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Abstract

We study the problem of learning a sparse linear regression vector under addi-
tional conditions on the structure of its sparsity pattern.We present a family of
convex penalty functions, which encode this prior knowledge by means of a set of
constraints on the absolute values of the regression coefficients. This family sub-
sumes theℓ1 norm and is flexible enough to include different models of sparsity
patterns, which are of practical and theoretical importance. We establish some im-
portant properties of these functions and discuss some examples where they can be
computed explicitly. Moreover, we present a convergent optimization algorithm
for solving regularized least squares with these penalty functions. Numerical sim-
ulations highlight the benefit of structured sparsity and the advantage offered by
our approach over the Lasso and other related methods.

1 Introduction

The problem of sparse estimation is becoming increasingly important in machine learning and statis-
tics. In its simplest form, this problem consists in estimating a regression vectorβ∗ ∈ R

n from a
data vectory ∈ R

m, obtained from the modely = Xβ∗ + ξ, whereX is anm × n matrix, which
may be fixed or randomly chosen andξ ∈ R

m is a vector resulting from the presence of noise. An
important rationale for sparse estimation comes from the observation that in many practical applica-
tions the number of parametersn is much larger than the data sizem, but the vectorβ∗ is known to
be sparse, that is, most of its components are equal to zero. Under these circumstances, it has been
shown that regularization with theℓ1 norm, commonly referred to as the Lasso method, provides an
effective means to estimate the underlying regression vector as well as its sparsity pattern, see for
example [4, 12, 15] and references therein.

In this paper, we are interested in sparse estimation under additional conditions on the sparsity pat-
tern ofβ∗. In other words, not only do we expect thatβ∗ is sparse but also that it isstructured sparse,
namely certain configurations of its nonzero components areto be preferred to others. This problem
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arises is several applications, see [10] for a discussion. The prior knowledge that we consider in
this paper is that the vector|β∗|, whose components are the absolute value of the corresponding
components ofβ∗, should belong to some prescribed convex setΛ. For certain choices ofΛ this
implies a constraint on the sparsity pattern as well. For example, the setΛ may include vectors with
some desired monotonicity constraints, or other constraints on the “shape” of the regression vector.
Unfortunately, the constraint that|β∗| ∈ Λ is nonconvex and its implementation is computational
challenging. To overcome this difficulty, we propose a novelfamily of penalty functions. It is based
on an extension of theℓ1 norm used by the Lasso method and involves the solution of a smooth
convex optimization problem, which incorporates the structured sparsity constraints. As we shall
see, a key property of our approach is that the penalty function equals theℓ1 norm of a vectorβ
when|β| ∈ Λ and it is strictly greater than theℓ1 norm otherwise. This observation suggests that
the penalty function encourages the desired structured sparsity property.

There has been some recent research interest on structured sparsity, see [1, 2, 7, 9, 10, 11, 13, 16]
and references therein. Closest to our approach are penaltymethods built around the idea of mixed
ℓ1 − ℓ2 norms. In particular, the group Lasso method [16] assumes that the components of the
underlying regression vectorβ∗ can be partitioned into prescribed groups, such that the restriction
of β∗ to a group is equal to zero for most of the groups. This idea hasbeen extended in [10, 17]
by considering the possibility that the groups overlap according to certain hierarchical or spatially
related structures. A limitation of these methods is that they can only handle sparsity patterns form-
ing a single connected region. Our point of view is differentfrom theirs and provides a means to
designing more general and flexible penalty functions whichmaintain convexity whilst modeling
richer model structures. For example, we will demonstrate that our family of penalty functions can
model sparsity pattern forming multiple connected regionsof coefficients.

The paper is organized as follows. In Section 2 we define the learning method. In particular, we
describe the associated penalty function and establish some of its important properties. In Section
3 we provide examples of penalty functions, deriving the explicit analytical form in some important
cases, namely the case that the setΛ is a box or the wedge with nonincreasing coordinates. In
Section 4 we address the issue of solving the learning methodnumerically by means of an alternating
minimization algorithm. Finally, in Section 5 we provide numerical simulations with this method,
showing the advantage offered by our approach.

2 Learning method

In this section, we introduce the learning method and establish some important properties of the
associated penalty function. We letR++ be the positive real line and letNn be the set of positive
integers up ton. We prescribe a convex subsetΛ of the positive orthantRn

++ and estimateβ∗ by a
solution of the convex optimization problem

min
{

‖Xβ − y‖2
2 + 2ρΩ(β|Λ) : β ∈ R

n
}

, (2.1)

where‖ · ‖2 denotes the Euclidean norm. The penalty function takes the form
Ω(β|Λ) = inf {Γ(β, λ) : λ ∈ Λ} (2.2)

and the functionΓ : R
n × R

n
++ → R is given by the formulaΓ(β, λ) = 1

2

∑

i∈Nn

(

β2
i

λi
+ λi

)

.

Note thatΓ is convex on its domain because each of its summands are likewise convex functions.
Hence, when the setΛ is convex it follows thatΩ(·|Λ) is a convex function and (2.1) is a convex
optimization problem. An essential idea behind our construction of this function, is that, for every
λ ∈ R++, the quadratic functionΓ(·, λ) provides a smooth approximation to|β| from above, which
is exact atβ = ±λ. We indicate this graphically in Figure 1-a. This fact follows immediately
by the arithmetic-geometric mean inequality, namely(a + b)/2 ≥

√
ab. Using the same inequal-

ity it also follows that the Lasso problem corresponds to (2.1) whenΛ = R
n
++, that is it holds that

Ω(β|Rn
++) = ‖β‖1 :=

∑

i∈Nn
|βi|. This important special case motivated us to consider the general

method described above. The utility of (2.2) is that upon inserting it into (2.1) results in an optimiza-
tion problem overλ andβ with a continuously differentiable objective function. Hence, we have
succeeded in expressing a nondifferentiable convex objective function by one which is continuously
differentiable on its domain.

The next proposition provides a justification of the penaltyfunction as a means to incorporate struc-
tured sparsity and establish circumstances for which the penalty function is a norm.
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Figure 1: (a): FunctionΓ(·, λ) for some values ofλ; (b): FunctionΓ(β, ·) for some values ofβ.

Proposition 2.1. For everyβ ∈ R
n, it holds that‖β‖1 ≤ Ω(β|Λ) and the equality holdsif and

only if |β| := (|βi| : i ∈ Nn) ∈ Λ. Moreover, ifΛ is a nonempty convex cone then the function
Ω(·|Λ) is a norm and we have thatΩ(β|Λ) ≤ ω‖β‖1, whereω := max{Ω(ek|Λ) : k ∈ Nn} and
{ek : k ∈ Nn} is the canonical basis ofRn.

Proof. By the arithmetic-geometric inequality we have that‖β‖1 ≤ Γ(β, λ), proving the first as-
sertion. If |β| ∈ Λ, there exists a sequence{λk : k ∈ N} in Λ, such thatlimk→∞ λk = |β|.
SinceΩ(β|Λ) ≤ Γ(β, λk) it readily follows thatΩ(β|Λ) ≤ ‖β‖1. Conversely, if|β| ∈ Λ, then
there is a sequence{λk : k ∈ N} in Λ, suchγ(β, λk) ≤ ‖β1‖ + 1/k. This inequality implies
that some subsequence of this sequence converges to aλ ∈ Λ. Using the arithmetic-geometric
we conclude thatλ = |β| and the result follows. To prove the second part, observe that if Λ
is a nonempty convex cone, namely, for anyλ ∈ Λ and t ≥ 0 it holds thattλ ∈ Λ, we have
that Ω is positive homogeneous. Indeed, making the change of variable λ′ = λ/|t| we see that
Ω(tβ|Λ) = |t|Ω(β|Λ). Moreover, the above inequality,Ω(β|Λ) ≥ ‖β‖1, implies that ifΩ(β|Λ) = 0
thenβ = 0. The proof of the triangle inequality follows from the homogeneity and convexity ofΩ,
namelyΩ(α+β|Λ) = 2Ω ((α+ β)/2|Λ) ≤ Ω(α|Λ)+Ω(β|Λ). Finally, note thatΩ(β|Λ) ≤ ω‖β‖1

if and only ifω = max{Ω(β|Λ) : ‖β‖1 = 1}. SinceΩ is convex the maximum above is achieved at
an extreme point of theℓ1 unit ball.

This proposition indicates that the functionΩ(·|Λ) penalizes less vectorsβ which have the property
that |β| ∈ Λ, hence encouraging structured sparsity. Indeed, any permutation of the coordinates
of a vectorβ with the above property will incur in the same or a larger value of the penalty term.
Moreover, for certain choices of the setΛ, some of which we describe below, the penalty function
will encourage vectors which not only are sparse but also have sparsity patterns(1{|βi|>0} : i ∈
Nn) ∈ Λ, where1{·} denotes the indicator function.

We end this section by noting that a normalized version of thegroup Lasso penalty [16] is included
in our setting as a special case. If{Jℓ : ℓ ∈ Nk}, k ∈ Nn form a partition of the index setNn, the
corresponding group Lasso penalty is defined asΩGL(β) =

∑

ℓ∈Nk

√

|Jℓ| ‖βJℓ
‖2, where, for every

J ⊆ Nn, we use the notationβJ = (βj : j ∈ J). It is a easy matter to verify thatΩGL(·) = Ω(·|Λ)
for Λ = {λ : λ ∈ R

n
++, λj = θℓ, j ∈ Jℓ, ℓ ∈ Nk, θℓ > 0}.

3 Examples of the penalty function

We proceed to discuss some examples of the setΛ ⊆ R
n
++ which may be used in the design of the

penalty functionΩ(·|Λ). All but the first example fall into the category thatΛ is a polyhedral cone,
that isΛ = {λ : λ ∈ R

n
++, Aλ ≥ 0}, whereA is anm× n matrix. Thus, in view of Proposition 2.1

the functionΩ(·|Λ) is a norm.

The first example corresponds to the prior knowledge that themagnitude of the components of the
regression vector should be in some prescribed intervals.

Example 3.1. We choosea, b ∈ R
n, 0 < a ≤ b and define the corresponding box asB[a, b] :=

⊗

i∈Nn

[ai, bi].

The theorem below establishes the form of the box penalty; see also [8, 14] for related penalty
functions. To state our result, we define, for everyt ∈ R, the function(t)+ = max(0, t).
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Theorem 3.1. We have that

Ω(β|B[a, b]) = ‖β‖1 +
∑

i∈Nn

(

1

2ai

(ai − |βi|)2+ +
1

2bi
(|βi| − bi)

2
+

)

.

Moreover, the components of the vectorλ(β) := argmin{Γ(β, λ) : λ ∈ B[a, b]} are given by the
equationsλi(β) = |βi| + (ai − |βi|)+ − (|βi| − b)+, i ∈ Nn.

Proof. SinceΩ(β|B[a, b]) =
∑

i∈Nn
Ω(βi|[ai, bi]) it suffices to establish the result in the case

n = 1. We shall show that ifa, b, β ∈ R, a ≤ b then

Ω(β|[a, b]) = |β| + 1

2a
(a− |β|)2+ +

1

2b
(|β| − b)2+. (3.1)

Since both sides of the above equation are continuous functions ofβ it suffices to prove this equation
for β ∈ R\{0}. In this case, the functionΓ(β, ·) is strictly convex in the second argument, and so,
has a unique minimum inR++ atλ = |β|, see also Figure 1-b. Moreover, if|β| ≤ a the constrained
minimum occurs atλ = a, whereas if|β| ≥ b, it occurs atλ = b. This establishes the formula for
λ(β). Consequently, we have that

Ω(β|[a, b]) = |β|1{a≤|β|≤b} +
1

2

(

β2

a
+ a

)

1{|β|<a} +
1

2

(

β2

b
+ b

)

1{|β|>b}.

Equation (3.1) now follows by a direct computation.

Note that the function in equation (3.1) is a concatenation of two quadratic functions, connected
together with a linear function. Thus, the box penalty will favor sparsity only fora = 0, case that is
defined by a limiting argument.

The second example implements the prior knowledge that the coordinates of the vectorλ are ordered
in a non increasing fashion.

Example 3.2. We define the wedge asW = {λ : λ ∈ R
n
++, λj ≥ λj+1, j ∈ Nn−1}.

We say that a partitionJ = {Jℓ : ℓ ∈ Nk} of Nn is contiguousif for all i ∈ Jℓ, j ∈ Jℓ+1,
ℓ ∈ Nk−1, it holds thati < j. For example, ifn = 3, partitions{{1, 2}, {3}} and{{1}, {2}, {3}}
are contiguous but{{1, 3}, {2}} is not.

Theorem 3.2. For everyβ ∈ (R\{0})n there is a unique contiguous partitionJ = {Jℓ : ℓ ∈ Nk}
of Nn, k ∈ Nn, such that

Ω(β|W ) =
∑

ℓ∈Nk

√

|Jℓ| ‖βJℓ
‖2. (3.2)

Moreover, the components of the vectorλ(β) = argmin{Γ(β, λ) : λ ∈ W} are given by

λj(β) =
‖βJℓ

‖2
√

|Jℓ|
, j ∈ Jℓ, ℓ ∈ Nk (3.3)

and, for everyℓ ∈ Nk and subsetK ⊂ Jℓ formed by the firstk < |Jℓ| elements ofJℓ, it holds that

‖βK‖2√
k

>
‖βJℓ\K‖2
√

|Jℓ| − k
. (3.4)

The partitionJ appearing in the theorem is determined by the set of inequalitiesλj ≥ λj+1 which
are an equality at the minimum. This set is identified by examining the Karush-Kuhn-Tucker opti-
mality conditions [3] of the optimization problem (2.2) forΛ = W . The detailed proof is reported
in the supplementary material. Equations (3.3) and (3.4) indicate a strategy to compute the partition
associated with a vectorβ. We explain how to do this in Section 4.

An interesting property of the Wedge penalty is that it has the form of a group Lasso penalty (see
the discussion at the end of Section 2) with groups not fixeda-priori but depending on the location
of the vectorβ. The groups are the elements of the partitionJ and are identified by certain convex
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constraints on the vectorβ. For example, forn = 2 we obtain thatΩ(β|W ) = ‖β‖1 if |β1| > |β2|
andΩ(β|W ) =

√
2‖β‖2 otherwise. Forn = 3, we have that

Ω(β|W ) =



























‖β‖1, if |β1| > |β2| > |β3| J = {{1}, {2}, {3}}
√

2(β2
1 + β2

2) + |β3|, if |β1| ≤ |β2| and β2
1 + β2

2 > 2β2
3 J = {{1, 2}, {3}}

|β1| +
√

2(β2
2 + β2

3), if |β2| ≤ |β3| and 2β2
1 > β2

2 + β2
3 J = {{1}, {2, 3}}

√

3(β2
1 + β2

2 + β2
3), otherwise J = {{1, 2, 3}}

where we have also reported the partition involved in each case.

The next example is an extension of the wedge set which is inspired by previous work on the group
Lasso estimator with hierarchically overlapping groups [17]. It models vectors whose magnitude is
ordered according to a graphical structure. Within this context, the wedge corresponds to the set
associated with a line graph.

Example 3.3. We letA be the incidence matrix of a directed graph and chooseΛ = {λ : λ ∈
R

n
++, Aλ ≥ 0}.

We have confirmed that Theorem 3.2 extends to the case that thegraph is a tree but the general case
is yet to be understood. We postpone this discussion to a future occasion.

Next, we note that the wedge may equivalently be expressed asthe constraint that the difference
vectorD1(λ) := (λj+1−λj : j ∈ Nn−1) is less than or equal to zero. Our next example extends this
observation by using the higher order difference operator,which is given by the formulaDk(λ) =
(

λj+k +
∑

ℓ∈Nk
(−1)ℓ

(

k

ℓ

)

λj+k−ℓ : j ∈ Nn−k

)

.

Example 3.4. For everyk ∈ Nn we define the setW k := {λ : λ ∈ R
n
++, D

k(λ) ≥ 0}.

The corresponding penaltyΩ(·|W k) encourages vectors whose sparsity pattern is concentratedon
at mostk different contiguous regions. The casek = 1 essentially corresponds to the wedge,
while the casek = 2 includes vectors which have a convex “profile” and whose sparsity pattern is
concentrated either on the first elements of the vector, on the last, or on both.

We end this section by discussing a useful construction which may be applied to generate new
penalty functions from available ones. It is obtained by composing a setΘ ⊆ R

k
++ with a linear

transformation, modeling the sum of the components of a vector, across the elements of a prescribed
partition{Pℓ : ℓ ∈ Nk} of Nn. That is, we letΛ = {λ : λ ∈ R

n
++, (

∑

j∈Pℓ
λj : ℓ ∈ Nk) ∈ Θ}. We

use this construction in the composite wedge experiments inSection 5.

4 Optimization method

In this section, we address the issue of implementing the learning method (2.1) numerically. Since
the penalty functionΩ(·|Λ) is constructed as the infimum of a family of quadratic regularizers,
the optimization problem (2.1) reduces to a simultaneous minimization over the vectorsβ andλ.
For a fixedλ ∈ Λ, the minimum overβ ∈ R

n is a standard Tikhonov regularization and can
be solved directly in terms of a matrix inversion. For a fixedβ, the minimization overλ ∈ Λ
requires computing the penalty function (2.2). These observations naturally suggests an alternating
minimization algorithm, which has already been consideredin special cases in [1]. To describe our
algorithm we chooseǫ > 0 and introduce the mappingφǫ : R

n → R
n
++, whosei-th coordinate at

β ∈ R
n is given byφǫ

i(β) =
√

β2
i + ǫ. Forβ ∈ (R\{0})n, we also letλ(β) = argmin{Γ(β, λ) :

λ ∈ Λ}. The alternating minimization algorithm is defined as follows: choose,λ0 ∈ Λ and, for
k ∈ N, define the iterates

βk = diag(λk−1)(diag(λk−1)X⊤X + ρI)−1y (4.1)

λk = λ(φǫ(βk)). (4.2)

The following theorem establishes convergence of this algorithm. Its proof is presented in the sup-
plementary material.

Theorem 4.1. If the setΛ is convex and, for alla, b ∈ R with 0 < a < b, the setΛa,b := [a, b]n∩Λ is
a nonempty, compact subset of the interior ofΛ then the iterations (4.1)–(4.2) converges to the vector
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Initialization: k ← 0

Input: β ∈ R
n; Output: J1, . . . , Jk

for t = 1 to n do
Jk+1 ← {t}; k ← k + 1

while k > 1 and
‖βJk−1

‖2√
|Jk−1|

≤ ‖βJk
‖2√

|Jk|

Jk−1 ← Jk−1 ∪ Jk; k← k − 1

end
end

Figure 2: Iterative algorithm to compute the wedge penalty

γ(ǫ) := argmin
{

‖y −Xβ‖2
2 + 2ρΩ(φǫ(β)|Λ) : β ∈ R

n
}

. Moreover, any convergent subsequence
of the sequence{γ

(

1

ℓ

)

: ℓ ∈ N} converges to a solution of the optimization problem(2.1).

The most challenging step in the alternating algorithm is the computation of the vectorλk. For-
tunately, ifΛ is a second order cone, problem (2.2) defining the penalty function Ω(·|Λ) may be
reformulated as a second order cone program (SOCP), see e.g.[5]. To see this, we introduce an
additional variablet ∈ R

n and note that

Ω(β|Λ) = min

{

∑

i∈Nn

ti + λi : ‖(2βi, ti − λi)‖2 ≤ ti + λi, ti ≥ 0, i ∈ Nn, λ ∈ Λ

}

.

In particular, in all examples in Section 3, the setΛ is formed by linear constraints and, so, problem
(2.2) is an SOCP. We may then use available tool-boxes to compute the solution of this problem.
However, in special cases the computation of the penalty function may be significantly facilitated by
using the analytical formulas derived in Section 3. Here, for simplicity we describe how to do this
in the case of the wedge penalty. For this purpose we say that avectorβ ∈ R

n is admissible if, for
everyk ∈ Nn, it holds that‖βNk

‖2/
√
k ≤ ‖β‖2/

√
n.

The proof of the next lemma is straightforward and we do not elaborate on the details.

Lemma 4.1. If β ∈ R
n and δ ∈ R

p are admissible and‖β‖2/
√
n ≤ ‖δ‖2/

√
p then (β, δ) is

admissible.

The iterative algorithm presented in Figure 2 can be used to find the partitionJ = {Jℓ : ℓ ∈ Nk}
and, so, the vectorλ(β) described in Theorem 3.2. The algorithm processes the components of
vectorβ in a sequential manner. Initially, the first component formsthe only set in the partition.
After the generic iterationt − 1, where the partition is composed ofk sets, the index of the next
components,t, is put in a new setJk+1. Two cases can occur: the means of the squares of the sets
are in strict descending order, or this order is violated by the last set. The latter is the only case
that requires further action, so the algorithm merges the last two sets and repeats until the sets in
the partition are fully ordered. Note that, since the only operation performed by the algorithm is
the merge of admissible sets, Lemma 4.1 ensures that after each stept the current partition satisfies
the conditions (3.4). Moreover, thewhile loop ensures that after each step the current partition
satisfies, for everyℓ ∈ Nk−1, the constraints‖βJℓ

‖2

√

|Jℓ| > ‖βJℓ+1
‖2

√

|Jℓ+1|. Thus, the output
of the algorithm is the partitionJ defined in Theorem 3.2. In the actual implementation of the
algorithm, the means of squares of each set can be saved. Thisallows us to compute the mean of
squares of a merged set as a weighted mean, which is a constanttime operation. Since there are
n− 1 consecutive terms in total, this is also the maximum number of merges that the algorithm can
perform. Each merge requires exactly one additional test, so we can conclude that the running time
of the algorithm is linear.

5 Numerical simulations

In this section we present some numerical simulations with the proposed method. For simplicity,
we consider data generated noiselessly fromy = Xβ∗, whereβ∗ ∈ R

100 is the true underlying
regression vector, andX is anm× 100 input matrix,m being the sample size. The elements ofX
are generated i.i.d. from the standard normal distribution, and the columns ofX are then normalized
such that theirℓ2 norm is1. Since we consider the noiseless case, we solve the interpolation problem
min{Ω(β) : y = Xβ}, for different choices of the penalty functionΩ. In practice, we solve problem
(2.1) for a tiny value of the parameterρ = 10−8, which we found to be sufficient to ensure that the
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Figure 3: Comparison between different penalty methods: (a) Box vs. Lasso; (b,c) Wedge vs. Hier-
archical group Lasso; (d) Composite wedge; (e) Convex; (f) Cubic. See text for more information

error term in (2.1) is negligible at the minimum. All experiments were repeated50 times, generating
each time a new matrixX . In the figures we report the average of the model errorE[‖β̂ − β∗‖2

2] of
the vector̂β learned by each method, as a function of the sample sizem. In the following, we discuss
a series of experiments, corresponding to different choices for the model vectorβ∗ and its sparsity
pattern. In all experiments, we solved the optimization problem (2.1) with the algorithm presented
in Section 4. Whenever possible we solved step (4.2) using the formulas derived in Section 3 and
resorted to the solver CVX (http://cvxr.com/cvx/) in the other cases.

Box. In the first experiment the model is10-sparse, where each nonzero component, in a random
position, is an integer uniformly sampled in the interval[−10, 10]. We wish to show that the more
accurate the prior information about the model is, the more precise the estimate will be. We use
a box penalty (see Theorem 3.1) constructed “around” the model, imagining that an oracle tells us
that each component|β∗

i | is bounded within an interval. We consider three boxesB[a, b] of different
sizes, namelyai = (r−|β∗

i |)+ andbi = (|β∗
i |− r)+ and radiir = 5, 1 and0.1, which we denote as

Box-A, Box-B and Box-C, respectively. We compare these methods with the Lasso – see Figure 3-a.
As expected, the three box penalties perform better. Moreover, as the radius of a box diminishes,
the amount of information about the true model increases, and the performance improves.

Wedge. In the second experiment, we consider a regression vector, whose components are nonin-
creasing in absolute value and only a few are nonzero. Specifically, we choose a10-sparse vector:
β∗

j = 11 − j, if j ∈ N10 and zero otherwise. We compare the Lasso, which makes no use of such
ordering information, with the wedge penaltyΩ(β|W ) (see Example 3.2 and Theorem 3.2) and the
hierarchical group Lasso in [17], which both make use of suchinformation. For the group Lasso
we chooseΩ(β) =

∑

ℓ∈N100
||βJℓ

||, with Jℓ = {ℓ, ℓ + 1, . . . , 100}, ℓ ∈ N100. These two methods
are referred to as “Wedge” and “GL-lin” in Figure 3-b, respectively. As expected both methods
improve over the Lasso, with “GL-lin” being the best of the two. We further tested the robustness
of the methods, by adding two additional nonzero componentswith value of10 to the vectorβ∗ in a
random position between20 and100. This result, reported in Figure 3-c, indicates that “GL-lin” is
more sensitive to such a perturbation.

Composite wedge.Next we consider a more complex experiment, where the regression vector is
sparse within different contiguous regionsP1, . . . , P10, and theℓ1 norm on one region is larger than
the ℓ1 norm on the next region. We choose setsPi = {10(i − 1) + 1, . . . , 10i}, i ∈ N10 and
generate a6-sparse vectorβ∗ whosei-th nonzero element has value31 − i (decreasing) and is in
a random position inPi, for i ∈ N6. We encode this prior knowledge by choosingΩ(β|Λ) with
Λ =

{

λ ∈ R
100 : ||λPi

||1 ≥ ‖λPi+1
||1, i ∈ N9

}

. This method constraints the sum of the sets to be
nonincreasing and may be interpreted as the composition of the wedge set with an average operation
across the setsPi, see the discussion at the end of Section 3. This method, which is referred to as “C-
Wedge” in Figure 3-d, is compared to the Lasso and to three other versions of the group Lasso. The
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Figure 4: Lasso vs. penaltyΩ(·|W 2) (left) andΩ(·|W 3) (Right); see text for more information.

first is a standard group Lasso with the nonoverlapping groupsJi = Pi, i ∈ N10, thus encouraging
the presence of sets of zero elements, which is useful because there are4 such sets. The second is a
variation of the hierarchical group Lasso discussed above with Ji = ∪10

j=iPj , i ∈ N10. A problem
with these approaches is that theℓ2 norm is applied at the level of the individual setsPi, which does
not promote sparsity within these sets. To counter this effect we can enforce contiguous nonzero
patterns within each of thePi, as proposed by [10]. That is, we consider as the groups the sets
formed by all sequences ofq ∈ N9 consecutive elements at the beginning or at the end of each ofthe
setsPi, for a total of180 groups. These three groupings will be referred to as “GL-ind”, “GL-hie’‘,
“GL-con” in Figure 3-d, respectively. This result indicates the advantage of “C-Wedge” over the
other methods considered. In particular, the group Lasso methods fall behind our method and the
Lasso, with “GL-con” being slight better than “GL-ind” and “GL-hie”. Notice also that all group
Lasso methods gradually diminish the model error until theyhave a point for each dimension, while
our method and the Lasso have a steeper descent, reaching zero at a number of points which is less
than half the number of dimensions.

Convex and Cubic. To show the flexibility of our framework, we consider two further examples
of sparse regression vectors with additional structured properties. In the first example, most of the
components of this vector are zero, but the first and the last few elements follow a discrete convex
trend. Specifically, we chooseβ∗ = (52, 42, 32, 22, 1, 0, . . . , 0, 1, 22, 32, 42, 52) ∈ R

100. In this
case, we expect the penalty functionΩ(β|W 2) to outperform the Lasso, because it favors vectors
with convex shape. Results are shown in Figure3-e, where this penalty is named “W-2”. In lack
of other specific methods to impose this convex shape constraint, and motivating by the fact that
the first few components decrease, we compare it with two methods that favors a learned vector
that is decreasing: the Wedge and the group Lasso withJk = {k, . . . , 100} for k ∈ N100. These
methods and the Lasso fail to use the prior knowledge of convexity, and are outperformed by using
the constraint setW 2. The second example considers the case where|β∗| ∈ W 3, namely the
differences of the second order are decreasing. This vectoris constructed from the cubic polynomial
p(t) = −t(t−1.5)(t+6.5). The polynomial is evaluated at100 equally spaced(0.1) points, starting
from −7. The resulting vector starts with5 nonzero components and has then a bump of another
15 elements. We use our method with the penaltyΩ(β|W 3), which is referred to as “W-3” in the
Figure. The model error, compared again with “W-1” and groupLasso linear, is shown in Figure
3-f. Finally, Figure 4 displays the regression vector foundby the Lasso and the vector learned by
“W-2” (left) and by the Lasso and “W-3” (right), in a single run with sample size of15 and35,
respectively. The estimated vectors (green) are superposed to the true vector (black). Our method
provides a better estimate than the Lasso in both cases.

Conclusion

We proposed a family of penalty functions that can be used to model structured sparsity in linear
regression. We provided theoretical, algorithmic and computational information about this new
class of penalty functions. Our theoretical observations highlight the generality of this framework
to model structured sparsity. An important feature of our approach is that it can deal with richer
model structures than current approaches while maintaining convexity of the penalty function. Our
practical experience indicates that these penalties perform well numerically, improving over state
of the art penalty methods for structure sparsity, suggesting that our framework is promising for
applications. In the future, it would be valuable to extend the ideas presented here to learning
nonlinear sparse regression models. There is also a need to clarify the rate of convergence of the
algorithm presented here.
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A Appendix

In this appendix we provide the proof of Theorems 3.2 and 4.1.

A.1 Proof of Theorem 3.2

Before proving the theorem we require some additional notation. Given any two disjoint subsets
J,K ⊆ Nn we define the region

QJ,K =

{

β : β ∈ R
n,

‖βJ‖2
2

|J | >
‖βK‖2

2

|K|

}

.

Note that the boundary of this region is determined by the zero set of a homogeneous polynomial of
degree two. We also need the following construction.

Definition A.1. For every subsetS ⊆ Nn−1 we setk = |S| + 1 and label the elements ofS in
increasing order asS = {jℓ : ℓ ∈ Nk−1}. We associate with the subsetS a contiguous partition
of Nn, given byJ (S) = {Jℓ : ℓ ∈ Nk}, where we defineJℓ := {jℓ−1 + 1, jℓ} and setj0 = 0 and
jk = n.

A subsetS of Nn−1 also induces two regions inRn which play a central role in the identification of
the wedge penalty. First, we describe the region which “crosses over” the induced partitionJ (S).
This is defined to be the set

OS :=
⋂

{

QJℓ,Jℓ+1
: ℓ ∈ Nk−1

}

. (A.1)

In other words,β ∈ OS if the average of the square of its components within each regionJℓ strictly
decreases withℓ. The next region which is essential in our analysis is the “stays within” region,
induced by the partitionJ (S). This region requires the notationJℓ,q := {j : j ∈ Jℓ, j ≤ q} and is
defined by the equation

IS :=
⋂

{

QJℓ,Jℓ,q
: q ∈ Jℓ, ℓ ∈ Nk

}

, (A.2)

whereQ denotes the closure of the setQ. In other words, all vectorsβ within this region have the
property that, for every setJℓ ∈ J (S), the average of the square of a first segment of components
of β within this set is not greater than the average overJℓ. We note that ifS is the empty set the
above notation should be interpreted asOS = R

n and

IS =
⋂

{QNn,Nq
: q ∈ Nn}.

We also introduce, for everyS ∈ Nn−1 the sets

US := OS ∩ IS ∩ (R\{0})n.

We shall prove the following slightly more general version the Theorem 3.2

Theorem A.1. The collection of setsU := {US : S ⊆ Nn−1} forms a partition of(R\{0})n. For
eachβ ∈ (R\{0})n there is a uniqueS ∈ Nn−1 such thatβ ∈ US, and

Ω(β|W ) =
∑

ℓ∈Nk

√

|Jℓ| ‖βJℓ
‖2, (A.3)

wherek = |S| + 1. Moreover, the components of the vectorλ(β) := argmin{Γ(β, λ) : λ ∈ W} is
given by the equationsλj(β) = µℓ, j ∈ Jℓ, ℓ ∈ Nk, where

µℓ =
‖βJℓ

‖2
√

|Jℓ|
. (A.4)

Proof. First, let us observe that there aren− 1 inequality constraints definingW . It readily follows
that all vectors in this constraint set areregular, in the sense of optimization theory, see [3, p. 279].
Hence, we can appeal to [3, Prop. 3.3.4, p. 316 and Prop. 3.3.6, p. 322], which state thatλ ∈ R

n
++
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is a solution to the minimum problem determined by the wedge penalty, if and only if there exists a
vectorα = (αi : i ∈ Nn−1) with nonnegative components such that

−
β2

j

λ2
j

+ 1 + αj−1 − αj = 0, j ∈ Nn, (A.5)

where we setα0 = αn = 0. Furthermore, the following complementary slackness conditions hold
true

αj(λj+1 − λj) = 0, j ∈ Nn−1. (A.6)

To unravel these equations, we letS := {j : λj > λj+1, j ∈ Nn−1}, which is the subset of indexes
corresponding to the constraints that are not tight. Whenk ≥ 2, we express this set in the form
{jℓ : ℓ ∈ Nk−1} wherek = |S| + 1.

As explained in Definition A.1, the setS induces the partitionJ (S) = {Jℓ : ℓ ∈ Nk} of Nn. When
k = 1 our notation should be interpreted to mean thatS is empty and the partitionJ (S) consists
only of Nn. In this case, it is easy to solve the equations (A.5) and (A.6). In fact, all components of
the vectorλ have a common value, sayµ > 0, and by summing both sides of equation (A.5) over
j ∈ Nn we obtain thatµ2 = ‖β‖2

2/n. Moreover, summing both sides of the same equation over
j ∈ Nq we obtain thatαq = −∑

j∈Nq
β2

j /µ
2 + q and, sinceαq ≥ 0 we conclude thatβ ∈ IS = US .

We now consider the case thatk ≥ 2. Hence, the vectorλ has equal components on each subset
Jℓ, which we denote byµℓ, ℓ ∈ Nk−1. The definition of the setS implies that theµℓ are strictly
decreasing and equation (A.6) implies thatαj = 0, for everyj ∈ S. Summing both sides of equation
(A.5) overj ∈ Jℓ we obtain that

− 1

µ2
ℓ

∑

j∈Jℓ

β2
j + |Jℓ| = 0

from which equation (A.4) follows. Since theµℓ are strictly decreasing, we conclude thatβ ∈ OS .
Moreover, choosingq ∈ Jℓ and summing both sides of equations (A.5) overj ∈ Jℓ,q we obtain that

0 ≤ αq = −‖βJℓ,q
‖2
2

µ2
ℓ

+ |Jℓ,q|

which implies thatβ ∈ QJℓ,Jℓ,q
. Since this holds for everyq ∈ Jℓ andℓ ∈ Nk we conclude that

β ∈ IS and therefore, it follows thatβ ∈ US.

In summary, we have shown thatβ ∈ US. In particular, this implies that the collection of setsU
covers(R\{0})n. Next, we show that the elements ofU are disjoint. To this end, we observe that,
the computation described above can bereversed. That is to say, conversely foranyS ⊆ Nn−1 and
β ∈ US we conclude that the vectorsα andλ define above solve the equations (A.5) and (A.6).
Since the wedge penalty function isstrictly convexwe know that equations (A.5) and (A.6) have a
unique solution. Now, ifβ ∈ US ∩ US′ then it must follow thatλ = λ′. Consequently, since the
vectorsλ andλ′ are a constant on any element of their respective partitionsJ (S) andJ (S′), strictly
decreasing from one element to the next in those partition, it must be the case thatS1 = S2.

We note that if some components ofβ are zero we may computeΩ(β|Λ) as a limiting process, since
the functionΩ(·|Λ) is continuous.

Proof of Theorem 4.1We divide the proof into several steps. To this end, we define

Eǫ(β, λ) := ‖y −Xβ‖2
2 + 2ρΓ(φǫ(β), λ)

and letβ(λ) := argmin{Eǫ(α, λ) : α ∈ R
n}.

Step 1.We define two sequences,θk = Eǫ(β
k, λk−1) andνk = Eǫ(β

k, λk) and observe, for any
k ≥ 2, that

θk+1 ≤ νk ≤ θk ≤ νk−1. (A.7)

These inequalities follow directly from the definition of the alternating algorithm, see equations (4.1)
and (4.2).

Step 2.We define the compact setB = {β : β ∈ R
n, ‖β‖1 ≤ θ1}. From the first inequality in

Proposition 2.1,‖β‖1 ≤ Ω(β|Λ), and inequality (A.7) we conclude, for everyk ∈ N, thatβk ∈ B.
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Step 3.We define a functiong : R
n → R atβ ∈ R

n as

g(β) = min {Eǫ(α, λ(φ
ǫ(β))) : α ∈ R

n} .
We claim thatg is continuous onB. In fact, there exists a constantκ > 0 such that, for every
γ1, γ2 ∈ B, it holds that

|g(γ1) − g(γ2)| ≤ κ‖λ(φǫ(γ1)) − λ(φǫ(γ2))‖∞. (A.8)

The essential ingredient in the proof of this inequality is the fact that by our hypothesis on the set
Λ there exists constanta andb such that, for allβ ∈ B, λ(φǫ(β)) ∈ [a, b]n. This fact follows by
Danskin’s Theorem [6].

Step 4.By step 2, there exists a subsequence{βkℓ : ℓ ∈ N} which converges tõβ ∈ B and, for all
β ∈ R

n andλ ∈ Λ, it holds that

Eǫ(β̃, λ(φ
ǫ(β̃))) ≤ Eǫ(β, λ(φ

ǫ(β̃))), Eǫ(β̃, λ(φ
ǫ(β̃))) ≤ Eǫ(β̃, λ). (A.9)

Indeed, from step 1 we conclude that there existsψ ∈ R++ such that

lim
k→∞

θk = lim
k→∞

νk = ψ.

Under our hypothesis the mappingβ 7→ λ(β) is continuous forβ ∈ (R\{0})n, we conclude that

lim
ℓ→∞

λkℓ = λ(φǫ(β̃)).

By the definition of the alternating algorithm, we have, for all β ∈ R
n andλ ∈ Λ, that

θk+1 = Eǫ(β
k+1, λk) ≤ Eǫ(β, λ

k), νk = Eǫ(β
k, λk) ≤ Eǫ(β

k, λ).

From this inequality we obtain, passing to limit, inequalities (A.9).

Step 5. The vector(β̃, λ(φǫ(β̃)) is a stationary point. Indeed, sinceΛ is admissible, by step 3,
λ(φǫ(β̃)) ∈ int(Λ). Therefore, sinceEǫ is continuously differentiable this claim follows from step
4.

Step 6. The alternating algorithm converges. This claim follows from the fact thatEǫ is strictly
convex. Hence,Eǫ has a unique global minimum inRn ×Λ, which in virtue of inequalities (A.9) is
attained at(β̃, λ(φǫ(β̃))).

The last claim in the theorem follows from the fact that the set {γ(ǫ) : ǫ > 0} is bounded and the
functionλ(β) is continuous.
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