Inter-time segment information sharing for
non-homogeneous dynamic Bayesian networks

Dirk Husmeier & Frank Dondelinger
Biomathematics & Statistics Scotland (BioSS)
JCMB, The King’s Buildings, Edinburgh EH93JZ, United Kiragd
di r k@i oss. ac. uk, frank@i oss. ac. uk

Sophie Lebre
Universite de Strasbourg, LSIIT - UMR 7005, 67412 llikirch, France
sophie.lebre@siit-cnrs.unistra.fr

Abstract

Conventional dynamic Bayesian networks (DBNs) are baseéd@homogeneous
Markov assumption, which is too restrictive in many praatigpplications. Vari-
ous approaches to relax the homogeneity assumption hasethebeen proposed,
allowing the network structure to change with time. Howewgilless time series
are very long, this flexibility leads to the risk of overfittjrand inflated infer-
ence uncertainty. In the present paper we investigate teggdarization schemes
based on inter-segment information sharing, choosingiifft prior distributions
and different coupling schemes between nodes. We apply etirad to gene ex-
pression time series obtained during the Drosophila lifddlegyand compare the
predicted segmentation with other state-of-the-art teghes. We conclude our
evaluation with an application to synthetic biology, wh#re objective is to pre-
dict a knownin vivo regulatory network of five genes in yeast.

1 Introduction

There is currently considerable interest in structurerigmy of dynamic Bayesian networks (DBNS),
with a variety of applications in signal processing and cataponal biology; see e.g. [1, 2, 3]. The
standard assumption underlying DBNs is that time-serige baen generated from a homogeneous
Markov process. This assumption is too restrictive in mgmpliaations and can potentially lead to
erroneous conclusions. While there have been various efforelax the homogeneity assumption
for undirected graphical models [4, 5], relaxing this rieston in DBNs is a more recent research
topic [1, 2, 3, 6, 7, 8]. At present, none of the proposed maghe without its limitations, leav-
ing room for further methodological innovation. The methmdposed in [3, 8] is non-Bayesian.
This requires certain regularization parameters to bentpéd “externally”, by applying informa-
tion criteria (like AIC or BIC), cross-validation or bootapping. The first approach is suboptimal,
the latter approaches are computationally expensilrethe present paper we therefore follow the
Bayesian paradigm, like [1, 2, 6, 7]. These approaches ase their limitations. The method
proposed in [2] assumes a fixed network structure and ordyvalthe interaction parameters to vary
with time. This assumption is too rigid when looking at preses where changes in the overall
regulatory network structure are expected, e.g. in morphegis or embryogenesis. The method
proposed in [1] requires a discretization of the data, whiturs an inevitable information loss.
These limitations are addressed in [6, 7], where the aughiagose a method for continuous data
that allows network structures associated with differettes to change with time in different ways.
However, this high flexibility causes potential problemsantapplied to time series with a low num-
ber of measurements, as typically available from systemi®ty, leading to overfitting or inflated

1See [9] for a demonstration of the higher computational costs of boppsirg over Bayesian approaches
based on MCMC.



inference uncertainty. The objective of the work descrilredur paper is to propose a model that
addresses the principled shortcomings of the three Bayes@éhods mentioned above. Unlike [1],
our model is continuous and therefore avoids the infornmatiss inherent in a discretization of the
data. Unlike [2], our model allows the network structure tmege among segments, leading to
greater model flexibility. As an improvement on [6, 7], our debintroduces information sharing
among time series segments, which provides an essentidareggtion effect.

2 Background: non-homogeneous DBNs without information couling

This section summarizes briefly the non-homogeneous DBNgs®ed in [6, 7], which combines
the Bayesian regression model of [10] with multiple charajefpprocesses and pursues Bayesian
inference with reversible jump Markov chain Monte Carlo MRIMC) [11]. In what follows, we
will refer to nodes as genes and to the network as a gene teguleetwork. The method is not
restricted to molecular systems biology, though.

2.1 Model
MuItipIe changepoints Let p be the number of observed genes, whose expression values

ISPt

defrned by a set of directed edges among;tlgenes M, is the subnetwork assocrated with target
genei, determined by the set of its parents (nodes with a directige éeeding into gené. The
regulatory relationships among the genes, definedubymay vary across time, which we model
with a multiple changepoint process. For each target gesre unknown numbek; of changepoints
definek; + 1 non-overlapping segments. Segment 1, .., k; + 1 starts at changepoirﬁf‘1 and
stops beforg!, whereg; = (€0, ....¢" 1 ¢l el Ty with ¢! < ¢!, To delimit the boundst? = 2
and¢¥ ' = N 4 1. Thus vectok; has lengthé;| = k; + 2. The set of changepoints is denotedtby
{&:}1<i<p- This changepoint process induces a partition of the tiriesg! = (i) eh-1cy en with
different structuresvi”” associated with the different segments {1, ..., k; + 1}. ldentifiability is
satisfied by ordering the changepoints based on their positithe time series.

Regression model:For all geneg, the random variabl&; (¢) refers to the expression of genat
time ¢. Within any segment, the expression of genedepends on the gene expression values
measured at the previous time point through a regressioreht:tujined by (a) a set of? parents
denoted by/\/tf = {1, gy C{L ...} |MP| = 5P, and (b) a set of paramete(r(&”)]eo o O
al; € R, ol > 0. Forallj #0,al; = 0if j ¢ M]'. For all genesg, for all time pointst in segment:
(€h' <t < ¢h), the random varlabIE’( ) depends on thg variables{Y; (¢t — 1) }1<,<, according to

= alo + Z a” Gt —1) + 8i(t) 1)

where the noise; (¢) is assumed to be Gaussian with mean 0 and variafge, «;(t) ~ N(0, (o)?).
We definea! = (al});co..p-

2.2 Prior
Thek; + 1 segments are delimited Ity changepoints, where is distributed a priori as a truncated
Poisson random variable with meamnd maximunmk = N —2: P(k;|\) « k =t ]l{k <7 - Conditional

on k; changepoints, the changepoint positions vegtor (¢7, ¢4, ..., ¥t takes non-overlapping
integer values, which we take to be uniformly distributedian There are( N — 2) possible posi-

tions for thek; changepoints, thus vectéy has prior density?(&;|k;) = 1/ (N*,f) For all genes
and all segments, the numbes!* of parents for nodefollows a truncated Poisson distributfowith
meanA and maximuns = 5: P(s?|A) ﬁt{sh<s} Conditional ons”, the prior for the parent set
M is a uniform distribution over all parent sets with cardityab”: P(M! [|M)| = s!) = /(" )
The overall prior on the network structures is given by maatjzation:

PMIA) =377, PME ! P(sEIA) )

2A restrictive Poisson prior encourages sparsity of the network, anceigfiire comparable to a sparse
exponential prior, or an approach based on the LASSO.



Conditional on the parent sgtt” of sizes”, thes! + 1 regression coefficients, denoted by =
(aly, (aly) ;e wmn ), are assumed zero-mean multivariate Gaussian with cowaimatrix(o; R M

t —1
_1 @ pn 2 g Epl
P(af| M}, o )=|2m(07)? M§| 26XP<2(Uh)2

7

®3)

where the symbo} denotes matrix transpositioE,M? =4 2DL,I( )DM? (v) andDMéb(y) is the

(€l — €l x (sP + 1) matrix whose first column is a vector d:f(for the constant in model (1))
and each(j + 1)** column contains the observed vaIL(@_$(t))§;_H71<t<§‘h71 for all factor genej

in M!. This prior was also used in [10] and is motivated in [12]. &y the conjugate prior for

the varianceo!)? is the inverse gamma distributior(c*)?) = ZG(vo,~0). Following [6, 7], we

set the hyper-hyperparameters for shape= 0.5, and scaley, = 0.05, to fixed values that give

a vague distribution. The termissandA can be interpreted as the expected number of changepoints
and parents, respectively, afd is the expected signal-to-noise ratio. These hyperpaemsare
drawn from vague conjugate hyperpriors, which are in thediise) gamma distribution family:
P(A) = P()\) = Ga(0.5,1) and P(6?) = ZG(2,0.2).

2.3 Posterior
Equation (1) implies that
I (gh—eh=1
P(y;'|&; ,€I,M1,a1,0 ) = (\/ﬁa-) exp | —

Wl = DnWam)" Wl = Dyn@a,n)
) @

From Bayes theorem, the posterior is given by the followiggation, where all prior distributions
have been defined above:

P k;
P(k, &, M,a,0,\A,6%y) o P(8*)P H (ki N P(&lks) [ [P(MEA) (5)

h=1

P([O—ZL]Q) (az ‘M’L7[ ’L] ) (y’b |€ 7517 iaazv[azh]Q)

2.4 Inference

An attractive feature of the chosen model is that the maligiizon over the parametetsando in
the posterior distribution of (5) is analytically tractabl

P(kEMNAGY) = / P(k& M.a.0 M 5%y dado (6)

See [6, 10] for details and an explicit expression. The nurobehangepoints and their location,
k, &, the network structuréM and the hyperparameteksA, 62 can be sampled from the posterior
P(k,&, M, \, A, 6%y) with RIMCMC [11]. A detailed description can be found in [6]1

3 Model improvement: information coupling between segmerg

Allowing the network structure to change between segmesidd to a highly flexible model. How-
ever, this approach faces a conceptual and a practicalgarobrhepractical problem is potential
model over-flexibility. If subsequent changepoints areseltbgether, network structures have to be
inferred from short time series segments. This will almaswitably lead to overfitting (in a maxi-
mum likelihood context) or inflated inference uncertairity & Bayesian context). Thanceptual
problem is the underlying assumption that structures astautwith different segments are a priori
independent. This is not realistic. For instance, for trawion of a gene regulatory network during
embryogenesis, we would assume that the network evolveligiist and that networks associated
with adjacent time intervals are a priori similar.

To address these problems, we propose three methods omiation sharing among time series
segments, as illustrated in Figure 1. The first method isearéard information coupling between
the nodes, using the exponential distribution proposed &).[ The second scheme is also based
on hard information coupling, but uses a binomial distiidatwith conjugate Beta prior. The third
scheme is based on the same distributional assumptions as¢bnd scheme, but replaces the hard
by a soft information coupling scheme.



(a) Hard Node Coupling (b) soft Node Coupling

Figure 1: Hierarchical Bayesian models for inter-segment and inter-nodentetion coupling. 1(a): Hard
coupling between nodes with common hyperparam@tergulating the strength of the coupling between struc-
tures associated with adjacent segment! ande‘*l. This corresponds to the models in Section 3.1, with
O = 3, ¥ = [0,10], and nof?, and Section 3.2, witld = {a, b}, ¥ = {«o, @,~,7}, andQ = [0, 20]. 1(b):
Soft coupling between nodes, with node-specific hyperparam@tecoupled via level2-hyperparametebs
This corresponds to the model in Section 3.3, vth= {a;,b;}, ¥ = {a, @, ~, 7}, andQ2 = [0, 20].

3.1 Hard information coupling based on an exponential prior

Denote byK; := k; + 1 the total number of partitions in the time series associatih nodesi,
and recall that each time series segmghts associated with a separate subnetwstk, 1 < h <
K;. We impose a prior distributio®(M”|M"~!,3) on the structures, and the joint probability
distribution factorizes according to a Markovian deperden

K;
Pyl, oy M ML B) = T Pl M) PME M, B)P(B) (7)
h=1

Similar to [13] we define

exp(=fIMi — M7 )
Zi(3, ML)

for h > 2, whereg is a hyperparameter that defines the strength of the couplkngeenit’

and M"~', and|.| denotes the Hamming distance. Hor= 1, P(M!) is given by (2). The

denominatorz (3, M"~') in (8) is a normalizing constant, also known as the partifiamction:

Z2(B) = X spem e PIMI =M™ whereM is the set of all valid subnetwork structures. If we ignore

any fan-in restriction that might have been imposed a pigas), then the expression for the parti-

tion function can be simplifiedz(8) ~ [1%_, Z;(8), whereZ;(8) = Zigzo e Pl =i T f o8

and hencez(8) = (1 + e~ ”)”. Inserting this expression into (8) gives:

exp(—fIM} — M7 1))
(L+e by

Itis straightforward to integrate the proposed model ihn®RIMCMC scheme of [6, 7] as described

in Section 2.4. When proposing a new network structw¢ — M” for segmenth, the prior

" . PAMIT M g PME|ME ) " ;
probability ratio has to be replaced b%.(M?H‘M?’ﬁ)P(MHM?,lm. An additional MCMC step is
introduced for sampling the hyperparameteirom the posterior distribution. For a proposal move

8 — (3 with symmetric proposal probabilit)(3|3) = Q(8|5) we get the following acceptance
probability: A(3|8) = min{M P I, SRCAMEMET) (ke P)”

(8)

P(MPMI™E,B) =

PMEM; ™ B) = 9)

=) (M) (1+67é)p,1} where in our study

the hyperpriorP(3) was chosen as the uniform distribution on the intefoal0].

3.2 Hard information coupling based on a binomial prior
An alternative way of information sharing among segmentsragdes is by using a binomial prior:

PMEIME Y a,b) = il (1 — gy NIl pNG il ( _ NG [h] (10)



where we have defined the following sufficient statistitgih, i] is the number of edges it ~*

that are matched by an edge.in, N [r,1] is the number of edges in”~* for which there is no
edge inM?, N} [h, ] is the number of edges it for which there is no edge inm”~*, andN{ [h, ]

is the number of coinciding non-edges/i ' and M. Since the hyperparameters are shared, the
joint distribution can be expressed as:

P K; P
P({M!}a,0) = [[PMY [T PMEME " a,b) = o™ (1) (1-5)™ [] P(M]) (12)
i=1 h=1 =1
where we have defineti} = -7 | "X, Ni[h,i], and the right-hand side follows from Eq. (10).
The conjugate prior for the hyperparameters is a beta distribution? (a, bla, @, v,7) o« a'*~V (1 —
a)@Dp=Y (1 — )= which allows the hyperparameters to be integrated outdsed form:

//P({Mf}|a,b)P(a,b\a,a,%ﬁ)dadb (12)

I(a+a@) T(N} + a)I(N? + @) T(y +7) T(NY + )T (NG +7)

I'(a)l'(@) (N +a+ N2 +a) D(y)L(F) TN +v+ N +7)
The level-2 hyperparametets @, v,7 are given a uniform hyperprior oveé6, 20]. The MCMC
scheme of Section 2.4 has to be modified as follows. When pimpa@snew network structure

for nodei and segment, M" — M?", the structuresm? and M” enter the prior probability
. . A &~ %) as PUML.-. Mh L MBIV oy, 7)
ratio via the expressio®®({ M} }a, @,~,7), a p({w """ P f{i}f:;a,a,'y,ﬁ)-
a consequence of integrating out the hyperparameterseuﬂunk structures become interdepen-
dent, and information about the structures is containetiérstifficient statistic&vi, NV, N&, N§.
A new proposal move for the level-2 hyperparameters is adddbde existing RIMCMC scheme
of Section 2.4. New values for the level-2 hyperparameters {«, @, ,7} are proposed from
a uniform distribution over a fixed interval. For a mowe— z, the acceptance probability is:

1 Kiyp T, {a,a T _ _ __ N
PUM!,..., tizy 12,400 @7 TINE) 1} where{a, @, ~,7} \ = corresponds tda, v, 7} if

P({M}}o, @ v, 7)

Note that as

A(Z|r) = min
(#) P({M!},..., ’}f o fa@y, 7 \e)’

x designates hyperparameterand similarly fora, ~, 7.

3.3 Soft information coupling based on a binomial prior

We can relax the information sharing scheme from a hard tofacsmpling by introducing

node-specific hyperparameteds, b; that are softly coupled via a common level-2 hyperprior,

Pai, bilo, @, 7,7) o< al® ™ (1 = )@ D60V (1 —b,)7-V | as illustrated in Figure 1(b):
PMIMEY i, b;) = (ag) V10 (1 — a) N () NO Tl (1 — ) No [ (13)

This leads to a straightforward modification of eq. (11) Haemga, b by a;, b; — from which we

get as an equivalent to (13), using the definitiéfi] = 25;2 Niih,i):

I(a+@) D(N;[i] + o)T(NY[i] +@) T(y +7) TNl + DTN [i] +7)
()T (@) T(N{[i] + o+ NP[i] + @) T(MTF) T(NG[i] + v + Ny li] +7)

PM},... M |a,@,7,7) o 14

i

As in Section 3.2, we extend the RIMCMC scheme from Sectibs@that when proposing a new

network struc’[ure/\/lﬁ1 — M?, the acceptance probability has to be updated with the paitio:

1 h ’I e
DM, M 28779 1 addition, we have to add a new level-2 hyperparametertepdave

P(./\/ﬂ ,,,,, Mh ..... 7\ao¢'y'y)

x — 7, where the prior and proposal probabilities are the same Ssction 3.2, and the acceptance
_ P(Mi ..y ;3@ TH\E)

probability becomesA(z|z) = mln{ T fi|x,{a,a,~m}\x>’1}

4 Results

The methods described in this paper have been implementdbased on code from [6, 7]. Our
program sets up an RIMCMC simulation to sample the netwodctsire, the changepoints and
the hyperparameters from the posterior distribution. A®avergence diagnostic we monitor the
potential scale reduction factor (PSRF) [14], computednfithe within-chain and between-chain
variances of marginal edge posterior probabilities. VeloEPSRK 1.1 are usually taken as indi-
cation of sufficient convergence. In our simulations, weeeged the burn-in phase until a value of
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Figure 2: Network reconstruction performance comparisoAlWROC and AUPRC reconstruction
scores for the four methods, HetDBN-0 (white), HetDBN-Ekght grey), HetDBN-Binol (dark
grey, left), HetDBN-Bino2 (dark grey, right). The boxplatisow the distributions of the scores for 10
datasets with 4 network segments each, where the horizeetahows the median, the box margins
show the 25th and 75th percentiles, the whiskers indicatewlihin 2 times the interquartile range,
and circles are outliers. “Same Segs” means that all segnieiat dataset have the same structure,
while “Different Segs” indicates that structure changesapplied to the segments sequentially.

PSRK 1.05 was reached, and then sampled 1000 network and changepofigurations in inter-
vals of 200 RIMCMC steps. From these samples we compute ttggnalposterior probabilities
of all potential interactions, which defines a ranking of &uges in the recovered network. When
the true network is known, this allows us to construct thedResz Operating Characteristic (ROC)
curve (plotting the sensitivity or recall against the coeméntary specificity) and the precision-
recall (PR) curve (plotting the precision against the i@cahd to assess the network reconstruction
accuracy in terms of the areas under these graphs (AUROC dRiRE, respectively); see [15].

4.1 Comparative evaluation on simulated data

We randomly generated 10 networks with 10 nodes each, wethiimber of parents per node drawn
from a Poisson distribution with mean= 3. To simulate changes in the network structure, we cre-
ated 4 different network segments by drawing the number ahghks from a Poisson distribution
and applying the changes uniformly at random to edges anedgas in the previous segment. For
each segment, we generated a time series of length 15 usimgga tegression model. The regres-
sion weights were drawn from a Gaussiar{0, 1), and Gaussian observation noid&0, 1) was
added. We compared the network reconstruction accuradyeohon-homogeneous DBN without
information sharing proposed in [6, 7] (HetDBN-0) with thede information sharing approaches,
based on the exponential prior from Section 3.1 (HetDBNJE#pe binomial prior with hard node
coupling from Section 3.2 (HetDBN-Binol), and the binonpabr with soft node coupling from
Section 3.3 (HetDBN-Bino2). Figures 2(a) and 2(b) showsigvork reconstruction performance
of the different information sharing methods in terms of AO® and AUPRC scores. All infor-
mation sharing methods show a clear improvement in netwacknstruction over HetDBN-0, as
confirmed by paired t-testp (< 0.01). We investigated two different situations, the case wiadre
segment structures are the same (although edge weighti@xmedto vary) and the case where
changes are applied sequentially to the segmentdormation sharing is most beneficial for the
first case, but even when we introduce changes we still seeceggise in the network reconstruction
scores compared to HetDBN-0. When all segments are the saetBBN-Binol and HetDBN-
Bino2 outperform HetDBN-Expy( < 0.05), but there is no significant difference between the two
binomial methods. Paired t-tests showed that all otheewifices in mean are significant. When the
segments are different, all information sharing methodp@tdiorm HetDBN-0 < 0.05), but the
difference between the information sharing methods is igotificant.

4.2 Morphogenesis inDrosophila melanogaster

We applied our methods to a gene expression time seriesdoeerlgenes involved in the muscle
development oDrosophila melanogaster [16]. The microarray data measured gene expression lev-
els during all four major stages of morphogenesis: embigwa, pupa and adult. We investigated
whether our methods were able to infer the correct changépoorresponding to the known transi-
tions between stages. Figure 3(a) shows the posterior pildles of inferred changepoints for any
gene using HetDBN-0, while Figure 3(c) shows the posteniobabilities for the information shar-

3We chose to draw the number of changes from a Poisson with mean ddonede.
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Figure 3: Changepoints inferred on gene expression daterbto morphogenesis Drosophila
melanogaster, and synthetic biology ifaccharomyces cerevisiae (yeast). All figures using HetDBN
plot the posterior probability of a changepoint occurringdiny node at a given time plotted against
time. 3(a): HetDBN-0 changepoints for Drosophila (no imfation sharing) 3(b): TESLA, L1-
norm of the difference of the regression parameter vectese@ated with two adjacent time points
plotted against time. 3(c): HetDBN changepoints for Drdslapwith information sharing; the
method is indicated by the legend. 3(d) HetDBN changepdortshe synthetic gene regulatory
network in yeast. In 3(a)-3(c), the vertical dotted linedidate the three morphogenic transitions,
while in 3(d) the line indicates the boundary between “stvibo” and “switch off” data.

ing methods. For comparison, we applied the method propiosig], using the authors’ software
package TESLA (Figure 3(b)). Robinson and Hartemink applie discrete non-homogeneous
DBN in [1] to the same data set, and a plot corresponding targig(b) can be found in their paper.

Our non-homogeneous DBN methods are generally more sdatédsasn TESLA, in that they re-
cover changepoints for all three transitions (embsyolarva, larva— pupa, and pupa- adult).
Figure 3(b) indicates that the last transition, pupaadult, is less clearly detected with TESLA,
and it is completely missing in [1]. Both our method as welT&SLA detect additional transitions
during the embryo stage, which are missing in [1]. We woulgliarthat a complex gene regulatory
network is unlikely to transition into a new morphogenic phall at once, and some pathways might
have to undergo activational changes earlier in prepardtiothe morphogenic transition. As such,
it is not implausible that additional transitions at the geegulatory network level occur. However,
a failure to detect known morphogenic transitions can glda seen as a shortcoming of a method,
and on these grounds our model appears to outperform thelteroative ones. We note that the
main effect of information sharing is to reduce the size ef¢haller peaks, while keeping the three
most salient peaks (corresponding to larvgoupa, and pupa> adult, and an extra transition in the
embryo phase). This reflects the fact that these changsmi@aissociated with significant changes
in network structure, and adds to the interpretability af tesults. The drawback is that the third
morphological transition (embrye- larva) is less pronounced.

4.3 Reconstruction of a synthetic gene regulatory networkn Saccharomyces cerevisiae

The highly topical field of synthetic biology enables bidkig to design known gene regulatory
networks in living cells. In the work described in [17], a 8lyetic regulatory network of 5 genes was
constructed inSaccharomyces cerevisiae (yeast), and gene expression time series were measured
with RT-PCR for 16 and 21 time points under two experimentalditions, related to the carbon
source: galactose (“switch on”) and glucose (“switch afffhe authors tried to reconstruct the
known gold-standard network from these time series with éstblished state-of-the-art methods
from computational systems biology, one based on ordindfgrential equations (ODES), called
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Figure 4: Reconstruction of a known gene regulatory netwoskn synthetic biology in yeast.
The network was reconstructed from two gene expression sienges obtained with RT-PCR in
two experimental conditions, reflecting the switch in theboa source from galactose (“switch
on”) to glucose (“switch off”). The reconstruction accuyaaf the methods proposed in Section 3,
where the legend is explained, is shown in terms of precigientical axis) - recall (horizontal
axis) curves. Results were averaged over 10 independent ®@ikhulations. For comparison,
fixed precision/recall scores are shown for two state-efdtht methods reported in [17]: Banjo, a
conventional DBN, and TSNI, a method based on ODEs.

TSNI, the other based on conventional DBNs, called Banje;[4&] for details. Both methods
are optimization-based and output a single network. By @mpn with the known gold standard,
the authors obtained the precision (proportion of predidtéeractions that are correct) and recall
(proportion of predicted true interactions) scores. In study, we merged the time series from
the two experimental conditions under exclusion of the lolauy point, and applied the four non-
homogeneous DBNSs described before. Figure 3(d) showsfilxeéd marginal posterior probability
of potential changepoints. The most significant changepsiat the boundary between “switch
on” and “switch off” data, confirming that the known true clyapoint is consistently identified.
The biological mechanism behind the other peaks is not knawd they are potentially spurious.
Interestingly, the application of the proposed informatmupling schemes reduces the height of
these peaks, with the binomial models having a strongectetffian the exponential one.

As we pursue a Bayesian inference scheme, we also obtairkimgaof the potential gene interac-
tions in terms of their marginal posterior probabilitiesof this we computed the precision-recall
curves [15] shown in Figure 4. Our non-homogeneous DBNs imfttrmation sharing outperform
Banjo and TSNI both in the “switch on” and the “switch off” dea They also perform better than
HetDBN-0 on the “switch off” data, but are slightly worse dret‘switch on” data. Note that the
reconstruction accuracy on the “switch off” data is gerlgrpborer than on the “switch on” data
[17]. Our results are thus plausible, suggesting that médion sharing boosts the reconstruction
accuracy on the poorer time series segment at the cost ofradestjperformance on the stronger
one. This effect is more pronounced for the exponentialrghian for the binomial one, indicating
a tighter coupling. The average areas under the PR curvesmged over both phases (“switch on
and off”), are as follows. HetDBN-0= 0.70, HetDBN-Exp= 0, HetDBN-Bino1= 0.75, HetDBN-
Bino2= 0.75. Hence, the overall effect of information shgris a performance improvement.

5 Conclusions

We have described a non-homogeneous DBN, which has varivasitages over existing schemes:
it does not require the data to be discretized (as opposetl]}oif allows the network structure
to change with time (as opposed to [2]); it includes threediint regularization schemes based on
inter-time segment information sharing (as opposed to]j6and it allows all hyperparameters to be
inferred from the data via a consistent Bayesian inferenberse (as opposed to [3]). An evaluation
on simulated data has demonstrated an improved perfornuuecg6, 7] when information sharing
is introduced. The application of our method to gene exjwasane series taken during the life cy-
cle of Drosophila melanogaster has revealed better agreement with known morphogeniciti@ms
than the methods of [1] and [3]. We have carried out a comparavaluation of different informa-
tion coupling schemes: a binomial versus an exponentiat,mnd hard versus soft coupling. In an
application to data from a topical study in synthetic biglogur methods have outperformed two
established network reconstruction methods from comjaurtat systems biology.

*“When merging two time serig1, . .., <) and(yi, . . . , yn), only the pairse; — x; andy; — y; are
presented to the DBN, while the paiy, — y1 is excluded due to the obvious discontinuity.
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