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Abstract
Conventional dynamic Bayesian networks (DBNs) are based onthe homogeneous
Markov assumption, which is too restrictive in many practical applications. Vari-
ous approaches to relax the homogeneity assumption have recently been proposed,
allowing the network structure to change with time. However, unless time series
are very long, this flexibility leads to the risk of overfitting and inflated infer-
ence uncertainty. In the present paper we investigate threeregularization schemes
based on inter-segment information sharing, choosing different prior distributions
and different coupling schemes between nodes. We apply our method to gene ex-
pression time series obtained during the Drosophila life cycle, and compare the
predicted segmentation with other state-of-the-art techniques. We conclude our
evaluation with an application to synthetic biology, wherethe objective is to pre-
dict a knownin vivo regulatory network of five genes in yeast.

1 Introduction

There is currently considerable interest in structure learning of dynamic Bayesian networks (DBNs),
with a variety of applications in signal processing and computational biology; see e.g. [1, 2, 3]. The
standard assumption underlying DBNs is that time-series have been generated from a homogeneous
Markov process. This assumption is too restrictive in many applications and can potentially lead to
erroneous conclusions. While there have been various efforts to relax the homogeneity assumption
for undirected graphical models [4, 5], relaxing this restriction in DBNs is a more recent research
topic [1, 2, 3, 6, 7, 8]. At present, none of the proposed methods is without its limitations, leav-
ing room for further methodological innovation. The methodproposed in [3, 8] is non-Bayesian.
This requires certain regularization parameters to be optimized “externally”, by applying informa-
tion criteria (like AIC or BIC), cross-validation or bootstrapping. The first approach is suboptimal,
the latter approaches are computationally expensive1. In the present paper we therefore follow the
Bayesian paradigm, like [1, 2, 6, 7]. These approaches also have their limitations. The method
proposed in [2] assumes a fixed network structure and only allows the interaction parameters to vary
with time. This assumption is too rigid when looking at processes where changes in the overall
regulatory network structure are expected, e.g. in morphogenesis or embryogenesis. The method
proposed in [1] requires a discretization of the data, whichincurs an inevitable information loss.
These limitations are addressed in [6, 7], where the authorspropose a method for continuous data
that allows network structures associated with different nodes to change with time in different ways.
However, this high flexibility causes potential problems when applied to time series with a low num-
ber of measurements, as typically available from systems biology, leading to overfitting or inflated

1See [9] for a demonstration of the higher computational costs of bootstrapping over Bayesian approaches
based on MCMC.
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inference uncertainty. The objective of the work describedin our paper is to propose a model that
addresses the principled shortcomings of the three Bayesian methods mentioned above. Unlike [1],
our model is continuous and therefore avoids the information loss inherent in a discretization of the
data. Unlike [2], our model allows the network structure to change among segments, leading to
greater model flexibility. As an improvement on [6, 7], our model introduces information sharing
among time series segments, which provides an essential regularization effect.

2 Background: non-homogeneous DBNs without information coupling

This section summarizes briefly the non-homogeneous DBN proposed in [6, 7], which combines
the Bayesian regression model of [10] with multiple changepoint processes and pursues Bayesian
inference with reversible jump Markov chain Monte Carlo (RJMCMC) [11]. In what follows, we
will refer to nodes as genes and to the network as a gene regulatory network. The method is not
restricted to molecular systems biology, though.

2.1 Model

Multiple changepoints: Let p be the number of observed genes, whose expression valuesy =
{yi(t)}1≤i≤p,1≤t≤N are measured atN time points.M represents a directed graph, i.e. the network
defined by a set of directed edges among thep genes.Mi is the subnetwork associated with target
genei, determined by the set of its parents (nodes with a directed edge feeding into genei). The
regulatory relationships among the genes, defined byM, may vary across time, which we model
with a multiple changepoint process. For each target genei, an unknown numberki of changepoints
defineki + 1 non-overlapping segments. Segmenth = 1, .., ki + 1 starts at changepointξh−1

i and
stops beforeξh

i , whereξi = (ξ0
i , ..., ξh−1

i , ξh
i , ..., ξki+1

i ) with ξh−1
i < ξh

i . To delimit the bounds,ξ0
i = 2

andξki+1
i = N +1. Thus vectorξi has length|ξi| = ki +2. The set of changepoints is denoted byξ =

{ξi}1≤i≤p. This changepoint process induces a partition of the time series,yh
i =(yi(t))ξ

h−1
i

≤t<ξh
i

, with

different structuresMh
i associated with the different segmentsh ∈ {1, . . . , ki + 1}. Identifiability is

satisfied by ordering the changepoints based on their position in the time series.

Regression model:For all genesi, the random variableYi(t) refers to the expression of genei at
time t. Within any segmenth, the expression of genei depends on thep gene expression values
measured at the previous time point through a regression model defined by (a) a set ofsh

i parents
denoted byMh

i = {j1, ..., jsh
i
} ⊆ {1, . . . , p}, |Mh

i | = sh
i , and (b) a set of parameters((ah

ij)j∈0..p, σh
i );

ah
ij ∈ R, σh

i > 0. For all j 6= 0, ah
ij = 0 if j /∈ Mh

i . For all genesi, for all time pointst in segmenth
(ξh−1

i ≤ t < ξh
i ), the random variableYi(t) depends on thep variables{Yj(t− 1)}1≤j≤p according to

Yi(t) = ah
i0 +

X

j∈Mh
i

ah
ij Yj(t − 1) + εi(t) (1)

where the noiseεi(t) is assumed to be Gaussian with mean 0 and variance(σh
i )2, εi(t) ∼ N(0, (σh

i )2).
We defineah

i = (ah
ij)j∈0..p.

2.2 Prior
Theki +1 segments are delimited byki changepoints, whereki is distributed a priori as a truncated
Poisson random variable with meanλ and maximumk = N−2: P (ki|λ) ∝ λki

ki!
1l{ki≤k} . Conditional

on ki changepoints, the changepoint positions vectorξi = (ξ0
i , ξ1

i , ..., ξki+1
i ) takes non-overlapping

integer values, which we take to be uniformly distributed a priori. There are(N − 2) possible posi-
tions for theki changepoints, thus vectorξi has prior densityP (ξi|ki) = 1/

“

N−2
ki

”

. For all genesi

and all segmentsh, the numbersh
i of parents for nodei follows a truncated Poisson distribution2 with

meanΛ and maximums = 5: P (sh
i |Λ) ∝ Λsh

i

sh
i
!
1l{sh

i
≤s}. Conditional onsh

i , the prior for the parent set

Mh
i is a uniform distribution over all parent sets with cardinality sh

i : P (Mh
i

˛

˛|Mh
i | = sh

i ) = 1/( p

sh
i

).

The overall prior on the network structures is given by marginalization:

P (Mh
i |Λ) =

Xs

sh
i
=1

P (Mh
i |s

h
i )P (sh

i |Λ) (2)

2A restrictive Poisson prior encourages sparsity of the network, and is therefore comparable to a sparse
exponential prior, or an approach based on the LASSO.
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Conditional on the parent setMh
i of sizesh

i , thesh
i + 1 regression coefficients, denoted byaMh

i
=

(ah
i0, (a

h
ij)j∈Mh

i
), are assumed zero-mean multivariate Gaussian with covariance matrix(σh

i )2ΣMh
i
,

P (ah
i |M

h
i , σh

i )=|2π(σh
i )2ΣMh

i
|−

1
2exp

0

@−
a†

Mh
i

Σ−1

Mh
i

aMh
i

2(σh
i )2

1

A (3)

where the symbol† denotes matrix transposition,ΣMh
i

= δ−2D†

Mh
i

(y)DMh
i
(y) andDMh

i
(y) is the

(ξh
i − ξh−1

i ) × (sh
i + 1) matrix whose first column is a vector of1 (for the constant in model (1))

and each(j + 1)th column contains the observed values(yj(t))ξ
h−1
i

−1≤t<ξh
i
−1

for all factor genej

in Mh
i . This prior was also used in [10] and is motivated in [12]. Finally, the conjugate prior for

the variance(σh
i )2 is the inverse gamma distribution,P ((σh

i )2) = IG(υ0, γ0). Following [6, 7], we
set the hyper-hyperparameters for shape,υ0 = 0.5, and scale,γ0 = 0.05, to fixed values that give
a vague distribution. The termsλ andΛ can be interpreted as the expected number of changepoints
and parents, respectively, andδ2 is the expected signal-to-noise ratio. These hyperparameters are
drawn from vague conjugate hyperpriors, which are in the (inverse) gamma distribution family:
P (Λ) = P (λ) = Ga(0.5, 1) andP (δ2) = IG(2, 0.2).

2.3 Posterior

Equation (1) implies that

P (y
h
i |ξh−1

i , ξ
h
i ,Mh

i , a
h
i , σ

h
i ) =

“√
2πσ

h
i

”−(ξh
i
−ξ

h−1
i

)
exp

0

@−
(yh

i − D
Mh

i
(y)a

Mh
i
)† (yh

i − D
Mh

i
(y)a

Mh
i
)

2(σh
i
)2

1

A (4)

From Bayes theorem, the posterior is given by the following equation, where all prior distributions
have been defined above:

P (k, ξ,M, a, σ, λ, Λ, δ2|y) ∝ P (δ2)P (λ)P (Λ)

p
Y

i=1

P (ki|λ)P (ξi|ki)

ki
Y

h=1

P (Mh
i |Λ) (5)

P ([σh
i ]2)P (ah

i |M
h
i , [σh

i ]2, δ2)P (yh
i |ξ

h−1
i , ξh

i ,Mh
i , ah

i , [σh
i ]2)

2.4 Inference
An attractive feature of the chosen model is that the marginalization over the parametersa andσ in
the posterior distribution of (5) is analytically tractable:

P (k,ξ,M,λ,Λ,δ2|y) =

Z

P (k,ξ,M,a,σ,λ,Λ,δ2|y)dadσ (6)

See [6, 10] for details and an explicit expression. The number of changepoints and their location,
k, ξ, the network structureM and the hyperparametersλ, Λ, δ2 can be sampled from the posterior
P (k, ξ,M, λ, Λ, δ2|y) with RJMCMC [11]. A detailed description can be found in [6, 10].

3 Model improvement: information coupling between segments

Allowing the network structure to change between segments leads to a highly flexible model. How-
ever, this approach faces a conceptual and a practical problem. Thepractical problem is potential
model over-flexibility. If subsequent changepoints are close together, network structures have to be
inferred from short time series segments. This will almost inevitably lead to overfitting (in a maxi-
mum likelihood context) or inflated inference uncertainty (in a Bayesian context). Theconceptual
problem is the underlying assumption that structures associated with different segments are a priori
independent. This is not realistic. For instance, for the evolution of a gene regulatory network during
embryogenesis, we would assume that the network evolves gradually and that networks associated
with adjacent time intervals are a priori similar.

To address these problems, we propose three methods of information sharing among time series
segments, as illustrated in Figure 1. The first method is based on hard information coupling between
the nodes, using the exponential distribution proposed in [13]. The second scheme is also based
on hard information coupling, but uses a binomial distribution with conjugate Beta prior. The third
scheme is based on the same distributional assumptions as the second scheme, but replaces the hard
by a soft information coupling scheme.
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(a) Hard Node Coupling (b) Soft Node Coupling

Figure 1: Hierarchical Bayesian models for inter-segment and inter-node information coupling. 1(a): Hard
coupling between nodes with common hyperparameterΘ regulating the strength of the coupling between struc-
tures associated with adjacent segments,Mh

i andMh+1
i . This corresponds to the models in Section 3.1, with

Θ = β, Ψ = [0, 10], and noΩ, and Section 3.2, withΘ = {a, b}, Ψ = {α, α, γ, γ}, andΩ = [0, 20]. 1(b):
Soft coupling between nodes, with node-specific hyperparametersΘi coupled via level2-hyperparametersΨ.
This corresponds to the model in Section 3.3, withΘi = {ai, bi}, Ψ = {α, α, γ, γ}, andΩ = [0, 20].

3.1 Hard information coupling based on an exponential prior
Denote byKi := ki + 1 the total number of partitions in the time series associatedwith nodei,
and recall that each time series segmentyh

i is associated with a separate subnetworkMh
i , 1 ≤ h ≤

Ki. We impose a prior distributionP (Mh
i |M

h−1
i , β) on the structures, and the joint probability

distribution factorizes according to a Markovian dependence:

P (y1
i , . . . , yKi

i ,M1
i , . . . ,M

Ki
i , β) =

Ki
Y

h=1

P (yh
i |M

h
i )P (Mh

i |M
h−1
i , β)P (β) (7)

Similar to [13] we define

P (Mh
i |M

h−1
i , β) =

exp(−β|Mh
i −Mh−1

i |)

Zi(β,Mh−1
i )

(8)

for h ≥ 2, whereβ is a hyperparameter that defines the strength of the couplingbetweenMh
i

and Mh−1
i , and |.| denotes the Hamming distance. Forh = 1, P (Mh

i ) is given by (2). The
denominatorZ(β,Mh−1

i ) in (8) is a normalizing constant, also known as the partitionfunction:
Z(β) =

P

Mh
i
∈M

e−β|Mh
i −Mh−1

i
| whereM is the set of all valid subnetwork structures. If we ignore

any fan-in restriction that might have been imposed a priori(via s), then the expression for the parti-
tion function can be simplified:Z(β) ≈

Qp

j=1 Zj(β), whereZj(β) =
P1

eh
j
=0 e−β|eh

j −e
h−1
j

| = 1 + e−β

and henceZ(β) =
`

1 + e−β
´p. Inserting this expression into (8) gives:

P (Mh
i |M

h−1
i , β) =

exp(−β|Mh
i −Mh−1

i |)

(1 + e−β)p (9)

It is straightforward to integrate the proposed model into the RJMCMC scheme of [6, 7] as described
in Section 2.4. When proposing a new network structureMh

i → M̃h
i for segmenth, the prior

probability ratio has to be replaced by:P (Mh+1
i

|M̃h
i

,β)P (M̃h
i
|Mh−1

i
,β)

P (Mh+1
i

|Mh
i

,β)P (Mh
i
|Mh−1

i
,β)

. An additional MCMC step is

introduced for sampling the hyperparameterβ from the posterior distribution. For a proposal move
β → β̃ with symmetric proposal probabilityQ(β̃|β) = Q(β|β̃) we get the following acceptance

probability: A(β̃|β) = min



P (β̃)
P (β)

Qp

i=1

QKi

h=2

exp(−β̃|Mh
i −Mh−1

i
|)

exp(−β|Mh
i
−Mh−1

i
|)

(1+e−β)p

(1+e−β̃)
p , 1

ff

where in our study

the hyperpriorP (β) was chosen as the uniform distribution on the interval[0, 10].

3.2 Hard information coupling based on a binomial prior
An alternative way of information sharing among segments and nodes is by using a binomial prior:

P (Mh
i |M

h−1
i , a, b) = aN1

1 [h,i](1 − a)N0
1 [h,i]bN0

0 [h,i](1 − b)N1
0 [h,i] (10)

4



where we have defined the following sufficient statistics:N1
1 [h, i] is the number of edges inMh−1

i

that are matched by an edge inMh
i , N0

1 [h, i] is the number of edges inMh−1
i for which there is no

edge inMh
i , N1

0 [h, i] is the number of edges inMh
i for which there is no edge inMh−1

i , andN0
0 [h, i]

is the number of coinciding non-edges inMh−1
i andMh

i . Since the hyperparameters are shared, the
joint distribution can be expressed as:

P ({Mh
i }|a, b) =

p
Y

i=1

P (M1
i )

Ki
Y

h=1

P (Mh
i |M

h−1
i , a, b) = aN1

1 (1−a)N0
1 bN0

0 (1−b)N1
0

p
Y

i=1

P (M1
i ) (11)

where we have definedN l
k =

Pp

i=1

PKi

h=2 N l
k[h, i], and the right-hand side follows from Eq. (10).

The conjugate prior for the hyperparametersa, b is a beta distribution,P (a, b|α, α, γ, γ) ∝ a(α−1)(1−
a)(α−1)b(γ−1)(1 − b)(γ−1) , which allows the hyperparameters to be integrated out in closed form:

P ({Mh
i }|α, α, γ, γ) =

∫ ∫
P ({Mh

i }|a, b)P (a, b|α, α, γ, γ)dadb (12)

∝
Γ(α + α)

Γ(α)Γ(α)

Γ(N1
1 + α)Γ(N0

1 + α)

Γ(N1
1 + α + N0

1 + α)

Γ(γ + γ)

Γ(γ)Γ(γ)

Γ(N0
0 + γ)Γ(N1

0 + γ)

Γ(N0
0 + γ + N1

0 + γ)

The level-2 hyperparametersα, α, γ, γ are given a uniform hyperprior over[0, 20]. The MCMC
scheme of Section 2.4 has to be modified as follows. When proposing a new network structure
for node i and segmenth, Mh

i → M̃h
i , the structuresMh

i andM̃h
i enter the prior probability

ratio via the expressionP ({Mh
i }|α, α, γ, γ), as P ({M1

i ,...,M̃h
i

,...,M
Ki
i

}
p
i=1|α,α,γ,γ)

P ({M1
i
,...,Mh

i
,...,M

Ki
i

}
p
i=1|α,α,γ,γ)

. Note that as

a consequence of integrating out the hyperparameters, all network structures become interdepen-
dent, and information about the structures is contained in the sufficient statisticsN1

1 , N0
1 , N1

0 , N0
0 .

A new proposal move for the level-2 hyperparameters is addedto the existing RJMCMC scheme
of Section 2.4. New values for the level-2 hyperparametersx ∈ {α, α, γ, γ} are proposed from
a uniform distribution over a fixed interval. For a movex → x̃, the acceptance probability is:

A(x̃|x) = min



P ({M1
i ,...,M

Ki
i

}
p
i=1|x̃,{α,α,γ,γ}\x̃)

P ({M1
i
,...,M

Ki
i

}
p
i=1|x,{α,α,γ,γ}\x)

, 1

ff

where{α, α, γ, γ} \x corresponds to{α, γ, γ} if

x designates hyperparameterα, and similarly forα, γ, γ.

3.3 Soft information coupling based on a binomial prior

We can relax the information sharing scheme from a hard to a soft coupling by introducing
node-specific hyperparametersai, bi that are softly coupled via a common level-2 hyperprior,
P (ai, bi|α, α, γ, γ) ∝ a

(α−1)
i (1 − ai)

(α−1)b
(γ−1)
i (1 − bi)

(γ−1) , as illustrated in Figure 1(b):

P (Mh
i |M

h−1
i , ai, bi) = (ai)

N1
1 [h,i](1 − ai)

N0
1 [h,i](bi)

N0
0 [h,i](1 − bi)

N1
0 [h,i] (13)

This leads to a straightforward modification of eq. (11) – replacinga, b by ai, bi – from which we
get as an equivalent to (13), using the definitionN l

k[i] =
∑Ki

h=2 N l
k[h, i]:

P (M1
i , . . . ,MKi

i
|α, α, γ, γ) ∝ Γ(α + α)

Γ(α)Γ(α)

Γ(N1
1 [i] + α)Γ(N0

1 [i] + α)

Γ(N1
1 [i] + α + N0

1 [i] + α)

Γ(γ + γ)

Γ(γ)Γ(γ)

Γ(N0
0 [i] + γ)Γ(N1

0 [i] + γ)

Γ(N0
0 [i] + γ + N1

0 [i] + γ)
(14)

As in Section 3.2, we extend the RJMCMC scheme from Section 2.4 so that when proposing a new
network structure,Mh

i → M̃h
i , the acceptance probability has to be updated with the priorratio:

P (M1
i ,...,M̃h

i
,...,M

Ki
i

|α,α,γ,γ)

P (M1
i
,...,Mh

i
,...,M

Ki
i

|α,α,γ,γ)
. In addition, we have to add a new level-2 hyperparameter update move

x → x̃, where the prior and proposal probabilities are the same as in Section 3.2, and the acceptance

probability becomes:A(x̃|x) = min



Qp

i=1

P (M1
i ,...,M

Ki
i

|x̃,{α,α,γ,γ}\x̃)

P (M1
i
,...,M

Ki
i

|x,{α,α,γ,γ}\x)
, 1

ff

.

4 Results

The methods described in this paper have been implemented inR, based on code from [6, 7]. Our
program sets up an RJMCMC simulation to sample the network structure, the changepoints and
the hyperparameters from the posterior distribution. As a convergence diagnostic we monitor the
potential scale reduction factor (PSRF) [14], computed from the within-chain and between-chain
variances of marginal edge posterior probabilities. Values of PSRF≤1.1 are usually taken as indi-
cation of sufficient convergence. In our simulations, we extended the burn-in phase until a value of
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(a) AUROC Score Comparison
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(b) AUPRC Score Comparison

Figure 2: Network reconstruction performance comparison of AUROC and AUPRC reconstruction
scores for the four methods, HetDBN-0 (white), HetDBN-Exp (light grey), HetDBN-Bino1 (dark
grey, left), HetDBN-Bino2 (dark grey, right). The boxplotsshow the distributions of the scores for 10
datasets with 4 network segments each, where the horizontalbar shows the median, the box margins
show the 25th and 75th percentiles, the whiskers indicate data within 2 times the interquartile range,
and circles are outliers. “Same Segs” means that all segments in a dataset have the same structure,
while “Different Segs” indicates that structure changes are applied to the segments sequentially.

PSRF≤ 1.05 was reached, and then sampled 1000 network and changepoint configurations in inter-
vals of 200 RJMCMC steps. From these samples we compute the marginal posterior probabilities
of all potential interactions, which defines a ranking of theedges in the recovered network. When
the true network is known, this allows us to construct the Receiver Operating Characteristic (ROC)
curve (plotting the sensitivity or recall against the complementary specificity) and the precision-
recall (PR) curve (plotting the precision against the recall), and to assess the network reconstruction
accuracy in terms of the areas under these graphs (AUROC and AUPRC, respectively); see [15].

4.1 Comparative evaluation on simulated data

We randomly generated 10 networks with 10 nodes each, with the number of parents per node drawn
from a Poisson distribution with meanλ = 3. To simulate changes in the network structure, we cre-
ated 4 different network segments by drawing the number of changes from a Poisson distribution
and applying the changes uniformly at random to edges and non-edges in the previous segment. For
each segment, we generated a time series of length 15 using a linear regression model. The regres-
sion weights were drawn from a GaussianN(0, 1), and Gaussian observation noiseN(0, 1) was
added. We compared the network reconstruction accuracy of the non-homogeneous DBN without
information sharing proposed in [6, 7] (HetDBN-0) with the three information sharing approaches,
based on the exponential prior from Section 3.1 (HetDBN-Exp), the binomial prior with hard node
coupling from Section 3.2 (HetDBN-Bino1), and the binomialprior with soft node coupling from
Section 3.3 (HetDBN-Bino2). Figures 2(a) and 2(b) shows thenetwork reconstruction performance
of the different information sharing methods in terms of AUROC and AUPRC scores. All infor-
mation sharing methods show a clear improvement in network reconstruction over HetDBN-0, as
confirmed by paired t-tests (p < 0.01). We investigated two different situations, the case whereall
segment structures are the same (although edge weights are allowed to vary) and the case where
changes are applied sequentially to the segments3. Information sharing is most beneficial for the
first case, but even when we introduce changes we still see an increase in the network reconstruction
scores compared to HetDBN-0. When all segments are the same, HetDBN-Bino1 and HetDBN-
Bino2 outperform HetDBN-Exp (p < 0.05), but there is no significant difference between the two
binomial methods. Paired t-tests showed that all other differences in mean are significant. When the
segments are different, all information sharing methods outperform HetDBN-0 (p < 0.05), but the
difference between the information sharing methods is not significant.

4.2 Morphogenesis inDrosophila melanogaster

We applied our methods to a gene expression time series for eleven genes involved in the muscle
development ofDrosophila melanogaster [16]. The microarray data measured gene expression lev-
els during all four major stages of morphogenesis: embryo, larva, pupa and adult. We investigated
whether our methods were able to infer the correct changepoints corresponding to the known transi-
tions between stages. Figure 3(a) shows the posterior probabilities of inferred changepoints for any
gene using HetDBN-0, while Figure 3(c) shows the posterior probabilities for the information shar-

3We chose to draw the number of changes from a Poisson with mean 1 for each node.
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(d) Synthetic Network CPs with HetDBN

Figure 3: Changepoints inferred on gene expression data related to morphogenesis inDrosophila
melanogaster, and synthetic biology inSaccharomyces cerevisiae (yeast). All figures using HetDBN
plot the posterior probability of a changepoint occurring for any node at a given time plotted against
time. 3(a): HetDBN-0 changepoints for Drosophila (no information sharing) 3(b): TESLA, L1-
norm of the difference of the regression parameter vectors associated with two adjacent time points
plotted against time. 3(c): HetDBN changepoints for Drosophila with information sharing; the
method is indicated by the legend. 3(d) HetDBN changepointsfor the synthetic gene regulatory
network in yeast. In 3(a)-3(c), the vertical dotted lines indicate the three morphogenic transitions,
while in 3(d) the line indicates the boundary between “switch on” and “switch off” data.

ing methods. For comparison, we applied the method proposedin [3], using the authors’ software
package TESLA (Figure 3(b)). Robinson and Hartemink applied the discrete non-homogeneous
DBN in [1] to the same data set, and a plot corresponding to Figure 3(b) can be found in their paper.

Our non-homogeneous DBN methods are generally more successful than TESLA, in that they re-
cover changepoints for all three transitions (embryo→ larva, larva→ pupa, and pupa→ adult).
Figure 3(b) indicates that the last transition, pupa→ adult, is less clearly detected with TESLA,
and it is completely missing in [1]. Both our method as well asTESLA detect additional transitions
during the embryo stage, which are missing in [1]. We would argue that a complex gene regulatory
network is unlikely to transition into a new morphogenic phase all at once, and some pathways might
have to undergo activational changes earlier in preparation for the morphogenic transition. As such,
it is not implausible that additional transitions at the gene regulatory network level occur. However,
a failure to detect known morphogenic transitions can clearly be seen as a shortcoming of a method,
and on these grounds our model appears to outperform the two alternative ones. We note that the
main effect of information sharing is to reduce the size of the smaller peaks, while keeping the three
most salient peaks (corresponding to larva→ pupa, and pupa→ adult, and an extra transition in the
embryo phase). This reflects the fact that these changepoints are associated with significant changes
in network structure, and adds to the interpretability of the results. The drawback is that the third
morphological transition (embryo→ larva) is less pronounced.

4.3 Reconstruction of a synthetic gene regulatory network in Saccharomyces cerevisiae

The highly topical field of synthetic biology enables biologists to design known gene regulatory
networks in living cells. In the work described in [17], a synthetic regulatory network of 5 genes was
constructed inSaccharomyces cerevisiae (yeast), and gene expression time series were measured
with RT-PCR for 16 and 21 time points under two experimental conditions, related to the carbon
source: galactose (“switch on”) and glucose (“switch off”). The authors tried to reconstruct the
known gold-standard network from these time series with twoestablished state-of-the-art methods
from computational systems biology, one based on ordinary differential equations (ODEs), called
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Figure 4: Reconstruction of a known gene regulatory networkfrom synthetic biology in yeast.
The network was reconstructed from two gene expression timeseries obtained with RT-PCR in
two experimental conditions, reflecting the switch in the carbon source from galactose (“switch
on”) to glucose (“switch off”). The reconstruction accuracy of the methods proposed in Section 3,
where the legend is explained, is shown in terms of precision(vertical axis) - recall (horizontal
axis) curves. Results were averaged over 10 independent MCMC simulations. For comparison,
fixed precision/recall scores are shown for two state-of-the-art methods reported in [17]: Banjo, a
conventional DBN, and TSNI, a method based on ODEs.

TSNI, the other based on conventional DBNs, called Banjo; see [17] for details. Both methods
are optimization-based and output a single network. By comparison with the known gold standard,
the authors obtained the precision (proportion of predicted interactions that are correct) and recall
(proportion of predicted true interactions) scores. In ourstudy, we merged the time series from
the two experimental conditions under exclusion of the boundary point4, and applied the four non-
homogeneous DBNs described before. Figure 3(d) shows the inferred marginal posterior probability
of potential changepoints. The most significant changepoint is at the boundary between “switch
on” and “switch off” data, confirming that the known true changepoint is consistently identified.
The biological mechanism behind the other peaks is not known, and they are potentially spurious.
Interestingly, the application of the proposed information-coupling schemes reduces the height of
these peaks, with the binomial models having a stronger effect than the exponential one.

As we pursue a Bayesian inference scheme, we also obtain a ranking of the potential gene interac-
tions in terms of their marginal posterior probabilities. From this we computed the precision-recall
curves [15] shown in Figure 4. Our non-homogeneous DBNs withinformation sharing outperform
Banjo and TSNI both in the “switch on” and the “switch off” phase. They also perform better than
HetDBN-0 on the “switch off” data, but are slightly worse on the “switch on” data. Note that the
reconstruction accuracy on the “switch off” data is generally poorer than on the “switch on” data
[17]. Our results are thus plausible, suggesting that information sharing boosts the reconstruction
accuracy on the poorer time series segment at the cost of a degraded performance on the stronger
one. This effect is more pronounced for the exponential prior than for the binomial one, indicating
a tighter coupling. The average areas under the PR curves, averaged over both phases (“switch on
and off”), are as follows. HetDBN-0= 0.70, HetDBN-Exp= 0.77, HetDBN-Bino1= 0.75, HetDBN-
Bino2= 0.75. Hence, the overall effect of information sharing is a performance improvement.

5 Conclusions
We have described a non-homogeneous DBN, which has various advantages over existing schemes:
it does not require the data to be discretized (as opposed to [1]); it allows the network structure
to change with time (as opposed to [2]); it includes three different regularization schemes based on
inter-time segment information sharing (as opposed to [6, 7]); and it allows all hyperparameters to be
inferred from the data via a consistent Bayesian inference scheme (as opposed to [3]). An evaluation
on simulated data has demonstrated an improved performanceover [6, 7] when information sharing
is introduced. The application of our method to gene expression time series taken during the life cy-
cle of Drosophila melanogaster has revealed better agreement with known morphogenic transitions
than the methods of [1] and [3]. We have carried out a comparative evaluation of different informa-
tion coupling schemes: a binomial versus an exponential prior, and hard versus soft coupling. In an
application to data from a topical study in synthetic biology, our methods have outperformed two
established network reconstruction methods from computational systems biology.

4When merging two time series(x1, . . . , xm) and(y1, . . . , yn), only the pairsxi → xj andyi → yj are
presented to the DBN, while the pairxm → y1 is excluded due to the obvious discontinuity.
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