 0.41 | 033 | 0.43
Pima Ind. 576 0.07 | 0.07 | 0.12 | 0.15| 0.07 | 0.07 | 0.11 | 0.14
Spambase | 3,450 0.07 | 0.07 | 043 | 0.54 | 0.06 0.07 | 043 | 0.55
Transfusion| 561 0.08 0.09 | 0.12 | 0.19 | 0.08 0.09 | 0.12 | 0.19
WDBC 426 0.24 0.37 | 0.33 | 0.50| 0.23 0.34 | 034 | 0.51
Diffusion 2,665| 0.03 | 0.02 0.06 | 0.04 0.03 | 0.02 0.06 | 0.03

The permutation complexity appears to dominate most ofithe {especially whem is small);
and, when it fails to dominate, it is as good or only slightlgrée than the Rademacher estimate.
It is not surprising that ag increases, the performances of the various complexitieserges.
Asymptotically, one can deduce several relationships eéetwthem, for example the maximum
discrepancy can be asymptotically bounded from above alodvid®y the Rademacher complexity.
Similarly, (see Lemma 5), the bootstrap and permutationaexities are equal, asymptotically. The
small sample performance of the complexities as boundiolg e not easy to discern theoretically,
which is where the empirics comes in. An intuition for why {hermutation complexity performs
relatively well is because it maintains more of the true dhstribution. Indeed, the permutation
method for validation was found to work well empirically,egvin regression (Magdon-Ismail and
Mertsalov, 2010); however, our permutation complexity idanly applies to classification.

Open Questions.  Can the permutation complexity bound be extended beyomsditilzation to (for
example) regression with bounded loss? The permutatiorplaxity displays a bias for severely
unbalanced data; can this bias be removed. We conjecturi feuld be possible to get a better
uniform bound in terms of . [maxper £ 30 (Y, — Y)h(xs)].

1.1 Related Work

Out-sample error estimation has extensive coverage, hatteistatistics and learning commuities.

(i) Statistical method#ry to estimate the out-sample error asymptoticallyzinand give consis-
tent estimates under certain model assumptions, for exarfipal prediction error (FPE) (Akaike,
1974); Generalized Cross Validation (GCV) (Craven and VEati®79); or, covariance-type penal-
ties (Efron, 2004; Wang and Shen, 2006). Statistical metheadd to work well when the model has
been well specified. Such methods are not our primary focus.

(i) Sampling methodsuch as leave-one-out cross validation (LOO-CV), try tineste the out-
sample error directly. Cross validation is perhaps the mestl validation method, dating as far
back as 1931 (Larson, 1931; Wherry, 1931, 1951; Katzell,11@=ureton, 1951; Mosier, 1951;
Stone, 1974). The permutation complexity uses a “sampledi det on which to compute the
complexity; other than this superficial similarity, theigsites are inherently different.

(iii) Bounds The most celebrated uniform bound on generalization ésrtre distribution inde-
pendent bound of Vapnik-Chervonenkis (VC-bound) (Vapmilk &hervonenkis, 1971). Since the
VC-dimension may be hard to compute, empirical estimates baen suggested, (Vaprek al,,
1994). The VC-bound is optimal among distribution indepartdounds; however, for a particular
distribution, it could be sub-optimal. Several data depetdounds have already been mentioned,
which can typically be estimated in-sample via optimizatimaximum discrepancy (Bartledt al,,
2002); Rademacher-style penalties (Bartlett and Mende@02; Fromont, 2007; Kaariainen and
Elomaa, 2003; Koltchinskii, 2001; Koltchinskii and Pancke, 2000; Lozano, 2000; Lugosi and
Nobel, 1999; Massart, 2000); margin based bounds, for eba(Bhawe-Tayloet al,, 1998). Gen-
eralizations to Gaussian and symmetric, bounded variahege also been suggested, (Bartlett and
Mendelson, 2002; Fromont, 2007) . One main application ohdwounds is that any such approx-
imate estimate of the out-sample error (which satisfies doooed of the form of the permutation
complexity bound) can be used for model selection, afteirada (small) penalty for the “complex-



ity of model selection” (see Bartledtt al. (2002)). In practice, this penalty for the complexity of
model selection is ignored (as in Bartlettal. (2002)).

(iv) Permutation Methodare not new to statistics (Good, 2005; Gollal, 2005; Wiklundet al.,
2007). Gollancet al. (2005) show concentration for a permutation based tesgoffgiance for the
improved performance of a more complex model, using the Radber complexity. We directly
give a uniform bound for the out-sample error in terms of ampeéation complexity, answering a
guestion posed in (Gollanet al, 2005) which asks whether there is a direct link between perm
tation statistics and generalization errors. Indeed, Magidmail and Mertsalov (2010) construct a
permutation estimate for validation which they empirigadist in both classification and regression
problems. For classification, their estimate is relatedhiéopermutation complexity.

Most relevant to this work are Rademacher penalties anddtresponding (sampling without re-
placement) maximum discrepancy. Bartlettal. (2002) give a uniform bound using the maximum
discrepancy which is in some sense a uniform bound based ampliag without replacement
(dependent sampling); however, the sampling distribuisofixed, independent of the data. It is
illustrative to briefly sketch the derivation of the maximuliscrepancy bound. Adapting the proof
in Bartlettet al.(2002) and ignoring terms which afe((£ In 1)!/2), with probability at least — ¢&:

coulll) < enl) + sup {eault) — en(h)} ? en(h) +E sup {eauh) ~ cin(h).

b

(:) ein(h) +Ep SUP {ED’ Zyz Xz y;h z)} )

< ein(h)‘l-ED D’ max{ Z% Xz —1/1 1)} ,
n/2

< ein(h) + IED D’ max Zyz xl z z) ’

()
= ein(h) +EpAx(n,D) < ein(h) + Ax(n, D),

(a) follows from McDiarmid’s inequality becausgu(h) — ein(h) is stable to a single point pertur-
bation for everyh, hence the supremum is also stable; in (b) appears a ghastetand (c) follows
by convexity of the supremum; in (d), we break the sum into égaal parts, which adds the factor
of two; finally, (e) follows again by McDiarmid’s inequalityecause),, is stable to single point
perturbations. The discrepancy automatically drops arfusing the ghost sample; this does not
happen with data dependent permutation sampling, whichéethe difficulty lies.

2 Permutation Complexity Uniform Bound

We now give the proof of Theorem 1. We will adapt the stand&abtjsample approach in VC-type
proofs and the symmetrization trick in (Giné and Zinn, 1984ich has greatly simplified VC-style
proofs. In general, high probability results are with redge the distribution over data sets. Our
main bounding tool will be McDiarmid’s inequality:

Lemma 1 (McDiarmid (1989)) Let X; € A; be independent; suppoge ]'_[Ai — R satisfies

sup |f(x)_f(Ilv'-'7xj*1727xj+1a"'7xn)|Scja
(x1,...,zn)€ll; A
ZEAj

forj =1,...,n. Then, with probability at least — 9,

0'7|*—‘

f(X1,...,X,) <Ef(Xy,...,X %;

We also obtaifE f < f + 1/2 S Ing L by using— f in McDiarmid’s inequality.

4



2.1 Permutation Complexity

The out-sample permutation complexity of a model is:
1 n
=K D)=E P — 7'r'h/ 0 )
Pr(n) = EpPr(n,D) = Ep, [I}{leagn ;y h(x )]

where the expectation is over the d&ta= (x1,¥1),. - -, (Xn, y») and a random permutation Let
D" differ from D only in one example(x;, y;) — (X}, )

Lemmaz2 |Py(n, D) — Py(n,D')| < 2.

Proof: For any permutatiomr and everyh € H, the sumy_." | y.h(x;) changes by at mostin
going fromD to D’; thus, the maximum oveér € H changes by at most |

Lemma 2 together with McDiarmid’s inequality implies a centration ofPy (n, D) aboutPy(n),
which means we can work witRy(n, D) instead of the unknow®s(n).

Corollary 1 With probability at least — d, Py (n) < Py(n, D) + 44/ 2i In %
n

Sinceein(h) = (1 — 2 3" | y;h(x;)), the empirical risk minimizey™ on the permuted targets
y™ can be used to compuf®(n, D) for a particular permutatiofn.

2.2 Bounding the Out-Sample Error

To boundsup;, cy{eou(h) — ein(h)}, we first use the standard ghost sample and symmetrization
arguments typical of modern generalization error proodée [®r example Bartlett and Mendelson
(2002); Shawe-Taylor and Cristianini (2004)). ét= [/, ..., r!/] be at+1 sequence.

r'n

Lemma 3 With probability at least — ¢:

1 & 11
sup{eout(h) —ein(h)} < Ep.pr |sup{ — E ! (yih(x;) — yih(x, +4/=—In=.
heg{ out(h) in(h)} D,D Leg{%l — (yih(xi) — yih( ))} on 5

Proof: We proceed as in the proof of the maximum discrepancy bouBeation 1.1:
sup{eoulh) — en(h)} £ E ! f: h(xs) — yh(xl) b | 44/ o= In »
Sup e — € /| su — (X)) — y;n(xX; —In -,
he?l?{ out in S D,D he?I:-)( m iZIy Y om 3
(b) 1 ¢ " ’ / 1 1
= E 4 5 D (yih(xs) — y;h(x; —In—.
D.D [225{271 ;:1 i (yih(xi) = y; (xz))} ty g, Ing

In (a), theO((% In %)1/2) term is from applying McDiarmid’s inequality becausg(h) changes by

at most% if one data point changes, and so the supremum changes byattrabmuch; (b) follows
because = —1 corresponds to exchanging, x; in the expectation which does not change the
expectation (it amounts to relabeling of random variables) |

Lemma 3 holds for aarbitrary sequence” which is independent ab, D’; we can take the expec-
tation with respect te”, for arbitrarily distributedr”, as long as” is independent oD, D’.

2.2.1 Generating Permutationswith +1 Sequences

Fix y; for a given permutationr, define a correspondingl sequence™ by r7 = y.,y;; then,
yx, = TTy;. Thus, giveny, for each of then! permutationsry, ..., m,:, we have a correspond-
ing £1 sequence™; we thus obtain a multiset of sequencgs= {r™,...,r™'} (there may be
repetitions as two different permutations may result ingdame sequence afl values); we thus
have a mapping from permutations to the sequences i¥y. If r, a random vector of:1s, is



uniform on.Sy, thenr.y (componentwise product) is uniform over the permutatidng.oWe say
thatS, generates the permutationspnSimilarly, we can defing,, the generator of permutations
ony’. UnfortunatelySy, Sy~ depend orD, D', and so we can't take the expectation uniformly over
(for example) € Sy. We can overcome this by introducing a second ghost sami® “approx-
imately” generate the permutations fpry’, ultimately allowing us to prove the main result.

Theorem 3 With probability at leastt — 50,
1 1

Sgg{eout(h) —ein(h)} <Pu(n)+9 o In 5’

We obtain Theorem 1 by combining Theorem 3 with Corollary 1.

2.2.2 Proof of Theorem 3

Let D" be asecond, independeghost sample, anfly the generator of permutations fgf'. In
Lemma 3, take the expectation owéruniform onsS,. The first term on the RHS becomes

Ep,p/ D”_|Z [

where each permutatiom induces a particular sequencé(w) € Sy~ (previously we used
which is nowr;(7r)). Consider the sequences’ corresponding to the permutations prandy’.
The next lemma will ultimately relate the expectation ovemputations in the second ghost data set
to the permutations ovep, D'.

Z ri (m) (yih(x z)—yéh(XD)], 1)

heH 2n

Lemma 4 With probability at leastl — 20, there is a one-to-one mapping from the sequences in
Sy = {r"(m)}» t0.Sy = {r(m)}~ such that

n

> ) = ri(x")yih(x:)

=1
for everyr” € Sy, and everyh € H (we writer(r”’) to denote the sequenge= Sy, to whichr” is
mapped). Similarly, there exists such a mapping fiym to Sy

1

8
2n n

In

1
< <
- )

The probability here is with respect$g y’ andy”. This lemma says that the permutation generat-
ing setsS,», Sys, and.Sy are essentially equivalent.

Proof: We can (without loss of generality) reorder the pointdifi so that the firsk” are+1, so

yl = = yy» = +1, and the remaining are1. Similarily, we can order the points if» so that

the f|rstk are+1,soy; = --- = yr = +1. We now construct the mapping frofy,» to Sy as

follows. For a given permutation, we mapr’(r) € Sy~ tor(mw) € Sy. This mapping is clearly
bijective since every permutation corresponds uniqueysequence iy (andsSy).

Letr; = yx,y; andry =y yi'. If r; # 7, eitheryy, ;é yi ory; # y!. Sincey andy” disagree
on exactly|k — k"] locations (and S|m|IarIy foy. andy’), the number of locations whereandr”
disagree is therefore at magdk — £”|. Thus, for any” and anyh € H,

1 n
o Z ri = ri(x")] |yih(xi)|

— Z|TH_ // | < 2|k_k”|'

n

n

D = ra(x”))yih(x,)

i=1

1
2n

IN

We observe tha} ;" (v; — v/') = 2(k — k") and so,

n

%Z(yz -

i=1

1 o 1
o > ) = ri(@"))yih(xi) - >z
i=1 i=1
wherez; = y; — y/. Sincey andy” are identically distributed;; are independent and zero mean.

We consider the functiofi(z1, ..., z,) = % Z?:l z;. Sincez; € {0, 42}, if you change one of the

S —

)




z;, f changes by at moét and so the conditions hold to apply McDiarmid’s inequatidyf. Thus,
using the symmetry of;, with probability at least — 26, |2 3" | 2| < /5~ In}. [
GivenD, D', D", assume the mappings which are known to exist by the preléousa arer(r”)
andr’(r”). We can rewrite the internal summand in the expression o&kou (1) using the equality

ri (yih(xi) = yih(x})) = (i = ra(x") + ri(@"))ysh(x) — (i = ri(x") + ri(x"))yih(x7).
Using Lemma 4, we can, with probability at ledst- 25, bound the term which involveg: —
( ) in Equat|on (2); and, similarly, with probability at least- 26, we bound the term involving
(r —ri(r")). Thus, with probability at least — 46, the expression in Equation (1) is bounded by:

Ep,p D”_'Z l

wherer” () cycles through the sequencesSy. Since the mappinggr”) andr’(r”) are one-to-
one,r(r”).y cycles through the permutations pf and similarly forr’(r”).y’. Since™ is closed
under negation, we finally obtain the bound

,z[sup—zym )] + 50 ,z[sup—zym

E (ri (x")yih(x;) — ri (" )yih(x))) | +2 §1n%,
n
=1

heH n

1
—In—;
heH 2n heH 2n n 0

Using this in Lemma 3, with probability at leabt- 59,

1 1
sup{eout(h) — ein(h)} < Pr(n) +9 o In —.
heH n 0

Commentary. (i) The permutation complexity bound needs empirical riskimization, which is
notoriously hard; however, if theamealgorithm is used for learning as well as computiigve can
view it as optimization over a constrained hypothesis $g$ {5 especially so with regularization);
the bounds now hold. (ii) The same proof technique can be tsget a bootstrap complexity
bound; the result is similar. (iii) One could bouf}, for VC function classes, showing that this
data dependent bound is asymptotically no worse than a Y€pund. Bounding permutation
complexity on specific domains could follow the methods imtB#& and Mendelson (2002).

2.3 Estimating Py (n, D) Using a Single Per mutation

We now prove Theorem 2, which states that one can essemsiiiyateP;(n, D) (an average over
all permutations) byup, <4 % > i1y h(x;), using just a single randomly selected permutation
Our proof is indirect: we will linkPy, to the bootstrap complexit$;,. The bootstrap complexity
is concentrated via an easy application of McDiarmid’s uredity, which will ultimately allow us to
conclude that the permutation estimate is also concedtratee bootstrap distributio constructs
a random sequenge® of n independent uniform samples fram, . . . , v,,; the key requirement is
thaty” are independent samples. Therestgnot distinct) possible bootstrap sequences.

Lemma5s |By(n,D) — Py(n,D)| <

5i-

Proof: Let k& be the number of); which are+1; we condition onx, the humber oft+1 in the
bootstrap sample. SuppoBdx samples uniformly among all sequences witbntries beingt1.

I~ 5
sup — yo h(x)| k|,
o S|

The key observation is that we can generate all samplesramiif@according toB|x by first gener-
ating a random permutation and then selecting randdkny | 4+1's (or —1’s) to flip, so:

Eplx lsup Zth X;) }511615 - Zym X; ] )

BH(TL, D) =Ex EB|:~@

_EFUc r»\




(F denotes the flipping random process.) Sigﬁediﬁers fromy., in exactly|k — x| positions,

2k —k 2k—m
sup — Zym X;) |n Zyﬂ (x;) < sup Zym (x:) | |

her 1 heH n
Thus,
[Br(n, D) ~ Preln, D)| < 2 B [ ]
SinceE,[|k — || < \/Varlk — x] < 3/n (because is binomial), the result follows. [

In addition to furthering our cause toward the proof of Tlni2, Lemma 5 is interesting in its own
right, because it says that permutation and bootstrap sagnamle asymptotically similar. The nice
thing about the bootstrap estimate is that the expectatiouer independent’, ..., yZ. Since the

bootstrap complexity changes by at m&sn‘ you change one sample, by McDiarmid’s inequality,

Lemma 6 For a random bootstrap samplg, with probability at least — 4,

1
By (n, D) < E +2¢4/—1In=
(n, D) Zg;n UZ xi) 2nn§

We now prove concentration for estimatify, (n, D). As in the proof of Lemma 5, generagé

in two steps. First generatg the number of-1's in y?; « is binomial. Now, generate a random
permutatiory™, and flip (as appropriate) a randomly seledted «| entries, wheré is the number
of +1'sin y. If we apply McDiarmid’s inequality to the function which eqls the number of
+1’s, we immediately get that with probability at ledst- 2, |n — k| < (3nln 1)Y/2. Thus, with
probability at least — 24, y* differs fromy™ in at most(2n In 1)!/2 positions. Each flip changes
the complexity by at most, hence, with probability at least— 25

sup y;i h(x;) < sup Ym h(x;) + 4 —1n
heHnZ up = Z )44/ g s

We conclude that for a random permutatinwith probability at least — 36,

Br(n,D) < su h(x;) + 6 —ln
( )WEHZU )+6y/5-In=.

Now, combining with Lemma 5, we obtain Theorem 2 after adlitlgebra, because< 1. |

We have not only established thaj, is concentrated, but we have also established a general con-
nection between the permutation and bootstrap based éstima this particular case, we see that
sampling with and without replacement are very closelyteglan practice, sampling without re-
placement can be very different, because one is never irrdheasymptotic regime. Along that
vein, even though we have concentration, it pays to takewbeage over a few permutations.
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