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Abstract

We study the problem of learning a sparse linear regressémtov under addi-
tional conditions on the structure of its sparsity pattewe present a family of
convex penalty functions, which encode this prior knowkellg means of a set of
constraints on the absolute values of the regression cieffic This family sub-
sumes the&/; norm and is flexible enough to include different models ofrsipa
patterns, which are of practical and theoretical imporéate establish some im-
portant properties of these functions and discuss some@eanvhere they can be
computed explicitly. Moreover, we present a convergeninoigation algorithm
for solving regularized least squares with these penatgtions. Numerical sim-
ulations highlight the benefit of structured sparsity anel dkdvantage offered by
our approach over the Lasso and other related methods.

1 Introduction

The problem of sparse estimation is becoming increasimgpoirtant in machine learning and statis-
tics. In its simplest form, this problem consists in estimgia regression vectgi* € R™ from a
data vectoyy € R™, obtained from the model = X 5* + £, whereX is anm x n matrix, which
may be fixed or randomly chosen afice R™ is a vector resulting from the presence of noise. An
important rationale for sparse estimation comes from tteeolation that in many practical applica-
tions the number of parametetds much larger than the data size but the vectog* is known to

be sparse, that is, most of its components are equal to zemerdhese circumstances, it has been
shown that regularization with thlg norm, commonly referred to as the Lasso method, provides an
effective means to estimate the underlying regressiorovexs well as its sparsity pattern, see for
example [4, 12, 15] and references therein.

In this paper, we are interested in sparse estimation urttkti@nal conditions on the sparsity pat-
tern of 8*. In other words, not only do we expect thi#tis sparse but also that itéructured sparse
namely certain configurations of its nonzero componentsae preferred to others. This problem
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arises is several applications, see [10] for a discussidre frior knowledge that we consider in
this paper is that the vectdf*|, whose components are the absolute value of the corresppndi
components ofs*, should belong to some prescribed convex/set-or certain choices ok this
implies a constraint on the sparsity pattern as well. Fongla, the sef\ may include vectors with
some desired monotonicity constraints, or other condsain the “shape” of the regression vector.
Unfortunately, the constraint thgt*| € A is nonconvex and its implementation is computational
challenging. To overcome this difficulty, we propose a ndasgiily of penalty functions. It is based
on an extension of thé, norm used by the Lasso method and involves the solution of Go8m
convex optimization problem, which incorporates the dtrced sparsity constraints. As we shall
see, a key property of our approach is that the penalty fanauals the; norm of a vector3
when|5| € A and it is strictly greater than thg norm otherwise. This observation suggests that
the penalty function encourages the desired structuregisparoperty.

There has been some recent research interest on struchaegity see [1, 2, 7, 9, 10, 11, 13, 16]
and references therein. Closest to our approach are penattyods built around the idea of mixed
{1 — {5 norms. In particular, the group Lasso method [16] assumasttie components of the
underlying regression vectgt* can be partitioned into prescribed groups, such that thectsn

of 8* to a group is equal to zero for most of the groups. This ideable&s extended in [10, 17]
by considering the possibility that the groups overlap adicq to certain hierarchical or spatially
related structures. A limitation of these methods is thayttan only handle sparsity patterns form-
ing a single connected region. Our point of view is differerom theirs and provides a means to
designing more general and flexible penalty functions whmaintain convexity whilst modeling
richer model structures. For example, we will demonstrias dur family of penalty functions can
model sparsity pattern forming multiple connected regioihsoefficients.

The paper is organized as follows. In Section 2 we define thmieg method. In particular, we
describe the associated penalty function and establisle edrits important properties. In Section
3 we provide examples of penalty functions, deriving theliek@nalytical form in some important
cases, namely the case that the &ds a box or the wedge with nonincreasing coordinates. In
Section 4 we address the issue of solving the learning methoérically by means of an alternating
minimization algorithm. Finally, in Section 5 we providemarical simulations with this method,
showing the advantage offered by our approach.

2 Learning method

In this section, we introduce the learning method and eistalsome important properties of the
associated penalty function. We IRt , be the positive real line and &, be the set of positive
integers up to.. We prescribe a convex subsebf the positive orthanR” | and estimate* by a
solution of the convex optimization problem

min {[|X 8 - y|l3 +2pQ(B|7A) : B € R"}, (2.1)
where|| - || denotes the Euclidean norm. The penalty function takesaime f
Q(B|A) =inf {T'(B, ) : A € A} (2.2)

and the functiod™ : R” x R, — R is given by the formuld (5, A) = $ >, (§—2 + Ai) .

Note thatl™ is convex on its domain because each of its summands areiddasnvex functions.
Hence, when the set is convex it follows that)(-|A) is a convex function and (2.1) is a convex
optimization problem. An essential idea behind our corston of this function, is that, for every
A € Ry, the quadratic functiofi(-, \) provides a smooth approximation|t@| from above, which
is exact at6 = +). We indicate this graphically in Figure 1-a. This fact felle immediately
by the arithmetic-geometric mean inequality, namly+ b)/2 > v/ab. Using the same inequal-
ity it also follows that the Lasso problem corresponds tdY&henA = R’ |, that is it holds that
QBIRY ) = [|Bl1 == >_,cn., |Bi]. Thisimportant special case motivated us to consider thergé
method described above. The utility of (2.2) is that uporitisg it into (2.1) results in an optimiza-
tion problem over\ and$ with a continuously differentiable objective function. ke, we have
succeeded in expressing a nondifferentiable convex abgeftinction by one which is continuously
differentiable on its domain.

The next proposition provides a justification of the penfltyction as a means to incorporate struc-
tured sparsity and establish circumstances for which tinalpefunction is a norm.
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Figure 1: (a): Functioi'(-, \) for some values ok; (b): Functionl'(53, -) for some values off.

Proposition 2.1. For everys € R”, it holds that||8||; < Q(8]A) and the equality holdg and
only if |3| := (|8:| : i € N,,) € A. Moreover, ifA is a nonempty convex cone then the function
Q(-|A) is a norm and we have th&(5|A) < w||g|1, wherew := max{Q(ex|A) : k € N,,} and
{er : k € N, } is the canonical basis d&".

Proof. By the arithmetic-geometric inequality we have thjal|; < I'(5, \), proving the first as-
sertion. If|3| € A, there exists a sequenéa” : k € N} in A, such thatlim;_., \* = |g].
SinceQ(B|A) < T(3, \¥) it readily follows thatQ(3|A) < ||g]/1. Conversely, if|3| € A, then
there is a sequence\* : k € N} in A, suchy(3,\*) < ||31]| + 1/k. This inequality implies
that some subsequence of this sequence converges tg a\. Using the arithmetic-geometric
we conclude thab = |3| and the result follows. To prove the second part, observeithA
is a nonempty convex cone, namely, for akye A and¢ > 0 it holds thattA € A, we have
that 2 is positive homogeneous. Indeed, making the change ofblarid = \/|t| we see that
Q(tB|A) = [t|Q2(B)A). Moreover, the above inequalit(5|A) > |51, implies that if2(3|A) = 0
then = 0. The proof of the triangle inequality follows from the honewpity and convexity of?,
namelyQ(a+ G|A) = 2Q ((a + 8)/2|A) < Q(alA)+Q(B]A). Finally, note thaf2(3|A) < w31

if and only ifw = max{Q(8|A) : ||B|l» = 1}. Sincef? is convex the maximum above is achieved at
an extreme point of thé, unit ball. [ |

This proposition indicates that the functiox-|A) penalizes less vectofswhich have the property
that|3| € A, hence encouraging structured sparsity. Indeed, any pation of the coordinates
of a vectorg with the above property will incur in the same or a larger eati the penalty term.
Moreover, for certain choices of the s&f some of which we describe below, the penalty function
will encourage vectors which not only are sparse but als@ tsparsity patterngl s, >0y : i €
N,,) € A, wherel ., denotes the indicator function.

We end this section by noting that a normalized version ofjtioeip Lasso penalty [16] is included
in our setting as a special case{lf; : £ € N}, k € N,, form a partition of the index sé¥,,, the
corresponding group Lasso penalty is define@as (5) = >y, V17| 187,112, where, for every
J C N,,, we use the notatiofi; = (3; : j € J). Itis a easy matter to verify th&gr,(-) = Q(-|A)
forA={XA:XeRL ,\j =04 j€Jp, £ €Ny, 6, >0}

3 Examples of the penalty function

We proceed to discuss some examples of thé\setR’; , which may be used in the design of the
penalty functiorf2(-|A). All but the first example fall into the category thatis a polyhedral cone,
thatisA = {\: A € R}, A\ > 0}, whereA is anm x n matrix. Thus, in view of Proposition 2.1
the functionQ2(-|A) is a norm.

The first example corresponds to the prior knowledge thatrthgnitude of the components of the
regression vector should be in some prescribed intervals.

Example 3.1. We choose,b € R™, 0 < a < b and define the corresponding box Bga, b] :=

& lai, bi).

€Ny,

The theorem below establishes the form of the box penalty;atso [8, 14] for related penalty
functions. To state our result, we define, for every R, the function(t)y = max(0, t).



Theorem 3.1. We have that

B1Bl0,0) = 161+ Y (5o-(ai = 182 + - (5~ 02 ).

1€EN,

Moreover, the components of the vecidp) := argmin{I'(3,\) : A € Ba,b]} are given by the
equations\;(3) = [8;] + (a; — [Bi])+ — (I8i] — b)+, i € Ny.

Proof. SinceQ(8|Bla,b]) = >,y Q(Billai, bi]) it suffices to establish the result in the case
n = 1. We shall show that ifi, b, 3 € R, a < b then

(5l ) = 18] + 5 (a — 82 + 55 (18] — )2 31)

Since both sides of the above equation are continuous furgtif3 it suffices to prove this equation
for 5 € R\{0}. In this case, the functioki(/, -) is strictly convex in the second argument, and so,
has a unique minimum iR, at\ = |3, see also Figure 1-b. Moreover]f| < a the constrained
minimum occurs ah = a, whereas ifi3| > b, it occurs at\ = b. This establishes the formula for
A(B). Consequently, we have that

1 (B> 1 /3
QB b]) = 1Bl azipizor + 5 | o +a ) Lusi<ar + 5 ( 5 +0) Lusiu-
Equation (3.1) now follows by a direct computation. [ |

Note that the function in equation (3.1) is a concatenatibtwo quadratic functions, connected
together with a linear function. Thus, the box penalty waNdér sparsity only for. = 0, case that is
defined by a limiting argument.

The second example implements the prior knowledge thattbelinates of the vectorare ordered
in a non increasing fashion.

Example 3.2. We define the wedge 88 = {A\: A € R} |, \j > A\j1, j € N1}

We say that a partitionf = {J; : £ € N;} of N, is contiguousif for all i € Jy,j € Jpy1,
¢ € N_y, itholds thati < j. For example, ifx = 3, partitions{{1, 2}, {3}} and{{1}, {2}, {3}}
are contiguous buf{1, 3}, {2}} is not.

Theorem 3.2. For everyg € (R\{0})" there is a unique contiguous partitiofi = {.J, : £ € N}
ofN,,, k € N,,, such that

QBIW) =Y V1Tl 1822 (3.2)

LeNy,
Moreover, the components of the veckdf) = argmin{T'(3, \) : A € W} are given by
Ai(B) = 152l j€Je, L €N (3.3)

VIl

and, for every € Ny and subseK C J, formed by the first < |.J;| elements ofl, it holds that

HﬂK”Q > HﬂJ{\KHQ (3_4)

VE T VT -k

The partition7 appearing in the theorem is determined by the set of inetiggh; > ;1 which
are an equality at the minimum. This set is identified by exang the Karush-Kuhn-Tucker opti-
mality conditions [3] of the optimization problem (2.2) far= W. The detailed proof is reported
in the supplementary material. Equations (3.3) and (3dirate a strategy to compute the partition
associated with a vectar. We explain how to do this in Section 4.

An interesting property of the Wedge penalty is that it hasfttrm of a group Lasso penalty (see
the discussion at the end of Section 2) with groups not fasgaiori but depending on the location
of the vector3. The groups are the elements of the partitiorand are identified by certain convex



constraints on the vectgt. For example, forn = 2 we obtain that)(5|W) = ||5]]1 if |51] > | 52|
andQ(3|W) = v/2||8||» otherwise. Fon = 3, we have that

V267 +33) + B3], if [B1] < [Be| and BF + 55 > 263 J={{1,2},{3}}
1B1] 4+ \/2(03 + 53), if [Bo| < |Bs| and 267 > B3 + 53 J={{1},{2,3}}
3(6% + B3+ (33), otherwise J =1{{1,2,3}}

where we have also reported the partition involved in easke.ca

QpIW) =

The next example is an extension of the wedge set which isr@tspy previous work on the group
Lasso estimator with hierarchically overlapping groupg][1t models vectors whose magnitude is
ordered according to a graphical structure. Within thistegt) the wedge corresponds to the set
associated with a line graph.

Example 3.3. We letA be the incidence matrix of a directed graph and chogse- {\ : A\ €
R% , AN > 0}.

We have confirmed that Theorem 3.2 extends to the case thgtahh is a tree but the general case
is yet to be understood. We postpone this discussion to efottcasion.

Next, we note that the wedge may equivalently be expresséideasonstraint that the difference
vectorD(\) := (\j41—A; : j € N,,_1) is less than or equal to zero. Our next example extends this
observation by using the higher order difference operatbich is given by the formuld*()\) =

(Mot + S, (D (DAt 15 € Nus).
Example 3.4. For everyk € N,, we define the sé¥’* := {\: X e R? , D*()\) > 0}.

The corresponding penalfy(-[IW*) encourages vectors whose sparsity pattern is concentated
at mostk different contiguous regions. The cake= 1 essentially corresponds to the wedge,
while the caseé: = 2 includes vectors which have a convex “profile” and whose sipapattern is
concentrated either on the first elements of the vector, efetét, or on both.

We end this section by discussing a useful construction lwhiay be applied to generate new
penalty functions from available ones. It is obtained by posing a se® C R* . with a linear
transformation, modeling the sum of the components of aoveatross the elements of a prescribed
partition{F, : £ € Ny} of N,,. Thatis, weleth = {A: A€ R}, (3°;cp, Aj: L €Ny) € O} We
use this construction in the composite wedge experimerggation 5.

4 Optimization method

In this section, we address the issue of implementing thraileg method (2.1) numerically. Since
the penalty functiorf2(-|A) is constructed as the infimum of a family of quadratic regaés,
the optimization problem (2.1) reduces to a simultaneousmization over the vector§ and \.
For a fixed\ € A, the minimum overd € R" is a standard Tikhonov regularization and can
be solved directly in terms of a matrix inversion. For a fix@dthe minimization over\ € A
requires computing the penalty function (2.2). These oladEms naturally suggests an alternating
minimization algorithm, which has already been considémexpecial cases in [1]. To describe our
algorithm we choose > 0 and introduce the mappingf : R™ — R’ |, whosei-th coordinate at

B € R™ is given by¢s(8) = /7 + €. Forg € (R\{0})", we also let\(3) = argmin{T'(3, \) :
A € A}. The alternating minimization algorithm is defined as falo choose)\’ € A and, for
k € N, define the iterates

i diag(\* 1) (diag \F ") X TX 4 pI) 1y (4.1)
A Mg (8")). (4.2)

The following theorem establishes convergence of thisratyo. Its proof is presented in the sup-
plementary material.

Theorem 4.1.Ifthe setA is convex and, forall, b € Rwith0 < a < b, the set\, ;, := [a, b]"NA IS
a nonempty, compact subset of the interioAdhen the iterations (4.1)—(4.2) converges to the vector



Initialization: k& < 0
Input: 5 € R"; Output: Jyi,...,Jk
fort =1tondo

Jep1 — {t}; k—k+1

. 187, _ 4 ll2 1B, 2
while £ > 1 and NN
Jo1— Jom1Ude; k—k—1
end
end

Figure 2: Iterative algorithm to compute the wedge penalty

v(e) := argmin {||ly — X 3|13 + 2pQ(¢°(8)|A) : B € R™}. Moreover, any convergent subsequence
of the sequencéy (1) : ¢ € N} converges to a solution of the optimization problghi).

The most challenging step in the alternating algorithm & ¢bmputation of the vector*. For-
tunately, if A is a second order cone, problem (2.2) defining the penaltgtiomQ(-|A) may be
reformulated as a second order cone program (SOCP), se¢5¢.gTo see this, we introduce an
additional variable € R™ and note that

Q(ﬁ|/\) = mm{z ti + N\ : H(Zﬁi;ti — )\1)H2 <t —|-/\7;,7f1' >0,1€N,, A€ A}

1€EN,

In particular, in all examples in Section 3, the deis formed by linear constraints and, so, problem
(2.2) is an SOCP. We may then use available tool-boxes to atarthe solution of this problem.
However, in special cases the computation of the penaltstimmmay be significantly facilitated by
using the analytical formulas derived in Section 3. Here sfmplicity we describe how to do this
in the case of the wedge penalty. For this purpose we say tWettars € R™ is admissible if, for

everyk € N,,, it holds that|| By, ||l2/VE < ||8]|2/v/7.
The proof of the next lemma is straightforward and we do nabetate on the details.

Lemma 4.1. If 5 € R" andé € RP are admissible and §||2//n < |6]]2/\/p then(3,0) is
admissible.

The iterative algorithm presented in Figure 2 can be usedtbtfie partition7 = {J; : £ € Ni}
and, so, the vectok(() described in Theorem 3.2. The algorithm processes the coemnis of
vector 5 in a sequential manner. Initially, the first component fottms only set in the partition.
After the generic iteration — 1, where the partition is composed bfsets, the index of the next
componentst, is put in a new sef/; ;. Two cases can occur: the means of the squares of the sets
are in strict descending order, or this order is violated lingy last set. The latter is the only case
that requires further action, so the algorithm merges tsetiso sets and repeats until the sets in
the partition are fully ordered. Note that, since the onlgmgion performed by the algorithm is
the merge of admissible sets, Lemma 4.1 ensures that afterségpt the current partition satisfies
the conditions (3.4). Moreover, thghile loop ensures that after each step the current partition
satisfies, for every € Ny_1, the constraint§ 3, |2v/|Je| > (|87, l2v/|Je+1]- Thus, the output

of the algorithm is the partitior/ defined in Theorem 3.2. In the actual implementation of the
algorithm, the means of squares of each set can be savedalldvis us to compute the mean of
squares of a merged set as a weighted mean, which is a cotistandperation. Since there are
n — 1 consecutive terms in total, this is also the maximum numbererges that the algorithm can
perform. Each merge requires exactly one additional tesiyescan conclude that the running time
of the algorithm is linear.

5 Numerical simulations

In this section we present some numerical simulations wighpgroposed method. For simplicity,
we consider data generated noiselessly fiprs X 3%, where3* € R!% is the true underlying
regression vector, andl is anm x 100 input matrix,m being the sample size. The elementsiof
are generated i.i.d. from the standard normal distribyt@md the columns ok are then normalized
such that theif; normisl1. Since we consider the noiseless case, we solve the in&iguoproblem
min{Q(B) : y = X5}, for different choices of the penalty functiéh In practice, we solve problem
(2.1) for a tiny value of the parameter= 108, which we found to be sufficient to ensure that the
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error termin (2.1) is negligible at the minimum. All expeemis were repeated times, generating
each time a new matriX. In the figures we report the average of the model €3 — 3*(2] of

the vector? learned by each method, as a function of the samplesize the following, we discuss
a series of experiments, corresponding to different ctsioethe model vectof* and its sparsity
pattern. In all experiments, we solved the optimizationbpem (2.1) with the algorithm presented
in Section 4. Whenever possible we solved step (4.2) usiadatmulas derived in Section 3 and
resorted to the solver CVXhftp://cvxr.com/cvy/in the other cases.

Box. In the first experiment the model i$)-sparse, where each nonzero component, in a random
position, is an integer uniformly sampled in the interf/all 0, 10]. We wish to show that the more
accurate the prior information about the model is, the moeeige the estimate will be. We use

a box penalty (see Theorem 3.1) constructed “around” theeipadagining that an oracle tells us
that each component?| is bounded within an interval. We consider three bokés, b] of different
sizes, namely; = (r — |3}|)+ andb; = (|5;| — )+ and radiir = 5,1 and0.1, which we denote as
Box-A, Box-B and Box-C, respectively. We compare these mestwith the Lasso — see Figure 3-a.
As expected, the three box penalties perform better. M@aea@s the radius of a box diminishes,
the amount of information about the true model increases tla@ performance improves.

Wedge. In the second experiment, we consider a regression vectars&components are nonin-
creasing in absolute value and only a few are nonzero. Sgaityfiwe choose a0-sparse vector:
B; =11 — j,if j € Ny and zero otherwise. We compare the Lasso, which makes ndf sselo
ordering information, with the wedge penaly3|1V) (see Example 3.2 and Theorem 3.2) and the
hierarchical group Lasso in [17], which both make use of saébrmation. For the group Lasso
we choos&)(3) = >y, 187, with Jp = {£,£ +1,...,100}, £ € Nigo. These two methods
are referred to as “Wedge” and “GL-lin” in Figure 3-b, resppegly. As expected both methods
improve over the Lasso, with “GL-lin” being the best of theotwWe further tested the robustness
of the methods, by adding two additional nonzero compongititsvalue of10 to the vector3* in a
random position betwee20 and100. This result, reported in Figure 3-c, indicates that “Gh*lis
more sensitive to such a perturbation.

Composite wedge.Next we consider a more complex experiment, where the regmesector is
sparse within different contiguous regiofs, . . . , P1g, and the/; norm on one region is larger than
the ¢; norm on the next region. We choose s&s= {10(: — 1) + 1,...,10i}, i € Ny and
generate &-sparse vectof* whosei-th nonzero element has val8é — i (decreasing) and is in

a random position irP;, for i € Ng. We encode this prior knowledge by choosfig3|A) with
A= {XeR"YY: |X\p |1 > [[Ap.. |1, i € Ng}. This method constraints the sum of the sets to be
nonincreasing and may be interpreted as the compositidreoffedge set with an average operation
across the setB;, see the discussion at the end of Section 3. This methodhwsieferred to as “C-
Wedge” in Figure 3-d, is compared to the Lasso and to threeretirsions of the group Lasso. The



Figure 4: Lasso vs. penalfy(-|W?) (left) andQ(-|W3) (Right); see text for more information.

o

first is a standard group Lasso with the nonoverlapping gsolp= P;, i € Ny, thus encouraging
the presence of sets of zero elements, which is useful bet¢here arel such sets. The second is a
variation of the hierarchical group Lasso discussed abdtre fy = U2, P;, i € Nig. A problem
with these approaches is that thenorm is applied at the level of the individual séts which does
not promote sparsity within these sets. To counter thisceffiee can enforce contiguous nonzero
patterns within each of thé;, as proposed by [10]. That is, we consider as the groups tise se
formed by all sequences gfc Ny consecutive elements at the beginning or at the end of eatle of
setsP;, for a total of180 groups. These three groupings will be referred to as “GL5iM@L-hie™,
“GL-con” in Figure 3-d, respectively. This result indicatthe advantage of “C-Wedge” over the
other methods considered. In particular, the group Lassthods fall behind our method and the
Lasso, with “GL-con” being slight better than “GL-ind” an&&L-hie”. Notice also that all group
Lasso methods gradually diminish the model error until thaye a point for each dimension, while
our method and the Lasso have a steeper descent, reachingtzenumber of points which is less
than half the number of dimensions.

Convex and Cubic. To show the flexibility of our framework, we consider two foer examples

of sparse regression vectors with additional structuregerties. In the first example, most of the
components of this vector are zero, but the first and the &stelements follow a discrete convex
trend. Specifically, we choosg* = (52,42,32,22,1,0, ...,0,1,22 32,42 52) € R, In this
case, we expect the penalty functi@3|W?) to outperform the Lasso, because it favors vectors
with convex shape. Results are shown in Figure3-e, whesepiiimalty is named “W-2". In lack
of other specific methods to impose this convex shape camisteend motivating by the fact that
the first few components decrease, we compare it with two oasthhat favors a learned vector
that is decreasing: the Wedge and the group Lasso #ith- {k,...,100} for k& € Njoo. These
methods and the Lasso fail to use the prior knowledge of cdtyeand are outperformed by using
the constraint setV’2. The second example considers the case where € W3, namely the
differences of the second order are decreasing. This visctonstructed from the cubic polynomial
p(t) = —t(t—1.5)(t+6.5). The polynomial is evaluated &0 equally space@.1) points, starting
from —7. The resulting vector starts with nonzero components and has then a bump of another
15 elements. We use our method with the pen&lfys|1W?), which is referred to as “W-3” in the
Figure. The model error, compared again with “W-1" and graagso linear, is shown in Figure
3-f. Finally, Figure 4 displays the regression vector folnydthe Lasso and the vector learned by
“W-2" (left) and by the Lasso and “W-3” (right), in a singlemuwvith sample size ot5 and 35,
respectively. The estimated vectors (green) are supedposie true vector (black). Our method
provides a better estimate than the Lasso in both cases.

Conclusion

We proposed a family of penalty functions that can be usedddehstructured sparsity in linear
regression. We provided theoretical, algorithmic and cotational information about this new
class of penalty functions. Our theoretical observatiagslight the generality of this framework
to model structured sparsity. An important feature of ouprapch is that it can deal with richer
model structures than current approaches while maintgioémvexity of the penalty function. Our
practical experience indicates that these penalties perieell numerically, improving over state
of the art penalty methods for structure sparsity, sugggdtiat our framework is promising for
applications. In the future, it would be valuable to extehd tdeas presented here to learning
nonlinear sparse regression models. There is also a neddrify the rate of convergence of the
algorithm presented here.
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A Appendix

In this appendix we provide the proof of Theorems 3.2 and 4.1.

A.1 Proof of Theorem 3.2

Before proving the theorem we require some additional miatGiven any two disjoint subsets
J, K C N,, we define the region

>
]| |K|
Note that the boundary of this region is determined by the get of a homogeneous polynomial of
degree two. We also need the following construction.

Definition A.1. For every subset C N,,_; we setk = |S| + 1 and label the elements &f in

increasing order a5 = {j, : £ € N,_1}. We associate with the subsgia contiguous partition
of N,,, given by7(S) = {J; : £ € N}, where we defind, := {j,—1 + 1, j,} and setj, = 0 and
Jk ="

A subsetS of N,,_; also induces two regions iR™ which play a central role in the identification of
the wedge penalty. First, we describe the region which ‘meever” the induced partitiafi (.S).
This is defined to be the set

Og = ﬂ {Quiipr 0 ENL1}. (A1)

In other words 3 € Og if the average of the square of its components within eacioneg strictly
decreases witli. The next region which is essential in our analysis is thaystwithin” region,
induced by the partitiog7 (.S). This region requires the notatioh , := {j : j € Ji,j < ¢} and is
defined by the equation

Ig ::ﬂ{éh,]{,q ZQGJ@,[ENk}, (A.2)

where(Q denotes the closure of the st In other words, all vectorg within this region have the
property that, for every sef, € J(5), the average of the square of a first segment of components
of 3 within this set is not greater than the average ayerWe note that ifS is the empty set the
above notation should be interpreted’as = R™ and

IS = ﬂ{@Nn,Nq 1q € Nn}
We also introduce, for ever§ € N,,_; the sets
Us:=0gNIgN (R\{O})"

We shall prove the following slightly more general versibe fTheorem 3.2

Theorem A.1. The collection of se® := {Us : S C N,,_; } forms a partition of(R\{0})". For
eachg € (R\{0})™ there is a uniqueS € N,,_; such thats € Ug, and

QBIW) =Y V1Tl 1Bl (A3)
LENy

wherek = |S| + 1. Moreover, the components of the vecigf) := argmin{T'(5,\) : A € W}is
given by the equations; () = e, j € Jo, £ € Ny, where

|‘6J[||2
e = :
Ve

(A.4)

Proof. First, let us observe that there are- 1 inequality constraints defining’. It readily follows
that all vectors in this constraint set asgular, in the sense of optimization theory, see [3, p. 279].
Hence, we can appeal to [3, Prop. 3.3.4, p. 316 and Prop., .3322], which state that ¢ R} _
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is a solution to the minimum problem determined by the wedgefty, if and only if there exists a
vectora = («; : i € N,,_1) with nonnegative components such that

e .
—zF a1 —a; =0, jeN,, (A.5)

J
where we setyy = «,, = 0. Furthermore, the following complementary slackness caovts hold
true

aj(Njr1 —Aj) =0, j € Npg. (A.6)
To unravel these equations, we et= {j : \; > \;11,j € N,,_1}, which is the subset of indexes
corresponding to the constraints that are not tight. When 2, we express this set in the form
{je: ¢ € Ny_1} wherek = |S| + 1.

As explained in Definition A.1, the sétinduces the partitiot/ (S) = {J; : ¢ € Ni} of N,,. When

k = 1 our notation should be interpreted to mean thas empty and the partitio/ (S) consists
only of N,,. In this case, it is easy to solve the equations (A.5) and)(Arbfact, all components of
the vector\ have a common value, say> 0, and by summing both sides of equation (A.5) over
j € N,, we obtain thap:? = ||3||3/n. Moreover, summing both sides of the same equation over
j € Ny we obtain thaty, = — 7, . 37/u*+qand, sincey, > 0 we conclude that € Is = Us.

We now consider the case that> 2. Hence, the vectok has equal components on each subset
Je, which we denote by, ¢ € Ni_;. The definition of the se$ implies that theu, are strictly
decreasing and equation (A.6) implies that= 0, for everyj € S. Summing both sides of equation
(A.5) overj € J, we obtain that

1
= Y B+l =0
He Jj€Je
from which equation (A.4) follows. Since the are strictly decreasing, we conclude ti¥at Og.
Moreover, choosing € J, and summing both sides of equations (A.5) ovey J; , we obtain that

187,115
Qg = _# + [Jeql
Hy

0<

which implies thats € Q,Ni‘q. Since this holds for every € J, and/ € Ny we conclude that
0 € Is and therefore, it follows that € Ug.

In summary, we have shown thate Ug. In particular, this implies that the collection of séts
covers(R\{0})™. Next, we show that the elementsiaéfare disjoint. To this end, we observe that,
the computation described above candeersed That is to say, conversely fany S C N,,_; and

0 € Ug we conclude that the vectorsand A define above solve the equations (A.5) and (A.6).
Since the wedge penalty functionsgictly convexwe know that equations (A.5) and (A.6) have a
unique solution. Now, if3 € Ugs N Ug: then it must follow that\ = ). Consequently, since the
vectorsh and\’ are a constant on any element of their respective partitiofts) and.7 (S”), strictly
decreasing from one element to the next in those partitionust be the case that = .S5. |

We note that if some components@®ére zero we may compufe(5|A) as a limiting process, since
the functionQ2(:|A) is continuous.
Proof of Theorem 4.1We divide the proof into several steps. To this end, we define
E(B,A) == [ly — X B3 +2pT(6°(8), )
and let3(\) := argmin{ E (o, \) : o« € R"}.

Step 1.We define two sequence, = E (8%, \¥=1) andy, = E.(8*, \F) and observe, for any
k > 2, that

Orp1 < v <Ok < g1 (A7)
These inequalities follow directly from the definition ofthlternating algorithm, see equations (4.1)
and (4.2).

Step 2.We define the compact s& = {5 : 5 € R", |51 < 6,}. From the first inequality in
Proposition 2.1||8]|; < ©(8|A), and inequality (A.7) we conclude, for evekyc N, that3* € B.
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Step 3We define a functiog : R — R at € R™ as
9(8) = min {Ec(a, A(¢°(8))) : v € R"}.

We claim thatg is continuous onB. In fact, there exists a constant> 0 such that, for every
v!,4% € B, it holds that

l9(7") = 9(¥)] < KA (7)) = M¢* (7))o (A.8)

The essential ingredient in the proof of this inequalityhis fact that by our hypothesis on the set

A there exists constamtandb such that, for all3 € B, A(¢°(3)) € [a,b]™. This fact follows by
Danskin’s Theorem [6].

Step 4.By step 2, there exists a subsequefig® : ¢ € N} which converges t € B and, for all
£ € R™and\ € A, it holds that

Ec(B,M@°(8))) < Ec(8,A(6°(8))),  Ee(B,M¢°(8))) < Ee(B, ). (A.9)
Indeed, from step 1 we conclude that there exjsts R, ; such that

lim 6y = klim v = .

k—o00

Under our hypothesis the mappifig— A(3) is continuous forg € (R\{0})", we conclude that
Jim X = A(67(3)).
By the definition of the alternating algorithm, we have, fbriac R™ and\ € A, that
Ors1 = Bc(B 1A S B(B,2%), v = Be(B°,\") < Ee(B",2).
From this inequality we obtain, passing to limit, inequabt(A.9).

Step 5. The vector(ﬁ, A(¢€(B)) is a stationary point. Indeed, sineeis admissible, by step 3,

A¢(B)) € int(A). Therefore, sincdv, is continuously differentiable this claim follows from pte
4

Step 6. The alternating algorithm converges. This claim followsnfr the fact thatF, is strictly
convex. HenceE, has a unique global minimum iR™ x A, which in virtue of inequalities (A.9) is

attained at3, A\(¢°(3))).

The last claim in the theorem follows from the fact that the{sge) : ¢ > 0} is bounded and the
function\(3) is continuous. [ |
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